
Biostatistics (2018) 19, 1, pp. 54–70
doi:10.1093/biostatistics/kxx024
Advance Access publication on May 18, 2017

Semiparametric model and inference for spontaneous
abortion data with a cured proportion and biased

sampling

JIN PIAO

Department of Biostatistics, The University of Texas School of Public Health, 1200 Pressler Street,
Houston, TX 77030, USA

JING NING∗

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Houston, TX 77030, USA

jning@mdanderson.org

CHRISTINA D. CHAMBERS

Department of Pediatrics, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093,
USA and Department of Family Medicine and Public Health, University of California, 9500 Gilman

Drive, San Diego, La Jolla, CA 92093, USA

RONGHUI XU

Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive,
San Diego, La Jolla, CA 92093, USA and Department of Mathematics, University of California, 9500

Gilman Drive, San Diego, La Jolla, CA 92093, USA

SUMMARY

Evaluating and understanding the risk and safety of using medications for autoimmune disease in a woman
during her pregnancy will help both clinicians and pregnant women to make better treatment decisions.
However, utilizing spontaneous abortion (SAB) data collected in observational studies of pregnancy to
derive valid inference poses two major challenges. First, the data from the observational cohort are not
random samples of the target population due to the sampling mechanism. Pregnant women with early
SAB are more likely to be excluded from the cohort, and there may be substantial differences between
the observed SAB time and those in the target population. Second, the observed data are heterogeneous
and contain a “cured” proportion. In this article, we consider semiparametric models to simultaneously
estimate the probability of being cured and the distribution of time to SAB for the uncured subgroup. To
derive the maximum likelihood estimators, we appropriately adjust the sampling bias in the likelihood
function and develop an expectation-maximization algorithm to overcome the computational challenge.
We apply the empirical process theory to prove the consistency and asymptotic normality of the estimators.
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We examine the finite sample performance of the proposed estimators in simulation studies and illustrate
the proposed method through an application to SAB data from pregnant women.

Keywords: Biased sampling; Cure rate model; Left truncation; EM algorithm.

1. INTRODUCTION

During pregnancy, women have consistently low rates of compliance with treatment recommendations
for medical conditions not related to their pregnancy. Major barriers to compliance among pregnant
women have repeatedly been shown to include fear of the safety of the treatments for themselves and
for their developing fetus. Some medications used to treat autoimmune disease have been associated
with spontaneous abortion (SAB) during pregnancy (Visser and others, 2009; Skorpen and others, 2016).
Hence, it is essential to evaluate and understand the safety and risk of treatments given to pregnant women
in order to help both clinicians and pregnant women make better treatment decisions. This work was
motivated by studies conducted by the Organization of Teratology Information Specialists (OTIS), which is
a North American network of university or hospital-based teratology services that counsel between 70 000
and 100 000 pregnant women every year. The OTIS autoimmune disease in pregnancy database included
964 pregnant women between 2005 and 2012. During the studies, the pregnant women participated in
phone interviews and recorded information in a diary throughout their pregnancy. A final outcome phone
interview was conducted shortly after the pregnancy ended. While SAB as an outcome of interest is,
at first sight, and perhaps ultimately, a binary endpoint, our recruitment of pregnant women leads to
biased sampling. Following the research interest to assess the effects of medication exposure on SAB
(Xu and Chambers, 2011; Chambers and others, 2011), we evaluate the relationship between the use of
medications for autoimmune disease during pregnancy and the probability of experiencing SAB, as well
as the time to SAB. Specifically, besides the effect of medications for autoimmune disease on the risk of
experiencing SAB, we are interested in evaluating whether the use of the medications will significantly
affect the distribution of time to SAB for pregnant women who experience SAB (the uncured group).

In the medical literature, SAB is defined as the natural death of an embryo or fetus before 20 weeks
of gestation; any pregnancy loss after 20 weeks is called still birth (Medical Encyclopedia, National
Institutes of Health website: https://www.nlm.nih.gov/medlineplus/ency/ article/001488.htm). Using this
definition of SAB, the pregnant women who do not experience SAB are considered to be “cured.” Hence,
the population is a mixture of two subgroups: those who are non-susceptible (cured) and those who are
susceptible (uncured) to SAB. Note that we are able to observe the SAB status (membership of the two
subgroups) for uncensored subjects, which is different from the classical cured data. Cure rate models
that consider such population heterogeneity have been well studied in the literature for time-to-event data.
Most survival cure rate models have been developed on the basis of mixture models (Peng and Dear, 2000;
Sy and Taylor, 2000).Various survival regression models have been considered including Cox proportional
hazards models (Sy and Taylor, 2000; Kuk and Chen, 1992) and accelerated failure time models (Zhang
and Peng, 2009; Li and Taylor, 2002). Also, several cure rate models have been developed along the lines
of non-mixture models (Chen and others, 1999; Zeng and others, 2006).

However, the existing methods to handle survival data with a cured proportion cannot be directly
applied to our motivating data because of the unique data structure of biased sampling. The data consist
only of pregnant women who have not experienced the failure event, SAB, at the time of enrollment.
In other words, pregnant women who have early SAB events are less likely to be included in the study
and thus tend to represent left-truncated data, as indicated in Figure 1. Such a sampling bias due to left
truncation is also confirmed by exploratory analysis in which the empirical SAB rate is only 7%, which
is much lower than the known incidence rate (around 12%) in the general population (Wilcox and others,
1988). Determining the best way to adjust for sampling bias has been a longstanding statistical problem.

 https://www.nlm.nih.gov/medlineplus/ency/ article/001488.htm
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Fig. 1. Survival data from a cure model that is subject to biased sampling. Patients with IDs (1), (3), and (4) are
sampled, whereas Patient (2) is excluded.

Statistical methods for analyzing survival data subject to biased sampling have been actively studied by
Wang and others (1986), Shen and others (2009), Tsai (2009), Qin and others (2011), Kim and others
(2013), Ning and others (2014) and more. However, most of the methods used in the aforementioned
publications have two limitations. First, they focus on a special type of left-truncated data in which the
incidence of the initial event (e.g., pregnancy) is constant over time. In our motivating study, the p-value
from the test of the stationarity assumption is 0.0001 (Addona and Wolfson, 2006), indicating that such
a stationarity assumption is not satisfied. Second, to the best of our knowledge, the existing methods
for adjusting sampling bias have not considered the data that include a cured proportion. Our goal is to
provide models and estimating procedures to simultaneously account for sampling bias and population
heterogeneity.

The remainder of the article is organized as follows. In Section 2, we introduce the notations and mixture
models in which the SAB status is modeled by logistic regression and the time to SAB for the uncured
subgroup is characterized by a semiparametric proportional hazards model. In Section 3, we derive the full
likelihood function with appropriate adjustment for biased sampling and the cured proportion, and then
derive an expectation-maximization (EM) algorithm to solve the computational challenge. In Section 4,
we establish the asymptotic properties of the proposed estimators. In Section 5, we report the results of
simulation studies to assess the finite sample performance of the proposed method. We apply our method
to the SAB data in Section 6 and provide concluding remarks in Section 7. We provide details for the
proofs of the asymptotic properties in the supplementary materials available at Biostatistics online.

2. NOTATIONS AND MODEL

By the definition of SAB, the loss of a pregnancy prior to 20 weeks of gestation, some pregnant women
appear to be free of the risk of SAB, which we consider to be the cured population. Considering that the
observed data are subject to biased sampling, we introduce notations first for the target population and
then for the observed biased population. Let Ỹ be the status indicating whether a subject experiences the
SAB event (Ỹ = 1) or does not experience the SAB event (Ỹ = 0). For subjects with Ỹ = 1 (uncured
population), let T̃ be the unbiased duration from the first day of the last menstrual period to the SAB,
with a density function f (t|ZZZ) and survival function S(t|ZZZ), where ZZZ is a q × 1 vector of the covariates.
Define Ã to be the duration from the beginning of the pregnancy to study entry. Under biased sampling,
only pregnant women who did not experience SAB prior to their enrollment were enrolled, and those

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
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who experienced SAB were excluded from the study. In other words, we have a sampling constraint of
T̃ > Ã. Let (T , A) be the observed biased counterparts of unbiased (T̃ , Ã). Define the censoring time
from the study enrollment and censoring indicator to be C and δ = I (T < A + C), respectively. With
potential right censoring, the observed time is denoted as X = min(T , A + C, τ), where τ is the time after
which an individual is no longer considered to be susceptible to the event (i.e., τ = 20 in the SAB data).
Note that the indicator Y is not available for subjects with δ = 0. For the cured population (Ỹ = 0), we
define τ ≤ T ≤ C for notational consistency. Throughout this article, we assume that (i) Ã and T̃ are
conditionally independent given covariates ZZZ and Ỹ = 1, and (ii) C is conditionally independent of (A, T )
given covariates ZZZ . Figure 1 illustrates the sampling mechanism of the data that has a cured proportion
and is subject to biased sampling.

We impose a logistic regression for the risk of SAB (Ỹ ) and a proportional hazards model for the time
to SAB (T̃ ) for subjects with Ỹ = 1:

P(Ỹ = 1|ZZZ1) = exp(ααα′ZZZ1)

1 + exp (ααα′ZZZ1)
, (2.1)

λZ(t) = λ(t) exp(βββ ′ZZZ), (2.2)

where ZZZ1 = (1,ZZZT )T and λ(t) is an unspecified baseline hazard function. For simplicity of notation, we
use the same covariates in both models; however, it is easy to accommodate different sets of covariates for
the two models. As discussed by Sy and Taylor (2000) and Taylor (1995), one essential assumption for
model identifiability given survival data with a cured proportion is the zero-tail constraint, which refers
to the conditional survival function as zero for a value of time greater than the longest time to the event
of interest. In our SAB data, the constraint assumption is naturally satisfied by the definition of SAB, the
natural death of an embryo or fetus before 20 weeks of gestation.

3. LIKELIHOOD AND ESTIMATION PROCEDURE

Recall that the unbiased time-to-SAB data are not directly observed. Instead, the biased samples and
their corresponding covariates are observed. We first consider the length-biased data, and then extend the
likelihood and estimating procedure to the general left-truncated data. Length-biased data are a special
case of left-truncated data in which the truncation times are uniformly distributed on a defined interval
(0, τ).

Given covariates ZZZ , the probability of a subject being selected from the target population is π(ZZZ) =
P(T̃ > Ã|ZZZ), which equals E(T̃ |ZZZ)/τ for the length-biased data. Given that the population is a mixture
of cured and uncured components, the marginal survival function of the observed time T is

So(t|ZZZ) = P(Ỹ = 1|ZZZ)S(t|ZZZ)
P(T̃ > Ã|ZZZ) + P(Ỹ = 0|ZZZ),

where S(t|ZZZ) = exp
{−�(t) exp(βββ ′ZZZ)

}
.

Consider a study with a sample of n subjects, with observed data of {Oi = (Xi, Ai, δi, Yiδi,ZZZi), i =
1, . . . n}. Let 0 < t1 < t2 < · · · < tK denote the ordered distinct observed time points including censored
and uncensored time, which is different from the hazard estimator in the traditional survival analysis
(Qin and others, 2011). The true baseline hazard function λ(.) is unspecified under the Cox model and is
an infinite-dimensional parameter. In our estimation procedure, following the nonparametric maximum
likelihood principle (Vardi, 1989; Qin and others, 2011), we assume that the estimated λ(.) has positive
masses only at distinct observed time points (t1, . . . tK), where the value of K depends on the observed data
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and can reach infinity as n → ∞. Given the conditional independence assumptions, the full likelihood
function of the observed data conditional on the covariates is proportional to

Ln(ψψψ) =
n∏

i=1

{
P(Ỹi = 1|ZZZi,ααα)f (Xi|ZZZi,βββ,λλλ)

P(T̃i > Ãi|ZZZi,ψψψ)

}Yiδi

P(Ỹi = 0|ZZZi,ααα)δi(1−Yi)So(Xi|ZZZi,ψψψ)1−δi , (3.1)

where the parameter vector of interest is denoted as ψψψ = (ααα,βββ,λλλ) and the density function f (t|ZZZ ,βββ,λλλ))
is denoted as f (t|ZZZ ,βββ,λλλ)) = λ(t) exp(βββ ′ZZZ) exp

{−�(t) exp(βββ ′ZZZ)
}

. Note that the sampling probability
P(T̃i > Ãi|ZZZi,ψψψ) involves the parameter λλλ;C hence, directly maximizing the observed likelihood or the
profile likelihood method is computationally prohibitive due to a lack of an analytical expression for the
optimal value of parameter λλλ. To overcome this computational challenge, we derive an EM algorithm that
naturally incorporates the bias sampling mechanism into a missing data framework.

3.1. EM algorithm under length-biased sampling

There are two missing components in the observed data. First, the SAB status is not observable for
any subject with censored survival time (δ = 0). Conditional on the observed data, we can derive the
expectation of Yi as

E(Yi|Oi,ψψψ) = P(Yi = 1|Oi,ψψψ) = P(Ỹi = 1|ZZZi,ααα)S(Xi|ZZZi,βββ,λλλ)

P(Ỹi = 0|ZZZi,ααα)+ P(Ỹi = 1|ZZZi,ααα)S(Xi|ZZZiβββ, ,,,λ)
. (3.2)

Next, we treat the truncated observations as missing data. For any subject i in the observed data,
the data generating mechanism can be considered as sampling the unbiased time (T̃ , Ã) for a random
mi times until T̃ > Ã. This random integer mi then follows a geometric distribution with parame-
ter π(ZZZi) = P(T̃ > Ã|ZZZi). We denote the truncated (unobserved) data corresponding to subject i by
O∗

i = {(T ∗
il , A∗

il , Y ∗
il = 1,ZZZi), T ∗

il < A∗
i , l = 1, . . . , mi}. Then the complete data for the ith subject include

the observed data Oi, and unobserved data {(1 − δi)Yi, O∗
i )}. Accordingly, the log-likelihood function of

the complete data is

lc(ψψψ) =
n∑

i=1

Yi

K∑
j=1

mi∑
l=1

I (T ∗
il = tj)

[
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ log f (tj|ZZZi,βββ,λλλ)
]

(3.3)

+
n∑

i=1

Yi

K∑
j=1

I (Xi = tj)
[
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ δi log f (tj|ZZZi,βββ,λλλ)

+ (1 − δi) log S(tj|ZZZi,βββ,λλλ)
]−

n∑
i=1

(1 − Yi) log
{
1 + exp(ααα′ZZZi)

}
,

where f (tj|ZZZi,βββ,λλλ) = λj exp(βββ ′ZZZi) exp
{
−∑j

l=1 λl exp(βββ ′ZZZi)
}

and S(tj|ZZZi,βββ,λλλ) = exp
{ −∑j

l=1 λl exp

(βββ ′ZZZi)
}
. We first select initial values ψψψ(0) = (ααα(0),βββ(0),λλλ(0)), and let ψψψ(k) denote the estimates of the

parameters in the kth iteration. Following the principle of the EM algorithm, in the E-step of the (k + 1)th
iteration, we calculate the conditional expectation of the log-likelihood function of the complete data
based on the observed data and the estimated parameters from the last iteration,

lE(ψψψ |ψψψ(k)) =
n∑

i=1

ω(Yi)

K∑
j=1

wij

[
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ f (tj|ZZZi,βββ,λλλ)
]

(3.4)
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+
n∑

i=1

ω(Yi)

K∑
j=1

I (Xi = tj)
[
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ δi log f (tj|ZZZi,βββ,λλλ)

+ (1 − δi) log S(tj|ZZZi,βββ,λλλ)
]−

n∑
i=1

{1 − ω(Yi)} log
{
1 + exp(ααα′ZZZi)

}
,

where ω(Yi) = δiYi + (1 − δi)E(Yi|Oi,ψψψ(k)), the expected number of truncated latent subjects who would
experience the failure event at tj is

wij = E

[
mi∑

l=1

I (T ∗
il = tj)

∣∣∣O,ψψψ(k)

]
= E(mi|O,ψψψ(k))E

[
I (T ∗

il = tj)|Oi,ψψψ(k)
]

= 1 − tj/tK

π(ZZZi)
f (tj|ZZZi,βββ(k),λλλ(k)),

and π(ZZZi) = P(T̃i > Ãi|ZZZi,ψψψ(k)) = ∑k
j=1 tjf (tj|ZZZi,βββ(k),λλλ(k))/tK .

In the M-step, we maximize the expected complete log-likelihood function (3.4) to update the parameter
estimates. The estimates can be updated by solving the corresponding score equation, defined as the first
derivative of the expected complete log-likelihood. The score equation of ααα is

n∑
i=1

[
ω(Yi)

K∑
j=1

{
wij + I (Xi = tj)

} ZZZi1

1 + exp(ααα′ZZZi1)
− {1 − ω(Yi)} exp(ααα′ZZZi1)ZZZi1

1 + exp(ααα′ZZZi1)

]
. (3.5)

By solving the score equation of λλλ, the maximizer for the baseline hazard can be written as a function
of βββ,

λj =
∑n

i=1 ω(Yi)
{
wij + I (Xi = tj)δi

}∑n
i=1

∑K
k=j ω(Yi) {wik + I (Xi = tk)} exp(βββ ′ZZZi)

. (3.6)

After plugging equation (3.6) into the score equation of βββ, we have the following estimating equation set

n∑
i=1

{
ω(Yi)ZZZi

K∑
j=1

[
wij + I (Xi = tj)δi (3.7)

− {
wij + I (Xi = tj)

} j∑
l=1

∑n
i′=1 ω(Yi′) {wi′l + I (Xi′ = tl)δi′ }∑n

i′=1

∑K
h=l ω(Yi′) {wi′h + I (Xi′ = th)} exp(βββ ′ZZZi′)

exp(βββ ′ZZZi)
]}

.

Hence, the updated estimate of ψψψ can be obtained by cycles. Specifically, given ααα(k) and βββ(k), λλλ(k+1) can
be obtained by equation (3.6); given λλλ(k+1) and βββ(k), ααα(k+1) can be calculated by equation (3.5); and given
λλλ(k+1) and ααα(k+1), βββ(k+1) can be derived by equation (3.7).

We iterate between the E- and M-steps until the difference between the likelihoods and estimates at two
successive iterations is less than a prespecified value. The proposed EM algorithm has several desirable
features. First, the conditional expectations in the E-step only involve at most 1D integration. Second, in the
M-step, the high-dimensional parameters λk , k = 1, · · · , K are calculated explicitly (3.6), while the low-
dimensional parameters can be updated through the novel use of existing software. Specifically, to solve
equation (3.5) for updating parameter ααα, we can use the existing logistic regression program by creating
a new data set. We first generate a data set for the unobserved and truncated subjects in which the binary
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outcomes are all set to be 1. The covariates are repeated K times with ZZZnK = (ZZZ1, . . . ,ZZZ1,ZZZ2, . . . ,ZZZ2, . . . ,
ZZZn, . . . ,ZZZn). We next combine the generated data for the truncated subjects with the observed data. By
using the combined data set, ααα can be estimated by the function glm() with the “weights” option in R,

glm(Y T ∼ ZZZ , weights, family = “binomial"),

where Y T = (E(Y1|O1,ψψψ(k)), . . . , E(Yn|On,ψψψ(k)), 111nK),ZZZT = (ZZZ1, . . . ,ZZZn,ZZZnK) and the weights
equals

{
1, . . . , 1, w11E(Y1|O1,ψψψ(k)), w12E(Y1|O1,ψψψ(k)), . . . , w1K E(Y1|O1,ψψψ(k)), . . . , wn1E(Yn|On, ψψψ(k)),

wn2E(Yn|On,ψψψ(k)), . . . , wnK E(Yn|On,ψψψ(k))
}T

.
Similarly, equation (3.7) can be solved by the existing program for right-censored data under the Cox

model. First, we generate a data set for the unobserved and truncated subjects in which the failure times are
constructed by repeating the observed unique survival time n times, i.e., TnK = (t1, . . . , tK , . . . , t1, . . . , tK).
The corresponding death indicator is a vector of 1, denoted as �nK = (1, . . . , 1). The covariates are
matched with the failure times, with ZZZnK = (ZZZ1, . . . ,ZZZ1,ZZZ2, . . . ,ZZZ2, . . . , ZZZn, . . . ,ZZZn). After combining the
generated data with the observed data, we can estimateβββ by the function coxph() with the “weight” option
in R,

coxph(Surv(T ,�) ∼ ZZZ , weight),

where T T = (x1, . . . , xn, TnK),�T = (δ1, . . . , δn,�nK),ZZZT = (ZZZ1, . . . ,ZZZn,ZZZnK) and the weight equals
{(I (Y1 �= 0), . . . , I (Yn �= 0), w11, w12, . . . , w1K , . . . , wn1, wn2, . . . , wnK }T . Note that the first n elements have
a weight of {(I (Y1 �= 0), . . . , I (Yn �= 0)} since we need to exclude the cured population and have a weight
of 1 for the others.

3.2. Extension to general left-truncated data

The stationarity assumption is required for applying the model and methods described in Section 3.1;
however, that assumption can be easily violated in application. For example, in the event of an infectious
disease outbreak, the number of people infected usually grows exponentially rather than linearly over
time. Hence, the truncation times are unlikely to be uniformly distributed. In this section, we consider
a flexible class of semiparametric models and the associated full maximum likelihood estimation for
general left-truncated data. For the purpose of model identifiability, we assume a parametric model for
the distribution of the truncation variable, with cumulative density function H (·|θθθ) and density function
h(·|θθθ). The joint model of the truncation time and the time to the event of interest is not identifiable if both
distributions have nonparametric components (Wang, 1989). Here, we choose the semiparametric model
for the time to the event of interest (e.g., time to SAB event) and the parametric model for the truncation
time. Under these assumptions, the full likelihood function of the observed data is proportional to

Ln(ξξξ) =
n∏

i=1

{
P(Ỹi = 1|ZZZi)f (Xi|ZZZi)h(Ai|θθθ)

P(T̃i > Ãi|ZZZi)

}Yiδi

P(Ỹi = 0|ZZZi)
δi(1−Yi) (3.8)

{
P(Ỹi = 1|ZZZi)S(Xi|ZZZi)h(Ai|θθθ)

P(T̃i > Ãi|ZZZi)
+ P(Ỹi = 0|ZZZi)

}(1−δi)
,

where ξξξ = {θθθ ,ααα,βββ,λλλ}.
As mentioned previously, directly maximizing the likelihood function is computationally prohibitive

due to the lack of an analytical expression for the optimal value of parameterλλλ. In the following equations,
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we extend the EM algorithm introduced in Section 3.1 to maximize (3.8). Similarly, we treat the SAB
status for censored subjects and those truncated due to the sampling mechanism as missing data and
denote {(Xi, Ai, Yi, δi,ZZZi), O∗

i , i = 1, . . . , n} as the “complete data.” Accordingly, the log-likelihood of the
complete data is

lc(ξξξ) =
n∑

i=1

Yi

[
log h(Ai|θθθ)+

mi∑
l=1

log h(A∗
il|θθθ) (3.9)

+
K∑

j=1

mi∑
l=1

I (T ∗
il = tj)

{
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ log f (tj|ZZZi,βββ,λλλ)
}

+
K∑

j=1

I (Xi = tj)
{
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ δi log f (tj|ZZZi,βββ,λλλ)+ (1 − δi)S(tj|ZZZi,βββ,λλλ)
} ]

−
n∑

i=1

(1 − Yi) log
{
1 + exp(ααα′ZZZi)

}
.

We denote the parameter estimator from the kth iteration by ξξξ (k) = {
θθθ(k),ψψψ(k)

} = {
θθθ(k),ααα(k),βββ(k),λλλ(k)

}
.

Then given ξξξ (k) and the observed data, we have E(mi|Oi,ξξξ (k)) = {1 − π(ZZZi)}/π(ZZZi) and

π(ZZZi) = P(T̃i > Ãi|ZZZi,ξξξ (k)) =
∫ τ

0
f (u|ZZZi,βββ(k),λλλ(k))H (u|θθθ(k))du.

The expected number of truncated latent subjects who would have the event at time tj is

wij = E
[ mi∑

l=1

I (T ∗
il = tj)|Oi,ξξξ (k)

]
= E(mi|Oi,ξξξ (k))E

[
I (T ∗

il = tj)|Oi,ξξξ (k)
]

= f (tj|ZZZi,βββ(k),λλλ(k)){1 − H (tj|θθθ(k))}∫ τ
0 f (u|ZZZi,βββ(k),λλλ(k))H (u|θθθ(k))du

.

The expectation of log h(A∗
il|θθθ) given the observed data Oi under the constraint T ∗

il < A∗
il is

E
[
log h(A∗

il|θθθ)|Oi,ξξξ (k)
] =

∫
F(u|ZZZi,βββ(k),λλλ(k))h(u|θθθ(k)) log h(u|θθθ)du∫

F(u|ZZZi,βββ(k),λλλ(k))h(u|θθθ(k))du
,

where F(u|ZZZi,βββ(k),λλλ(k)) = ∫ u
0 f (v|ZZZi,βββ(k),λλλ(k))dv. It follows that the expected log-likelihood function for

the complete data conditional on the observed data and ξξξ (k) is

lE(ξξξ |ξξξ (k)) =
n∑

i=1

ω(Yi)

[
log h(Ai|θθθ)+ E(mi|Oi,ξξξ (k))E

{
log h(A∗

il|θθθ), Oi,ξξξ (k)
}

(3.10)

+
K∑

j=1

wij

{
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ log f (tj|ZZZi,βββ,λλλ)
}

+
K∑

j=1

I (Xi = tj)
{
ααα′ZZZi − log

{
1 + exp(ααα′ZZZi)

}+ δi log f (tj|ZZZi,βββ,λλλ)
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+ (1 − δi) log S(tj|ZZZi,βββ,λλλ)
}]

−
n∑

i=1

{1 − ω(Yi)} log
{
1 + exp(ααα′ZZZi)

}
,

where ω(Yi) = δiYi + (1 − δi)E(Yi|Oi,ξξξ (k)). The M-step maximizes (3.10) to update the parameter
estimates. Specifically, the updates can be obtained through cycles of λλλ, ααα, βββ and θθθ . The parameters ααα,
ααα and λλλ can be estimated in a manner similar to that described in Section 3.1. The estimate of θθθ can be
derived by solving the following score equation

n∑
i=1

ω(Yi)

⎧⎨⎩ ḣ(Ai|θθθ)
h(Ai|θθθ) + E(mi|Oi)

∫
F(u|ZZZi,θθθ(k),λλλ(k))h(u|θθθ(k)) ḣ(u|θθθ)

h(u|θθθ)du∫
F(u|ZZZi,θθθ(k),λλλ(k))h(u|θθθ(k))du

⎫⎬⎭, (3.11)

where ḣ(u|θθθ) = ∂h(u|θθθ)/∂θθθ . For the implementation of the M-step, we can easily use the existing program
for logistic regression and traditional right-censored data under the Cox model as described in Section 3.1.

4. ASYMPTOTIC PROPERTIES

We establish the asymptotic properties of the estimators, denoted as ξ̂ξξ n = (̂θθθ n, α̂ααn, β̂ββn, �̂��n), under general
left-truncation sampling. Here, the subscript n indicates the sample size. The true values of the parameters
are denoted as ξξξ 0 = (θθθ 0,ααα0,βββ0,���0). By the counting process formulation, the observed log-likelihood
function can be rewritten as

ln(ξξξ) =
n∑

i=1

{
Yi

∫ τ

0

[
αααTZZZi1 + log d�(u)+ βββTZZZi −

∫ u

0
exp(βββTZZZi)d�(v)+ log h(Ai|θθθ)

− log
∫ τ

0
S(v|ZZZi)h(v|θθθ)dv

]
dNi(u)

ãŁŁ −
∫ τ

0
log

[
1 + exp

{
αααTZZZi1 − ∫ u

0 exp(βββTZZZi)d�(v)
}∫ τ

0 S(v|ZZZi)h(v|θθθ)dv
h(Ai|θ)

]
dNi(u)

+ log
[

1

1 + exp(αααTZZZi1)
+ exp

{
αααTZZZi1 − ∫ τ

0 Mi(v) exp(βββTZZZi)d�(v)
}

{1 + exp(αααTZZZi1)}
∫ τ

0 S(v|ZZZi)h(v|θθθ)dv
h(Ai|θθθ)

]}
,

where Ni(u) = I (Ai < Xi ≤ u)δi, Mi(u) = I (Xi ≥ u)I (Xi > Ai) and τ is the upper bound for the support
of T̃ . Under the regularity conditions provided in the supplementary materials available at Biostatistics
online, we establish strong consistency by the classical Kullback–Leibler information approach, and prove
the weak convergence of the estimators by the Z-theorem for infinite-dimensional estimating equations
(Van Der Vaart and Wellner, 1996).

Theorem 1: Under the regularity conditions listed in the supplementary materials available at Bio-
statistics online, the estimators ξ̂ξξ n are consistent: (̂θθθ n, α̂ααn, β̂ββn) converge almost surely to (θθθ 0,ααα0,βββ0),
sup0<t<τ |�̂n(t)−�0(t)| converges almost surely to 0 as n → ∞.

As ξ̂ξξ n maximizes the likelihood function, the empirical Kullback–Leibler information ln(̂ξξξ n)− ln(ξξξ 0) ≥
0 must always be negative. If ξ̂ξξ n converges, say, to ξξξ ∗, then following the uniform law of large numbers,
we can show that ln(̂ξξξ n) − ln(ξξξ 0) must converge to the negative Kullback–Leibler distance between Pξξξ∗

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
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and Pξξξ0 , where Pξξξ is the probability measure under the parameter ξξξ . As the Kullback–Leibler information
is always non-negative, it implies that Pξξξ∗ = Pξξξ0 almost surely. Under the regularity conditions provided
in the supplementary materials available at Biostatistics online, model Pξξξ is identifiable, implying that
ξξξ ∗ = ξξξ 0.

Theorem 2: Under the regularity conditions listed in the supplementary materials available at Bio-
statistics online,

√
n(̂ξξξ n −ξξξ 0) converges weakly to a tight, mean zero Gaussian process −U̇ −1

0 (W), where
U0 is defined as the expectation of score function Un under true parameter values ξ0.

By the von Mises method for semiparametric maximum likelihood estimators (Gill and others, 1989),
the score functions are derived by taking the derivative of ln(ξξξ) with respect to θθθ ,ααα,βββ, and a submodel
d�η(·) = {1 + ηφ(·)} d�(·). Here, φ(·) is a bounded and integrable function, and η is a positive constant.
We denote the infinite-dimensional score functions by Un(ψψψ) ≡ {U1n(ξξξ), U2n(ξξξ), U3n(ξξξ), U4n(t,ξξξ)}, and
its expectation under true values ξ0 = (θ0,α0,β0,�0) by

U0(·,ξξξ) ≡ {U10(ξξξ), U20(ξξξ), U30(ξξξ), U40(·,ξξξ)}

=
{

E0{U1n(ξξξ)}, E0{U2n(ξξξ)}, E0{U3n(ξξξ)}, E0{U4n(·,ξξξ)}
}
.

Both the score function Un and its expectation U0 are defined on the parameter set A × B, where
set A is assumed to be compact in Rq+2p+1, and the set B consists of nondecreasing functions in the
space of functions with bounded variation. The true value ξξξ 0 satisfies the population score function
U0(t, ξ0) = 0. The estimating functions evaluated at the true value ξξξ 0 can be written as an empirical
process

√
nUn(ξξξ 0) = √

n {Un(t,ξξξ 0)− U0(t,ξξξ 0)}. By the uniform central limit theorem, it can be shown
that

√
nUn(ξξξ 0) converges weakly to W . W is defined as W ≡ (W1, W2), where W1 is a Gaussian random

vector with covariance matrix �11 = E0

{
U123n(ξ0)

⊗2
}

and U123n(ξ0) = {U1n(ξ0), U2n(ξ0), U3n(ξ0)}, and
W2 is a tight Gaussian process with covariance matrix �22(s, t) = E0 {U4n(s, ξ0)U4n(t, ξ0)}. Denote the
Fréchet derivative of U0(ξξξ) evaluated at ξξξ = ξξξ 0 by U̇0. In the supplementary materials available at
Biostatistics online, we outline the proof for the three main conditions for using the Z-theorem: Fréchet
differentiability and invertibility, weak convergence of

√
nUn(ξξξ 0) and a stochastic approximation condition

of the estimating equations. Note that we show the proof under the general left-truncated sampling, which
includes length-biased sampling as a special case.

4.1. Variance estimation

We use an EM-aided computational differentiation approach with the profile likelihood to estimate the
variances of the finite dimensional estimators ξ̂ξξ n (Chen and Little, 1999; Murphy and Van Der Vaart,
2000). By the perturbation around the obtained estimators, the information matrix can be estimated as
shown below:

(1) Perturb the lth entry of η̂ηη = (θ̂ , α̂0, α̂1, . . . , α̂p, β̂1, . . . , β̂p) by a small value ε = 1/n in
the neighborhood in one direction or both directions, denoted as η̂ηη+ = η̂ηη + (0, . . . , ε, . . . , 0) and
η̂ηη− = η̂ηη − (0, . . . , ε, . . . , 0), respectively.

(2) Use the EM algorithm to obtain λ̂λλη̂ηη+ and λ̂λλη̂ηη− given η̂ηη+ and η̂ηη−, respectively.
(3) Approximate the lth row of the information matrix of η̂ηη by

1

2ε

{
∂lE(ηηη,λλλ)

∂ηηη
|ηηη=η̂ηη− ,λλλ=λ̂λλ̂

ηηη− − ∂lE(ηηη,λλλ)

∂ηηη
|ηηη=η̂ηη+ ,λλλ=λ̂λλ̂

ηηη+

}
.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
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5. SIMULATION STUDY

We conducted simulations studies to evaluate the finite sample performance of the proposed method.
The SAB status indicator Ỹ was generated from a logistic regression model with two covariates (Z1, Z2),
where Z1 followed a Bernoulli distribution with probability 0.5, and Z2 followed a uniform distribution,
uniform(−0.5, 0.5). We set ααα = (1.2, 1, 1), such that the uncured proportion was around 75%. For the
uncured subjects (i.e., Ỹ = 1), we generated unbiased survival times T̃ from a Cox proportional hazards
model with covariates (Z1, Z2) and βββ = (−0.5, 1). For model identifiability, the baseline hazard function
was chosen such that all events occurred before τ = 20. Specifically, we used�−1

0 (t) = 20 {1 − exp(−t)}.
The truncation time Ãi was generated from a uniform distribution U (0, τ) for the length-biased data and
from a truncated Weibull distribution with the density function h(t|θθθ) for the general left-truncated data,
where h(t|θθθ) = g(t|θθθ)/G(20|θθθ) with

g(t|θθθ) = θ1

θ2

(
t

θ2

)θ1−1

exp

{
−
(

t

θ2

)θ1}
,

G(t|θθθ) is the cumulative density function and θθθ = (θ1, θ2) = (1.0, 2.8). Following the sampling mech-
anism, we only kept subjects with T̃ > Ã in the observed data sets. The residue censoring time was
generated from a uniform distribution with varying boundaries to have different censoring rates. For a
subject with censored observations, the value of the SAB status Y was set to be missing. We set n = 300,
or 600 and used 1000 replicates for each sample size.

We first assessed the validity of our proposed estimation and inference procedures in finite samples.
Tables 1 and 2 summarize the average estimates, empirical standard errors and average EM-aided standard
errors for the length-biased data and general truncated data, respectively. As shown in the tables, all point
estimates had negligible bias for both length-biased data and general left-truncated data. The standard
errors estimated by the EM-aided procedure approximated the empirical standard errors well. Generally,
the empirical biases did not change much when varying the percentage of censoring, while the standard
errors consistently increased with an increasing percentage of censoring.Also, as the sample size increased
from 300 to 600, the standard errors of all estimates decreased.

For comparison, we also performed a naive analysis by ignoring the unique data structure. Specifically,
we first fitted a logistic regression model by excluding subjects with unknown values of Yi, and then
performed Cox proportional hazards modeling for left-truncated data by using subjects with Yi = 1. As
shown in the right-sided columns of Tables 1 and 2, this naive method resulted in biased estimates for all
parameters in both the logistic regression model and Cox proportional hazards model, since the missing
mechanism was not random in our setting.

6. DATA APPLICATION

To evaluate the entire effects of treatments for autoimmune disease on the risk of experiencing SAB
and time to SAB among pregnant women, we analyzed the data from the OTIS autoimmune disease
in pregnancy database that we introduced in Section 1. The data set included a total of 930 pregnant
women with complete records who entered the studies before week 20 of their gestation during the years
between 2005 and 2012. Among these pregnant women, 483 (51.9%) had autoimmune diseases and
were treated with the medications under investigation (this group comprises the exposure group); 264
(28.4%) also had autoimmune diseases but were not treated with the medications under investigation (this
group comprises the diseased control group); 183 (19.70%) were healthy pregnant women without any
autoimmune diseases who were also not treated with the medications under study (this group comprises
the healthy control group). There were 66 SAB events and 2 censoring events observed during the study.
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Table 1. Summary of simulation studies with length-biased data. EST:
empirical mean; SD: empirical standard deviation; ESE: average of
asymptotic standard error estimates

Proposed method Naive method

N CENSOR PARA TRUE EST SD ESE EST SD

300 0% α0 1.2 1.16 0.14 0.12 0.49 0.13
α1 1.0 1.05 0.27 0.23 1.27 0.26
α2 1.0 0.94 0.45 0.39 0.49 0.43
β1 -0.5 -0.50 0.14 0.14 -0.50 0.16
β2 1.0 1.01 0.27 0.25 1.01 0.29

10% α0 1.2 1.16 0.15 0.12 0.69 0.15
α1 1.0 1.06 0.28 0.25 1.22 0.29
α2 1.0 0.94 0.47 0.41 0.59 0.48
β1 -0.5 -0.50 0.16 0.15 -0.43 0.16
β2 1.0 1.01 0.29 0.27 0.89 0.29

30% α0 1.2 1.18 0.18 0.14 0.79 0.18
α1 1.0 1.07 0.32 0.28 1.20 0.34
α2 1.0 0.95 0.54 0.47 0.68 0.57
β1 -0.5 -0.49 0.17 0.17 -0.40 0.19
β2 1.0 1.01 0.32 0.30 0.83 0.34

600 0% α0 1.2 1.16 0.10 0.08 0.49 0.09
α1 1.0 1.03 0.19 0.16 1.25 0.18
α2 1.0 0.94 0.32 0.27 0.49 0.31
β1 -0.5 -0.50 0.10 0.10 -0.50 0.12
β2 1.0 1.00 0.17 0.17 1.00 0.19

10% α0 1.2 1.17 0.11 0.09 0.69 0.10
α1 1.0 1.04 0.20 0.17 1.21 0.20
α2 1.0 0.95 0.33 0.29 0.58 0.34
β1 -0.5 -0.50 0.11 0.11 -0.43 0.12
β2 1.0 1.00 0.19 0.19 0.88 0.20

30% α0 1.2 1.17 0.12 0.10 0.78 0.12
α1 1.0 1.04 0.22 0.20 1.18 0.23
α2 1.0 0.95 0.37 0.33 0.66 0.39
β1 -0.5 -0.49 0.12 0.12 -0.39 0.13
β2 1.0 1.00 0.21 0.21 0.82 0.23

Biased sampling occurred because the women who had experienced SAB early in the course of their
pregnancy had been excluded from the study. As a result, the observed time to the SAB event tended to
be longer than that in the general population, as illustrated in Figure 1.

We extracted the baseline covariates for the subjects, including maternal age (≥35 or <35), smoking
status, alcohol status, prior SAB status, and prior therapeutic abortion status, from the database. We
performed univariate analysis to select the covariate set to use in the joint model of the risk of experiencing
SAB and the time to SAB. The purpose of the univariate screening is to identify the potential confounders
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Table 2. Summary of simulation studies with general left-truncated data.
EST: empirical mean; SD: empirical standard deviation; ESE: average
of asymptotic standard error estimates

Proposed method Naive method

N CENSOR PARA TRUE EST SD ESE EST SD

300 0% α0 1.2 1.20 0.14 0.15 1.05 0.14
α1 1.0 1.03 0.29 0.27 1.09 0.29
α2 1.0 0.98 0.46 0.49 0.85 0.47
β1 -0.5 -0.50 0.15 0.14 -0.50 0.15
β2 1.0 1.01 0.25 0.25 1.00 0.26
θ1 1.0 1.01 0.06 0.06 1.02 0.05
θ2 2.8 2.78 0.24 0.24 2.46 0.15

10% α0 1.2 1.22 0.17 0.18 1.88 0.21
α1 1.0 1.05 0.34 0.31 1.02 0.42
α2 1.0 0.98 0.52 0.56 1.02 0.68
β1 -0.5 -0.50 0.17 0.17 -0.41 0.15
β2 1.0 1.00 0.29 0.29 0.82 0.26
θ1 1.0 1.01 0.06 0.06 1.02 0.05
θ2 2.8 2.78 0.24 0.24 2.46 0.15

30% α0 1.2 1.27 0.24 0.26 2.50 0.52
α1 1.0 1.10 0.49 0.46 1.02 0.99
α2 1.0 0.97 0.75 0.76 1.22 1.09
β1 -0.5 -0.50 0.21 0.21 -0.34 0.17
β2 1.0 1.01 0.35 0.36 0.69 0.28
θ1 1.0 1.00 0.06 0.06 1.02 0.05
θ2 2.8 2.79 0.23 0.24 2.46 0.15

600 0% α0 1.2 1.20 0.10 0.11 1.05 0.10
α1 1.0 1.01 0.21 0.18 1.07 0.20
α2 1.0 0.98 0.33 0.35 0.85 0.33
β1 -0.5 -0.50 0.10 0.10 -0.50 0.10
β2 1.0 1.01 0.17 0.17 1.01 0.17
θ1 1.0 1.00 0.04 0.04 1.01 0.03
θ2 2.8 2.79 0.17 0.17 2.47 0.10

10% α0 1.2 1.21 0.12 0.13 1.86 0.15
α1 1.0 1.02 0.24 0.21 1.00 0.29
α2 1.0 0.97 0.37 0.41 0.99 0.49
β1 -0.5 -0.50 0.12 0.12 -0.40 0.10
β2 1.0 1.01 0.20 0.20 0.83 0.17
θ1 1.0 1.00 0.04 0.04 1.01 0.03
θ2 2.8 2.78 0.16 0.18 2.47 0.10

30% α0 1.2 1.23 0.17 0.17 2.41 0.23
α1 1.0 1.04 0.33 0.28 0.95 0.44
α2 1.0 0.98 0.50 0.54 1.19 0.72
β1 -0.5 -0.50 0.15 0.15 -0.34 0.11
β2 1.0 1.01 0.25 0.25 0.70 0.20
θ1 1.0 1.00 0.04 0.04 1.01 0.03
θ2 2.8 2.79 0.16 0.18 2.47 0.10
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when evaluating the risk of using autoimmune disease medications in pregnant women, which is a common
practice. The univariate analysis was performed to account for the sampling bias by using the proposed
method. Specifically, for each covariate, except for the treatment indicators, we have jointly modeled the
cure probability and survival distribution, and used the proposed method for model fitting. Covariates
with p-values smaller than 0.2 in either the logistic regression or Cox regression model were included in
the final multivariate model. Our final models included maternal age (≥ 35 or <35) and treatment group
indicators (exposure group, healthy control or disease control groups).

We first examined the stationarity assumption using the observed time-to-SAB data. The formal test
of stationarity assumption given by Addona and Wolfson (2006) yielded a two-sided p-value of 0.0001,
which indicated that the stationarity assumption did not hold and the observed time-to-SAB data were not
length-biased data. We then used the Weibull distribution to model the truncation time. Both the estimated
values of shape and scale parameters were very large compared with their standard errors, also suggesting
the stationarity assumption did not hold in the study. Table 3 lists the estimated coefficients along with
standard errors and p-values from the proposed method and the naive analyses. The model fitting of the
logistic regression by the proposed method indicated that the healthy controls had significantly lower risk
(p-value <0.01) of experiencing SAB compared with the other two groups after controlling for the age
effect. Interestingly, our comparison of the exposure group and the disease control group suggested that
the use of the medications under investigation for pregnant women with autoimmune diseases did not
change their risk of experiencing SAB. Consistent with previous reports (Andersen and others, 2000), we
found that older maternal age (≥ 35) significantly increases the risk of SAB (p-value<0.01). The Cox
regression part of the joint model suggested that autoimmune disease status, use of the newer medications
and maternal age did not significantly affect the distribution of time to SAB for the uncured group, although
the healthy control group tended to have a lower hazard function indicating later timing of SAB events,
compared with that of the other two groups after controlling for the maternal age (≥ 35 or< 35). The naive
analysis that ignored the data structure had similar results for the parameters in the survival model, but had
misleading results for the risk model. Specifically, the naive analysis greatly underestimated the overall
risk of experiencing SAB, which is similar to our previous simulation findings when the censoring rate is
low. Note that the conclusion is conditional on T̃ ≥ 5 weeks, due to a lack of instantaneous detection of
pregnancy in the early stage.

7. DISCUSSION

We have proposed new EM algorithms for biased sampling survival data with a cured proportion to
obtain full likelihood maximum estimators. We first considered length-biased data and then generalized
the estimation and inference procedure to general left-truncated data. As pointed out by Wang (1989), the
joint model is not identifiable if distributions of the truncation time and event time of interest both have
nonparametric components. Here, we choose the semiparametric model for the event time of interest (e.g.,
time to SAB event) and adopt a parametric model for the truncation time. One way to relax the parametric
assumptions is to use a flexible parametric model, such as a truncated generalized Gamma distribution
with three parameters (Stacy, 1962) for the truncation time. Specifically, the density function of a truncated
generalized Gamma distribution is h(t|θθθ) = g(t|θθθ)/G(20|θθθ)with g(t|θθθ) = θ1tθ1θ3−1e−(t/θ2)θ1 /{�(θ3)θ

θ1θ3
2 },

and G(t|θθθ) is the cumulative density function, where (θ1, θ2, θ3) > 0. The generalized Gamma distribution
degenerates to the Weibull distribution if θ3 = 1, and degenerates to the Gamma distribution if θ1 = 1.
In the supplementary materials available at Biostatistics online, we have conducted additional simulation
studies to investigate the effects of model misspecification of the truncation time on the estimation of the
parameters of interest, i.e., regression coefficients under the logistic regression model and Cox model.
In summary, the estimators of interest have robust performance with violations of the parametric model
assumptions on the truncation time. As discussed in Section 2, the zero tail constraint for survival data with

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx024#supplementary-data
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Table 3. Estimated coefficients with standard errors (SE) and p-values for SAB data

Proposed method Naive method

Coefficient SE P-value Coefficient SE P-value

Logistic model
Treatment

Exposed
Healthy control −1.04 0.34 < 0.01 −0.91 0.45 0.04
Disease control 0.05 0.21 0.82 0.03 0.28 0.93

Age
<35
≥35 0.67 0.19 < 0.01 0.55 0.26 0.04

Intercept −2.01 0.14 < 0.01 −2.64 0.20 < 0.01

Cox proportional hazard model
Treatment

Exposed
Healthy control −0.31 0.43 0.47 −0.33 0.49 0.51
Disease control 0.06 0.23 0.81 0.26 0.28 0.36

Age
<35
≥35 0.27 0.22 0.20 0.10 0.26 0.68

Shape parameter 3.13 0.30 2.77 0.07
Scale parameter 10.59 0.60 12.66 0.16

a cure portion is naturally satisfied. Different from the usual cure rate data where the long-term survivors
are always right-censored, in our pregnancy studies we observe majority of the “cured” women. This
greatly improves the practical identifiability of the cured portion (Farewell, 1986; Lu and Ying, 2004), as
well as substantially increase the amount of information available for estimating the model parameters.

Even though the proposed point and variance estimation involves iterations, the computation is fast and
efficient. The conditional expectations in the E-step of both the point and variance estimations involve at
most one-dimensional integration and can be easily estimated. In the M-step, the non-specified baseline
hazard function can be calculated explicitly, while the low-dimensional parameters can be updated quickly
using available statistical software. For example, in a 100-run simulation for the general left-truncated
data using a 3.30GHz desktop CPU under the scenario with 600 samples and 10% censoring rate, the
CPU time was 3.16 hours and 0.34 hours for the point estimation and variance estimation, respectively.
The average number of iterations to achieve convergence was 14, with convergence criterion defined as
max |η(k+1) − η(k)| < 10−3. For the SAB data, the CPU time for fitting the final model was 0.18 hours,
including the point and variance estimation.

Although this work focused on the logistic regression model for the cured proportion and the propor-
tional hazards model for the time to the event of interest, the proposed estimation and inference method
can be extended to other types of models such as the probit model for the cured proportion and the propor-
tional odds model for the event time. In applications, one challenge when applying the proposed method
is model checking. Due to the biased sampling issue, the distribution of the observed data is not repre-
sentative of that of the target population. Accordingly, standard diagnostic tools, such as model checking
tests of proportionality for traditional survival data, cannot be directly applied here. Developing rigorous
statistical tools for model checking is beyond the scope of this article, and is a worthy objective for future
research.
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8. SOFTWARE

Software in the form of R code and documentation is online at https://github.com/JPiao7u089/
Cured-Proportion-and-Biased-Sampling.git.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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