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SUMMARY

Health insurers may attempt to design their health plans to attract profitable enrollees while deterring
unprofitable ones. Such insurers would not be delivering socially efficient levels of care by providing health
plans that maximize societal benefit, but rather intentionally distorting plan benefits to avoid high-cost
enrollees, potentially to the detriment of health and efficiency. In this work, we focus on a specific com-
ponent of health plan design at risk for health insurer distortion in the Health Insurance Marketplaces: the
prescription drug formulary. We introduce an ensembled machine learning function to determine whether
drug utilization variables are predictive of a new measure of enrollee unprofitability we derive, and thus
vulnerable to distortions by insurers. Our implementation also contains a unique application-specific vari-
able selection tool. This study demonstrates that super learning is effective in extracting the relevant signal
for this prediction problem, and that a small number of drug variables can be used to identify unprofitable
enrollees. The results are both encouraging and concerning. While risk adjustment appears to have been
reasonably successful at weakening the relationship between therapeutic-class-specific drug utilization
and unprofitability, some classes remain predictive of insurer losses. The vulnerable enrollees whose pre-
scription drug regimens include drugs in these classes may need special protection from regulators in
health insurance market design.

Keywords: Classification and prediction; Ensembles; Machine learning; Statistical methods in health economics;
Variable selection.

1. INTRODUCTION

It is widely recognized by economists, health care providers, and policymakers that health insurance
markets suffer from adverse selection. Often, a particular type of adverse selection based on consumer
behavior is emphasized, where the tendency of sicker consumers to enroll in more comprehensive insurance
plans drives up the price of more comprehensive plans and forces healthier consumers out of those plans.
However, adverse selection can also present itself in the behavior of insurers, with insurers designing their
health plans’ benefits to be attractive to healthy consumers and unattractive to sick ones. In the economics
literature, this type of benefit distortion is termed service-level selection (Frank and others, 2000; Glazer
and McGuire, 2000).
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Due to the potential for adverse selection problems, many health insurance markets, including the
state and federal Health Insurance Marketplaces created by The Patient Protection and Affordable Care
Act (ACA), implement a policy known as “risk adjustment”, where insurers with sicker enrollees receive
financial transfers from insurers with healthier enrollees. Risk adjustment causes the profitability of a
particular enrollee to be less strongly correlated with the enrollee’s expected cost, because sicker enrollees
with higher expected costs also generate higher revenues. Risk adjustment is far from perfect, however,
potentially leaving unprofitable groups for insurers to identify and avoid (McGuire and others, 2014).

In this article, we take the hypothetical role of a profit-maximizing health insurer attempting to design
its health plans (in conjunction with pharmacy benefit managers) to attract profitable enrollees and deter
unprofitable ones. Such an insurer would not be acting in the interests of providing socially efficient levels
of care by offering plans that maximize the overall benefit to society, but rather they would intentionally
distort plan benefits in order to avoid high-cost enrollees to the possible detriment of both health and effi-
ciency. In an ideal world, insurers would compete on the basis of quality and efficiency of care, not on their
ability to identify and avoid unprofitable enrollees. But in competitive insurance markets, insurer incen-
tives are typically consistent with inefficient selection-related, in addition to socially beneficial quality-
or efficiency-related, competition (Glazer and McGuire, 2000). With the adoption of machine learning
techniques across the health sector, there is unfortunately new potential to isolate novel relationships
between enrollee characteristics and unprofitability in large health insurance enrollment and claims data,
potentially exacerbating these types of selection-related behaviors. The work in this article is designed to
provide transparency and discussion around this issue, and highlight vulnerable unprofitable groups that
may need special protection from policymakers and regulators in health insurance market design.

We focus on a specific component of health plan design: the prescription drug formulary. In the new state
and federal Health Insurance Marketplaces, the drug formulary is one of the most important dimensions on
which insurers can distort their plan benefits in response to selection incentives. While other dimensions
of health plan design are currently highly regulated (e.g., pre-existing conditions), insurers are effectively
free to use the drug formulary to raise or lower the out of pocket cost of drugs used by people with a specific
condition, thus allowing the insurer to make their formularies (and their health plans) more or less attractive
to profitable or unprofitable groups. There is suggestive evidence of this type of behavior among insurers
competing in the Health Insurance Marketplaces (Jacobs and Sommers, 2015; Geruso and others, 2017)
and in Medicare Part D (Carey, 2017). These formulary distortions are likely to make it more difficult for
unprofitable groups to find health plans that provide acceptable coverage for the drugs they take. It is also
important to note that with anticipated changes to the Health Insurance Marketplaces through complete
or partial repeal of the ACA, the weakening of protections for those with pre-existing conditions may be
likely. One bill currently being discussed would permit insurers to charge high premiums for those with
pre-existing conditions, and none of the four bills that have surfaced for congressional committee review
provide a risk adjustment system.

We study the insurer’s incentive to distort coverage for drugs in a particular therapeutic class. This
incentive is related to whether taking a drug in a given therapeutic class is predictive of a consumer’s
profitability to the insurer. If consumers who use drugs in a given therapeutic class are unprofitable on
average, then the insurer will want to weaken coverage for drugs in that class, either by placing those
drugs on a formulary tier with high cost sharing or by removing most drugs in the class from the formulary
altogether.

Our analytic approach centers around an ensembled machine learning method to determine which
drug classes are most predictive of unprofitability, and thus most vulnerable to distortions by insurers
in the Health Insurance Marketplaces. We implement an ensembling framework that selects the optimal
weighted combination among all considered algorithms in a super learner (van der Laan and others, 2007)
to build the prediction function. The best ensemble is chosen with respect to minimizing the squared error
loss function, evaluating each candidate weighted combination of algorithms based on cross-validated
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mean squared error. Thus, this framework allows application of multiple algorithms (eliminating the need
to guess beforehand which single algorithm might perform best in the given data) with the opportunity
to outperform any single algorithm by additionally considering all weighted averages of algorithms. Our
implementation also includes an application-specific variable selection approach designed for this study
that combines both data-adaptive techniques and investigator knowledge, all defined a priori. The super
learner has been used in previous works within health care to predict post-traumatic stress disorder based
on traumatic experiences (Kessler and others, 2014), predict mortality in intensive care units (Pirracchio
and others, 2015), and to develop health plan payment risk adjustment formulas for total annual health
care expenditures (Rose, 2016), among other applications.

2. COHORT

Potential health insurance enrollees seeking plans through the Health Insurance Marketplaces, as defined
by the ACA, include those who are: (i) uninsured or (ii) insured with a non-group or small group insurance
policy. Currently, however, data on individuals enrolled in large group health insurance plans are used by
the federal government to inform decision-making for Health Insurance Marketplace enrollees. The Truven
MarketScan database is a longitudinal enrollment and claims database from large employers and insurers
containing up to 51 million enrollees per year (Adamson and others, 2008). Truven MarketScan data from
2010 were used to calibrate the federal risk adjustment system for the Health Insurance Marketplaces
beginning in 2014, and are likely to be used for any recalibration in 2017 and beyond. This is problematic
as the Health Insurance Marketplace and commercial Truven MarketScan populations are fundamentally
different with respect to age, health status, and other characteristics. Thus, while we also use Truven
MarketScan data, we follow earlier literature (Rose and others, 2015; Layton and others, 2015) to select
a sample that is more representative of Health Insurance Marketplaces enrollees.

2.1. Cohort selection

Our inclusion and exclusion criteria mirrored those used by the federal government in 2014 for the Health
Insurance Marketplace risk adjustment formulas (Kautter and others, 2014). Therefore, enrollees are in a
preferred provider organization or other fee-for-service health plan in both the first and last month of each
year considered, do not make capitated payments, are age 21–64, and have mental health and drug coverage.
Individuals with negative payments for services were removed. A total of 7 072 964 individuals met these
criteria for 2012–2013. Using propensity-score techniques described in previous literature (Layton and
others, 2015), we identified the 2 006 216 observations that met our criteria to be representative of the
Health Insurance Marketplace population with regard to distributions of age, gender, region, residence
in a metropolitan statistical area, inpatient admissions, number of inpatient admissions, and quantile of
outpatient and prescription drug spending.

2.2. Data extraction

Our analytic dataset focuses entirely on prescription drug related variables. Included are indicators for
identifying drugs as single-source brand, multi- or single-source generic, or over the counter products;
indicators classifying drugs as primarily for long-term treatment of chronic conditions, primarily for
short-term treatment of acute conditions, or used for both; therapeutic class indicators based on the
therapeutic/pharmacological category; and therapeutic group indicators, which are aggregations of the
therapeutic class indicators (Adamson and others, 2008). The therapeutic classes are based on 2008 RED
BOOK codes (Thomson Healthcare, 2008). Thirteen of the therapeutic groups are composed of a single
therapeutic class; after dropping these and the 48 therapeutic indicator variables for which there are no
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positive claims in our sample, we have 239 binary drug-related variables to predict unprofitability. We
specifically do not use variables such as age given they are already controlled for in an individual insurance
market like the Health Insurance Marketplaces through risk adjustment.

2.3. Feature choices

We define individual-level insurer profits Fi as being equal to revenues minus costs:

Fi = Ri − Ci.

We define costs as the sum of all health care spending (inpatient, outpatient, and prescription drug) for
person i in a given year and observe this value in our data. Revenues are not observed directly in the data but
can be derived. We calculate revenues according to Marketplace plan payment formulas specified by the
Secretary of Health and Human Services (HHS). Marketplace plan revenues consist of two components:
premiums, Mi and risk adjustment transfers, Ai. Regulation allows limited variation in premiums across
individuals based on age, geography, and smoking status. We follow previous literature by abstracting
from age-, geography-, and smoking status-based premium variation and assuming that competition forces
all plans to charge a premium equal to the average cost in the market (Layton and others, 2015):

Mi = C̄ = 1

n

n∑
i=1

Ci,

for all i. For risk adjustment transfers, we start by specifying a risk score, Si, for each individual using the
risk adjustment formula used in the Marketplaces (Kautter and others, 2014). This formula assigns risk
scores according to diagnoses in claims data. We use an individual’s diagnoses from 2013 to assign their
risk score. We then specify risk adjustment transfers according to a simplified version of the Marketplace
risk adjustment transfer formula:

Ai =
(

Si

S̄
− 1

)
C̄,

where S̄ = 1
n

∑n
i=1 Si. Given these two components, we can then generate calculated revenues, and thus

profits, at the individual level:

Fi = Mi + Ai − Ci

= C̄ +
(

Si

S̄
− 1

)
C̄ − Ci

= C̄ × Si

S̄
− Ci.

Given that we are interested in predicting unprofitability, our understanding of individual-level insurer
profits allows us to easily define individual-level insurer unprofitability Ui as costs minus revenue:

Ui = −Fi = Ci − Ri.
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We can also now compute unprofitability at the individual level:

Ui = −Fi = Ci − Mi − Ai

= Ci − C̄ −
(

Si

S̄
− 1

)
C̄

= Ci − C̄ × Si

S̄
.

3. METHODS

The super learner is a general ensembling framework that can be applied to build a prediction function
that is the optimal weighted combination of a library of algorithms (van der Laan and others, 2007).
The general principle is that, by positing a family of weighted combinations of algorithms, one of these
weighted algorithms may outperform any given single algorithm in the library. The theory of the super
learner is described in previous literature (van der Laan and Dudoit, 2003; van der Laan and others, 2007),
which presents both asymptotic and finite sample properties that guarantee the super learner approximates
the unknown oracle selector (i.e., the best weighted combination among included algorithms). Earlier
work includes stacking algorithms (Wolpert, 1992; Breiman, 1996; LeBlanc and Tibshirani, 1996). The
super learner generalized stacking and provided new optimality properties. Individual algorithms within
the super learner may have different tuning parameters (e.g., random forests with 500 trees and random
forests with 1000 trees would be unique algorithms) and consider differing sets of variables.

3.1. Algorithm

Consider our outcome U , unprofitability, and a vector of all drug-related variables X . The observational unit
is described by O = (U , X ), drawn from unknown true probability distribution P0, where we measure Ui

and Xi for each enrollee. We additionally specify a nonparametric model M that is a collection of possible
probability distributions P. We assume only that our data are n independent and identically distributed
draws of random variable O. The parameter of interest is

�(P0) = E0(U | X ) = arg min�(P)E0L(O, �(P)),

where the loss function L, which takes as input the observed data O and candidate functions �(P), is the
squared error loss: L(O, �(P)) = (U − �(P))2. Minimizing the expected loss E0L(O, �(P)) yields the
true conditional mean E0(U | X ). While �(P0) is unknown, we seek the best estimator of this conditional
mean. We could have considered other loss functions or transformed our unprofitability outcome measure
with a log modification. However, the health spending literature indicates that raw costs perform well for
prediction compared to other choices (Dunn and others, 2003; Jones and others, 2007; Ellis and others,
2017).

The super learner for �(P0) = E0(U | X ) is constructed as follows:

1. Fit each of K candidate algorithms within V -fold cross-validation. This involves dividing the dataset
O into a training set containing V−1

V

ths
of the data and a validation set containing the remaining 1

V

th
of

the data in each of V folds. The training set T (v), v = 1, . . . , V , is used to generate the algorithm
fit in each fold while the V (v) validation set is then fed through the fitted algorithm to obtain
cross-validated predicted values Zk(v).
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2. Posit a family of weighted combinations of the K algorithms that is a convex combination indexed
by α, and select the α̂ that minimizes the expected loss. This reduces to a simple minimization
problem where we regress U on Z :

E(U | Z) = α1Z1 + . . . + αK ZK .

3. Run all K algorithms on the full data O and combine the candidate fits �̂(P) with the α̂ vector to
build the super learner function:

�̂(P)SL = α̂1�̂(P)1 + . . . + α̂K�̂(P)K ,

and obtain final predicted values.

3.2. Implementation

Beyond including a diverse collection of algorithms in our library, it is also often of interest to consider
differing sets of predictors. If an exhaustive set of variables does not have better predictive performance
than a smaller subset, chosen either data-adaptively or via subject matter knowledge or both, it may be
beneficial to implement a final algorithm using the smallest set necessary. Thus, our implementation
incorporates three different variable sets. The full variable set contains all 239 binary drug variables; a
more parsimonious set includes 31 therapeutic group indicators that aggregate the drug variables into
hierarchies, plus eight generic indicators and five long-term and short-term use indicators; and the final
set is a small selection of variables chosen data-adaptively by an application-specific lasso penalized
regression within the cross-validation folds. We limited this new implementation of lasso regression to
ten non-zero variables. When the number of non-zero coefficients exceeded ten, a larger value of the
regularization parameter λ was used to select a smaller set of variables excluding the ties. Additionally,
and most importantly, we augmented the subset of variables chosen by the lasso to include indicators for the
therapeutic classes of HIV and multiple sclerosis drugs (if they were not already selected) given the high
cost of these therapies. We select a set of approximately 10 variables based on prior work demonstrating
that ten variables chosen data-adaptively can be nearly as predictive as a larger set of variables for total
health spending (Rose, 2016).

The five distinct algorithms that consider each of these three variable sets are a neural network with
two units in the hidden layer, lasso penalized regression with the λ value chosen via internal cross-
validation, ridge regression with the λ value chosen via internal cross-validation, a regression tree with
ANOVA splitting, and a main-terms linear regression. This led to a total of 15 individual algorithms
ensembled by the super learner (K = 15) using 10-fold cross-validation. Our implementation relied on
the SuperLearner package in the R programming language, which also called the nnet, glmnet,
and rpart packages (Polley and van der Laan, 2013; Friedman and others, 2016; Ripley and Venables,
2016; Therneau and others, 2015). Our unique application-specific implementation of the lasso regression
to screen variables described above is freely available as R code (see Section 6).

3.3. Evaluation approach

We evaluate the performance of the super learner with respect to the a priori selected loss function L, the
squared error loss. Thus, using the cross-validated predicted values, we construct cross-validated mean
squared errors:

CV MSEk =
∑n

i=1(Ui − Zk ,i)
2

n
,
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and cross-validated R2 values:

CVR2
k = 1 −

∑n
i=1(Ui − Zk ,i)

2∑n
i=1(Ui − Ū )2

,

for each individual algorithm k considered, as well as the super learner. Note that in order to obtain
a cross-validated mean squared error and cross-validated R2 for the super learner, the entire procedure
described in Section 3.1 is itself cross-validated with 10-fold cross-validation.

4. PREDICTING UNPROFITABILITY RESULTS

Summary information for key variables in the Truven MarketScan data are described in Figure 1. The
median value of unprofitability was −$762 (indicating the median enrollee was not, in fact, unprofitable),
with a mean of $0 (standard deviation: $15 617). Mean age was 42 years, 49% of our sample was female,
and 33% of enrollees have one or more chronic conditions. The final super learner algorithm was defined by:

�̂(P)SL = 0.15�̂(P)nnet.f + 0.04�̂(P)nnet.g + 0.69�̂(P)glm.f + 0.03�̂(P)glm.g + 0.09�̂(P)glm.l,
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Fig. 1. Summary values for unprofitability, demographics and health, generic drugs, and maintenance drugs. Outliers
were dropped from the unprofitability plot.
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where nnet is the neural network algorithm and glm is the main terms linear regression, and the appen-
dices.f,.g, and.l indicate the full set of covariates, therapeutic groups only, and the application-specific
lasso, respectively.

We found that drug classes had signal for predicting unprofitability (Figure 2), with a cross-validated
R2 of 4.6% for the super learner. The Marketplace risk adjustment system accounts for a large portion of
the variation in spending. Our result may suggest that the system is working reasonably well at matching
revenues to expected costs, although still leaving room for drug utilization to be exploited. Drug spending
is responsible for less than 20% of total spending and around 30% of individuals in our sample have no
drug spending, so, while a cross-validated R2 of 4.6% may seem low compared to other applications, this
is a stronger signal than we should ideally see. We explore this issue further in Section 5. Additionally, we
performed a falsification test with an unrelated simulated outcome measure, and obtained a cross-validated
R2 of 0.0%.

The super learner had the best overall performance, with the largest cross-validated R2 (Figure 2a), and
the smallest cross-validated mean squared error among all algorithms considered (Figure 2b). However,
its improvement over the best single algorithm was minimal, where the lasso algorithm using the full
covariate set had a relative efficiency of 98.7% (Figure 2c). The ridge regression and the linear regression,
both with the full covariate set, also had relative efficiencies close to 1. The worst performing algorithm
was the regression tree using the therapeutic groups only variable subset, with a cross-validated R2 = 1.0%
and a relative efficiency of 22.2% compared to the super learner. Overall, the regression tree and neural
network had poorer performance within each variable subset compared to the two penalized regressions
and the linear regressions, with relative efficiencies ranging from 22.2 to 55.4% vs. 53.3 to 98.7%.

The more parsimonious set of therapeutic groups was less predictive of unprofitability than the full
set of variables. The relative efficiency of the algorithms with the therapeutic groups subset compared to
the super learner ranged from 22.2 to 53.3%. The subset of variables chosen by the application-specific
lasso variable selector included two generic indicators (multi-source generic and over the counter) and
eight therapeutic class indicators (macrolide antibiotics; cephalosporin antibiotics; quinolones [synthetic
antibiotics]; antivirals, including HIV drugs; biological response modifiers, including multiple sclerosis
drugs; anti-inflammatory agents for ear, eye, nose, and throat; fluoride preparations; and calcium sup-
plements for replacement preparation). Notably, the small set of variables chosen by the lasso was more
predictive than the subset containing the therapeutic groups for all algorithms, and for the regression tree,
the lasso subset had an identical cross-validated MSE compared to the full set. The relative efficiency of
the algorithms with the lasso subset compared to the super learner ranged from 37.5 to 74.7%.

We also calculated the difference between the actual values for unprofitability and the predicted values
generated by the super learner algorithm. While these differences were clustered around zero (results
not shown), there were three obvious extreme outliers. The observed drug utilization patterns for these
outliers reflect those seen in individuals who are unprofitable, but on the order of $10–35K versus their
actual $2.5–3.7M. It is well known that there are typically extreme outliers when it comes to health
care spending, where even including additional variables beyond drug utilization would not have likely
dramatically improved these predictions (Ellis and others, 2017).

5. DISCUSSION

The ability of health insurers to distort offerings in their drug formularies is an area of rising concern
in the Health Insurance Marketplaces. There are currently strict regulations protecting other dimensions
of health plan design, but not the drug formularies. The fact that health insurers cannot discriminate
based on pre-existing conditions in the Health Insurance Marketplaces (as they exist today) is a major
component of the ACA, and has made premiums affordable to those without group insurance. However,
drug formularies remain potentially gameable. A profit-maximizing insurer may have incentives to use
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them to avoid unprofitable enrollees as risk adjustment imperfectly controls for their health. Potential
“repeal and replace” or “repeal and repair” of theACA would likely lead to fewer protections for individuals
with pre-existing conditions, including allowing insurers to charge unaffordable premiums based on these
health conditions. It is estimated that at least 5.4 million of the 20 million individuals currently enrolled in
insurance through the Health Insurance Marketplaces established by theACA have pre-existing conditions
(Claxton and others, 2016). Further discrimination through the drug formulary, as shown in our article,
could remove additional enrollees from needed insurance and access to care.

We demonstrated that ensembled machine learning methods can be implemented to extract the remain-
ing relevant signal from the drug formulary data in order to predict unprofitability. Our results are both
encouraging and concerning. On one hand, the sophisticated learning algorithms used in this article pro-
duced functions that were not extremely highly predictive of unprofitability. This suggests that the risk
adjustment system may be performing reasonably well at matching revenues to expected costs and limiting
insurer incentives to distort drug formularies to attract healthy and deter sick enrollees. On the other hand,
the algorithms were able to relate drug utilization to unprofitability for some therapeutic classes, implying
that distortionary insurer incentives remain for these classes, and Marketplace enrollees who use drugs in
these classes may find it difficult to find health insurance plans that provide adequate coverage for their
prescribed drug regimens. Strikingly, the two generic indicators and eight therapeutic class indicators
identified by our application-specific lasso maintained about 75% of the predictive performance of the
full set of 239 drug-related variables. We also highlight that R2 values for health spending applications are
generally low, with values for total health spending prospective risk adjustment formulas ranging from 20
to 25%, MedicareAdvantage formulas around 11 to 12%, and mental health care spending below 7% (Her-
mann and others, 2007; Pope and others, 2011; Ellis and others, 2017). These estimates also typically do
not reflect cross-validated R2, and are thus overestimates of the cross-validation-based metrics we use here.

As noted above, the subset of variables chosen by the lasso variable screener and provided to each of
the individual algorithms included two generic indicators (multi-source generic and over the counter) and
eight therapeutic class indicators for a wide range of drug types. Many of the therapeutic classes considered
in the full variable set were similarly predictive of unprofitability, making it difficult for a regulator to
protect consumers through targeting those individual drugs for protections. For example, Medicare’s Part
D “protected classes” policy is intended to protect patient access to specific drugs (including HIV drugs)
and to ensure that patients are not discouraged from enrolling in certain Part D plans (CMS, 2016).
A protected classes approach may ensure that patients enrolling in a plan have access to the specified
drugs, but it would not necessarily guard against more subtle “adverse tiering” behavior consisting of
plans placing drugs used by unprofitable enrollees on formulary tiers with high levels of cost-sharing.
Thus an insurer may wish to perform variable selection to determine which set of drugs are indicative of
unprofitability, and to reduce coverage for these drug types.

While we played the role of a hypothetical profit-maximizing insurer, there are suggestive indications
that this may be occurring in practice, as well as a new lawsuit asserting it is happening. Carey (2017)
shows that in the Medicare Part D prescription drug insurance market, insurers respond to the selection
incentives we highlight here. In her article, she shows that Part D plans offer less generous coverage for
drugs used by unprofitable groups. Jacobs and Sommers (2015) show that some plans competing in the
state and federal Health Insurance Marketplaces also use drug formularies to avoid individuals with HIV.
They find that individuals with HIV who enrolled in these “Adverse-Tiering Plans” would have an average
annual cost per drug of more than triple the cost they would have faced in a “non-Adverse-Tiering Plan.”
Notably, a recent lawsuit filed by Harvard Law School in September 2016 asserts that major insurers in
the Health Insurance Marketplaces are designing their coverage so that individuals with HIV/AIDS will
be less likely to enroll (Gorenstein, 2016).

There are also employment trends for deep analytic talent within the insurance space that imply health
companies are looking to extract as much information as possible from their data. The broad view of these
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trends within the United States was captured in a McKinsey study (Manyika and others, 2011). They
reported that, of 152 900 workers with deep analytic skills, 22 300 (14.5%) were employed by insurance
carriers, agencies, brokerages, and other insurance-related companies. Remarkably, 9600 of those in this
group were not actuaries, with 3200 statisticians. While not all of these employees are in the health sector,
we also have anecdotal evidence that health insurers are building strong data-centric teams. For example,
one major health insurer noted last year that they hire talent from other sectors that adopted data science
tools earlier than health care, such as retail and financial technology, to work in their analytics department
(Chuang, 2016).

The super learner framework provides researchers with the opportunity to run many algorithms, an
honest assessment of performance, and considers all weighted averages of the candidate algorithms. This
is at effectively no computational cost, as after cross-validation is performed, the estimation of the weight
vector is a simple linear regression of the outcome on the cross-validated predicted values. Thus, even
when the super learner has only moderately improved performance compared to any single algorithm, it
may still be valuable to allow for any improvement provided by a weighted average. However, in clinical
or policy settings, simplicity may be preferred. In these cases, researchers should include the standard
practice approach, which may be a very small number of variables in a main-terms regression or “checklist”
classification algorithm, in the super learner. An a priori threshold for improvement can then be set, such
that only when any single algorithm or the super learner outperforms the standard approach by a preset
amount would that prediction function be defined as best. Earlier studies have shown that super learner
can have substantially better performance than any single algorithm in other applied analyses (van der
Laan and Rose, 2011). The super learner framework also allows investigators to consider varying sets of
variables within algorithms, which was a strategic advantage here.

This is the first study to examine the predictability of unprofitability with drug variables using ensembles
or any other technique. The goal of this work was to explore the ability of insurers to use this data to
identify potentially vulnerable unprofitable groups. In future work, we are comparing similar measures
of insurer incentives to distort drug formularies to actual coverage by therapeutic class among plans
competing in the state and federal Health Insurance Marketplaces. This research will allow us to know
not only what selection-related incentives insurers face but whether they’re acting on those incentives,
potentially providing additional motivation for policymakers and regulators to act to provide insurers with
incentives that are more consistent with social objectives.

6. SOFTWARE

Simulated data and software in the form of publicly-available R code is online at:
sl-bergquist.github.io/unprofits.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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