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SUMMARY

Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However,
one source of HD data that has received relatively little attention is functional magnetic resonance images
(fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At
a time when the availability of fMRI data is rapidly growing—primarily through large, publicly available
grassroots datasets—automated quality control and outlier detection methods are greatly needed. We
propose principal components analysis (PCA) leverage and demonstrate how it can be used to identify
outlying time points in an fMRI run. Furthermore, PCA leverage is a measure of the influence of each
observation on the estimation of principal components, which are often of interest in fMRI data. We also
propose an alternative measure, PCA robust distance, which is less sensitive to outliers and has controllable
statistical properties. The proposed methods are validated through simulation studies and are shown to be
highly accurate. We also conduct a reliability study using resting-state fMRI data from the Autism Brain
Imaging Data Exchange and find that removal of outliers using the proposed methods results in more
reliable estimation of subject-level resting-state networks using independent components analysis.

Keywords: fMRI; High-dimensional statistics; Image analysis; Leverage; Outlier detection; Principal component
analysis; Robust statistics.

1. INTRODUCTION

Outliers in high-dimensional (HD) settings, such as genetics, medical imaging, and chemometrics,
are a common problem in modern statistics and have been the focus of much recent research
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(Hubert and others, 2005; Filzmoser and others, 2008; Hadi and others, 2009; Shieh and Hung, 2009;
Fritsch and others, 2012; Ro and others, 2015). One such source of HD data is functional magnetic reso-
nance imaging (fMRI). An fMRI run usually contains 100 000–200 000 volumetric elements or “voxels”
within the brain, which are sampled at hundreds of time points. Here, we consider voxels to be variables
and time points to be observations, in which case the outlier problem is to identify time points that contain
high levels of noise or artifacts.

Multiple noise sources related to the hardware and the participant (Lindquist and others, 2008) can
corrupt fMRI data, including magnetic field instabilities, head movement, and physiological effects, such
as heartbeat and respiration. Noise sources appear as high-frequency “spikes,” image artifacts distortions,
and signal drift. fMRI data also undergo a series of complex preprocessing steps before being analyzed;
errors during any one of these steps could introduce additional artifacts. Thus, performing adequate quality
control prior to statistical analysis is critical.

In recent years, the availability of fMRI data has increased rapidly. The emergence of a number of
publicly available fMRI databases, often focusing on a specific disease or disorder, presents a great
opportunity to study brain function and organization. However, these datasets are usually collected from
multiple sites with varying methods for acquisition, processing, and quality control, resulting in widely
varying levels of quality and high rates of artifacts. In the absence of automated outlier detection methods
appropriate for fMRI data, quality inspection often takes place in a manual or semi-automated manner by
individual research groups. This presents a timely opportunity for statisticians to develop more automated
methods.

Here we propose an HD outlier detection method based on dimension reduction through principal
components analysis (PCA) and established measures of outlyingness, namely leverage and robust dis-
tances. While leverage has not typically been employed for outlier identification outside of a regression
framework, we argue for leverage as a meaningful measure when the principal components (PCs) are
themselves of interest, which is often true for fMRI data.

Several outlier detection methods for standard and HD data use PCA, including PCA influence functions
and other PC sensitivity measures (Brooks, 1994; Gao and others, 2005). However, these methods are often
computationally demanding as they rely on re-estimating the PCs with each observation left out. Similarly,
methods that depend on robust covariance estimation (see Hadi and others, 2009 for a review) are usually
not suited for HD settings. One such method, the minimum covariance determinant (MCD) estimator,
identifies the observation subset with the smallest sample covariance matrix determinant (Rousseeuw,
1985). Hubert and others (2005) proposed ROBPCA, a robust PCA method for HD data that can also
identify outliers, which lie far from the robust PCs space. Filzmoser and others (2008) proposed PCOut and
Sign, two computationally efficient methods that perform standard PCA after robustly scaling the data and
looking for outliers within the principal directions explaining 99% of the variance. Ro and others (2015)
proposed the minimum diagonal product estimator, which is related to the MCD but ignores off-diagonal
elements and is identifiable when there are more variables than observations. Fritsch and others (2012)
proposed an HD adaptation of the MCD through regularization and applied the method to neuroimaging
summary statistics.

However, such methods are often validated using only moderately sized data containing more observa-
tions than variables. One exception comes from Shieh and Hung (2009) who proposed identifying outlying
genes in microarray data by performing PCA dimension reduction prior to robust distance computation
on the reduced data. The method was validated on a dataset of approximately 100 observations and 2000
variables and shown to result in fewer false positives and false negatives than ROBPCA.

Existing methods for fMRI artifact identification have focused on head motion and ad-hoc measures
of quality. While the removal of affected time points (“scrubbing” or “spike regression”) using these
methods appears beneficial (Satterthwaite and others, 2013; Power and others, 2014), a more unified
outlier detection framework is needed, as motion is only one potential artifact source in fMRI data. In
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addition, existing methods result in a collection of measures that must somehow be combined. We propose
a single measure of outlyingness related to the influence of each time point on PC estimation, which is
the basis of several common brain connectivity measures (see Section 2.2).

The remainder of this paper is organized as follows. We begin with a description of our statistical
methodology. We then present a simulation study, which is used to assess the sensitivity and specificity of
the proposed methods. Next, we present a reliability analysis employing the Autism Brain Imaging Data
Exchange (ABIDE) dataset. We conclude with a brief discussion.

2. METHODS

As described in detail below, we propose two PCA-based measures of outlyingness, PCA leverage and
PCA robust distance, and develop thresholding rules to label outliers using either measure. For both
measures, we begin with PCA dimension reduction. All computations are performed in the R statistical
environment version 3.1.1 (R Core Team, 2014).

2.1. Dimension reduction

Let T be the number of 3D “volumes” collected over time in an fMRI run, and let V be the number of
voxels in the brain. Let YT×V (T � V ) represent an fMRI run, where each row of Y is a vectorized volume.
We first center and scale each column of Y relative to its median and median absolute deviation (Hampel
and others, 1986), respectively, to avoid the influence of outliers. The singular value decomposition (SVD)
(Golub and Reinsch, 1970) of Y is given by Y = UT×T DT×T Vt

T×V , where D is diagonal with elements
d1 ≥ d2 ≥ · · · ≥ dT ≥ 0 and UUt = UtU = VtV = IT . Here At denotes the transpose of matrix A. The
rows of Vt contain the PCs or eigenimages of Y, and the columns of Ũ = UD contain the corresponding PC
scores. Note that to avoid memory limitations, rather than compute the SVD of Y directly, one generally
computes the SVD of YYt to obtain U and D and then solves for Vt .

We retain Q < T principal components, so that the “reduced data” are given by the submatrices of
U and D corresponding to the first Q principal components. For ease of notation, we redefine UT×Q and
DQ×Q to represent these submatrices and ŨT×Q = UD. To choose the model order Q, we retain only
components with a greater-than-average eigenvalue. While more sophisticated cutoff methods exist, we
find that this simple cutoff rule works well in practice (Jackson, 1993). To avoid extreme solutions, we
require 15 ≤ Q ≤ 50.

2.2. PCA leverage

In regression, leverage is defined as the diagonals of the “hat matrix” H = X(XtX)−1Xt , where X is a
matrix of explanatory variables (Neter and others, 1996). The hat matrix projects the outcome variable(s)
Y onto the column space of X, yielding the projected data Ŷ = HY. Leverage, bounded between 0 and 1,
is often used to assess the potential influence of an observation on the regression fit, as it is the change in ŷi

due to a 1-unit change in yi and is proportional to the uncertainty in the ŷi estimate, since Var(Ŷ) = σ 2H.
Particularly relevant to our context, leverage is also a measure of outlyingness among the explanatory
variables, as it is related to the Mahalanobis distance.

Extending leverage to the PCA context, we treat Ũ = UD as an estimated design matrix in the estimation
of Vt . With U and D fixed, Vt = D−1UtY is equivalent to the least squares estimate V̂t in the multivariate
regression model Y = ŨVt +E. We therefore define PCA leverage as h = {h1, . . . , hT } = diag{H}, where
H = Ũ(ŨtŨ)−1Ũt = UUt . Note that D is simply a scaling factor applied to each variable and therefore has
no effect on leverage. Continuing the regression analogy, in PCA, H projects Y onto the column space of
Ũ, the principal directions, as Ŷ = UDVt = UDD−1UtY = UUtY = HY. Furthermore, PCA leverage is a
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Fig. 1. Top panel. For one randomly sampled subject, 50 contiguous time points and 200 contiguous voxels were
randomly selected. For the resulting dataset Y50×200, five PCs were identified, and PCA leverage was computed for
each time point t, displayed in the column on the left. After centering and scaling Y, each observed value Y[t,v] was
increased by one unit and PCs and scores recomputed. The matrix displayed on the right shows the resulting change in
the fitted value Ŷ[t,v], where Ŷ = UDVt . Although some variation is seen across voxels, the observed change in fitted
values is overall quite similar to the leverage. Other randomly sampled subjects show similar patterns, supporting the
analogy with regression (where the relationship is exact) and the concept of PCA leverage as a measure of influence in
PCA. Bottom panel. We performed the analysis described above for 100 randomly sampled subjects, then computed
the average change in fitted values across voxels. We performed the analysis with 5, 10, and 15 PCs retained. The plot
displays the PCA leverage and average change in fitted values for each subject, as well as a linear smoother across
subjects. PCA leverage and the average change in fitted values are nearly equal, again supporting PCA leverage as a
measure of influence in PCA.

measure of outlyingness among the PCA scores and within Ŷ = UDVt , since Ŷ(ŶtŶ)−1Ŷt = UUt = H.
While in reality U and D are not fixed and PCA leverage therefore only approximately represents the
influence of each observation on the PCs and fitted values in Ŷ, we find this approximation to be quite
close in practice, as illustrated in Figure 1. Note that dimension reduction is essential for PCA leverage
to be informative, since UUt = I when all T components are retained.

In regression, leverage only represents the potential influence of an observation on regression coefficient
estimation; influence points must be outliers in the explanatory variables (“leverage points”) as well as in
the response variable(s). In contrast, PCA leverage is a more direct measure of influence, as PCA leverage
points are outliers in both Ũ and the original data Y. Thus, PCA leverage points are also influence points.
Furthermore, while in regression we discern “good” from “bad” leverage points, fMRI observations with
high PCA leverage are unlikely to represent true signal, since the signal change associated with neuronal
sources is very small compared with noise and artifacts. Therefore, we assume that all observations with
high PCA leverage are “bad” influence points in the fMRI context.
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Moreover, the interpretation of PCA leverage as the influence of each observation on PC estimation is
particularly relevant for resting-state fMRI (rs-fMRI). PC estimation is a preprocessing step for one of the
most common types of analysis for rs-fMRI data: estimation of spatially independent brain networks and
the functional connectivity between those networks. In such analyses, PCA leverage is both a measure of
influence on the quantity of interest and of outlyingness.

In setting a leverage threshold to identify outliers, it is important to recognize that the sum of leverages
for a set of observations equals the number of variables in the design matrix. The mean leverage of all
T observations is therefore fixed at Q/T . Outliers wield a large amount of leverage, and their presence
reduces the leverage of all remaining observations, such that the mean Q/T may be significantly greater
than the leverage of normal observations. Thus, the median is a more appropriate reference quantity
than the mean for normal observations. If the leverage of observation t exceeds α times the median
mh = med(h1, . . . , hT ), it is labeled a “leverage outlier.” In the simulations and experimental data analysis
described below, we consider α ∈ [3, 8].

While such practical rules may work well in the absence of convenient statistical properties, a formal
statistical test for outliers with known and controllable properties is desirable. In the following section,
we propose an alternative robust distance measure based on MCD estimators (Rousseeuw, 1985).

2.3. Principal components robust distance

For a design matrix with an intercept or centered variables, leverage is related to the squared empir-
ical Mahalanobis distance (Mahalanobis, 1936), defined for an n × p matrix X and observation i as
d2

i = (Xi − X̄ )tS−1(Xi − X̄ ), where X̄ and S are the sample mean and covariance matrix of X, respectively.
The Mahalanobis distance is known to be sensitive to outliers due to their influence on the sample mean
and covariance, which may lead to “masking,” a phenomenon in which truly outlying observations appear
normal due to the presence of more extreme outliers (Rousseeuw and Van Zomeren, 1990; Rousseeuw
and Hubert, 2011).

As an alternate measure, we adopt the MCD distance proposed by Rousseeuw (1985). For a general
dataset, let n be the number of observations and p be the number of variables. The MCD estimators of
location, X̄ ∗, and scale, S∗, are obtained by computing the sample mean and covariance within a subset of
the data of size h < n for which the confidence ellipsoid determined by S∗ and centered at X̄ ∗ has minimal
volume. The maximum breakdown point of MCD estimators is obtained by setting h = �(n + p + 1)/2�
and approaches 50% as n → ∞. The MCD distance d2

S∗(Xi, X̄ ∗) is then computed as a Mahalanobis
distance using X̄ ∗ and S∗ in place of X̄ and S. For ease of notation, let d2

i ≡ d2
S∗(Xi, X̄ ∗).

Let N = 1, . . . , n, and let N ∗, |N ∗| = h, be the indices of the observations selected to compute X̄ ∗ and
S∗. Let N − = N \ N ∗ be the indices of the remaining observations, among which we look for outliers.
For Gaussian data, {d2

i : i ∈ N ∗} approximately follow a χ 2
p distribution (Hubert and others, 2005; Shieh

and Hung, 2009), while for i ∈ N −,

d̃2
i := c(m − p + 1)

pm
d2

i ∼ Fp,m−p+1,

where c and m can be estimated asymptotically or through simulation. (While some previous work has
simply assumed a χ 2

p distribution for i ∈ N , we find this to result in many false positives.) To estimate
c we use the asymptotic form, ĉ = Pr

{
χ 2

p+2 < χ 2
p,h/n

} /
(h/n), while to estimate m we use the small

sample-corrected asymptotic form given in Hardin and Rocke (2005). To improve the F-distribution fit,
Maronna and Zamar (2002) and Filzmoser and others (2008) scale the distances to match the median of
the theoretical distribution. However, as N − contains at most half of the original observations, the median
within N − represents the 75th or greater quantile within N and may be contaminated with outliers.
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Therefore, we let ˜̃d2
i := d̃2

i Fp,m−p+1,0.1/q0.1, where q0.1 is the 10th sample quantile of {d̃2
i : i ∈ N −}.

We label a “distance outlier” any observation in N − with ˜̃d2
i greater than the (1 − γ )th quantile of the

theoretical F distribution. In our simulations and experimental data analysis, we consider 1 − γ ranging
from 99 to 99.99.

For time series data, where the assumption of independence among observations is violated, the dis-
tributional results given in Hardin and Rocke (2005) may be invalid. As the autocorrelation in fMRI time
series is often modeled as an AR(1) process with a coefficient of 0.3, we divide each fMRI time series
into three subsets, each consisting of every third observation. The autocorrelation within each subset is
negligible at approximately 0.33 = 0.027. To obtain the MCD distance for each observation, we use the
MCD estimates of center and scale within each subset, averaged across subsets, and we find that this
significantly improves the distributional fit.

3. SIMULATION STUDY

3.1. Construction of baseline scans

Our simulated dataset is based on fMRI scans from three subjects collected as part of the ABIDE dataset
(described in Section 4). For generalizability, each subject was chosen from a different data collection site.
For each scan, we identify a contiguous subset of volumes containing no detectable artifacts, resulting in
141, 171, and 89 volumes, respectively. We reduce dimensionality by using only the 45th axial (horizontal)
slice, corresponding roughly to the center of the brain. For scan i = 1, 2, 3, let Ti be the resulting length
of the scan and Vi be the resulting number of voxels in the brain mask, so that scan i is represented by the
Ti × Vi matrix Yi. We can separate Yi into an anatomical baseline, the mean image bi (Vi × 1), and the
residual Zi, representing primarily functional information. Then Yi = Zi + 1bt

i , where 1 is a vector of 1s
of length Ti.

We then use independent components analysis (ICA), a blind-source separation algorithm, to decom-
pose the intrinsic activity in Zi into a number of spatially independent sources (McKeown and others,
1997) (described in Section 4). Let Qi be the number of sources of neuronal signal identified for scan
i. Then Zi = AiSi + Ei, where Si (Qi × Vi) contains the spatial maps of each source, and Ai (Ti × Qi)
contains the time courses of each source. The residual Ei contains structured (spatially and temporally
correlated) noise. Let Xi = AiSi.

3.2. Artifact-free images

For each scan i, we construct three simulation setups: baseline image (Bi = 1bt
i) plus white noise (setup 1);

baseline image plus functional signal (Bi+Xi) plus white noise (setup 2); and baseline image plus functional
signal plus structured noise (Bi +Xi +ci(λ)Ei) (setup 3). In setup 3, ci(λ) is used to vary the signal-to-noise
ratio (SNR) λ and is defined below.

To test the specificity of each outlier detection method in the artifact-free setting, we generate images
with varying SNR in the following way. For scan i, we have true signal variance σ̂ 2

i,X = 1
Vi

∑Vi
v=1 V̂ar{Xi(v)}

and true noise variance σ̂ 2
i,E = 1

Vi

∑Vi
v=1 V̂ar{Ei(v)}. Defining SNR as the ratio of signal variance to noise

variance, let λ ∈ {0.025, 0.050, 0.075, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} be the desired SNR of the simulated
scans. For setups 1 and 2, we generate the white noise matrix Wi(λ) for scan i as independent, mean-
zero Gaussian noise with variance σ 2

i,E(λ) = σ̂ 2
i,X /λ. For setup 3, we generate the structured noise matrix

ci(λ)Ei, where ci(λ) = √
SNRi/λ and SNRi = σ̂ 2

i,X /σ̂ 2
i,E is the baseline SNR of scan i = 1, 2, 3, equal to

0.063, 0.050 and 0.048, respectively. Therefore, the simulated artifact-free data at SNR λ is Bi +Wi(λ) for
setup 1; Bi + Xi + Wi(λ) for setup 2; and Bi + Xi + ci(λ)Ei for setup 3. For setups 1 and 2, we randomly
generate Wi(λ) 1000 times; for setup 3, the noise is fixed.
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Fig. 2. Specificity of each method in the absence of artifacts by simulation setup. Each line shows the mean across
1000 iterations for a given scan i = 1, 2, 3 and SNR. The dotted lines correspond to SNR of 0.05, which is close to
the observed SNR of the fMRI scans used to construct the simulated scans.

The specificity, or percentage of observations not labeled as outliers that are truly non-outliers, in
this case is simply the percentage of volumes in each scan not labeled as outliers. Figure 2 shows the
mean specificity across 1000 iterations, where each line represents a scan and SNR level. The dotted lines
correspond to SNR of 0.05, which is close to the observed SNR of each scan. Specificity is nearly 100%
for both leverage and robust distance methods across all thresholds and SNR levels considered. In the
presence of structured noise, the specificity of the robust distance method is approximately 97–98% in
some cases, unless the 99.99th quantile threshold is used.

3.3. Images with artifacts

We generate four common types of fMRI artifacts: spikes, motion, banding, and ghosting. Spikes are
created by increasing the intensity of an entire volume by a given percentage. Motion artifacts are created by
rotating a volume by a given angle. Banding artifacts are generated by changing an intensity in the Fourier
transform of the image, resulting in a striped appearance. Ghosting artifacts are created by superimposing
a figure or “ghost” moving through space over time.
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Fig. 3. Examples of each artifact type. (a) A normal volume (left) and a volume with a spike artifact (right). (b) The
image mask before and after rotation for a rotation artifact. (c) A banding artifact. (d) One volume of a ghosting
artifact. The spike, rotation, and ghosting artifacts are generated from the maximum artifact intensity as described in
Section 3.3; the banding artifact is generated randomly as described in Section 3.3.

At each of 1000 iterations, one simulated fMRI scan is generated for each subject, SNR level, artifact
type, and simulation setup. For spike, motion, and banding artifacts, 10 volumes are randomly selected
from each scan, and the artifact intensity for each volume is generated from a uniform distribution (range
1–10% intensity increase for spike artifacts; 1◦–5◦ rotation for motion artifacts; 50–200 times change at
location (15, 15) of the Fourier transformed image). For ghosting artifacts, nine sequential volumes are
randomly selected, and the mean intensity of the ghost, relative to the mean intensity of the image, is
randomly generated from a uniform distribution (range 0.06–0.32). An example of each artifact type is
displayed in Figure 3.

We are interested in both the specificity and the sensitivity, or the percentage of true outliers identified as
outliers. Figure 4 shows the mean sensitivity and specificity for each outlier detection method, simulation
setup, and artifact type, where each line represents a scan and SNR level. The realistic SNR of 0.05 is
shown as a dotted line. As the simulation setup becomes more realistic, the sensitivity to outliers tends to
decrease, while the specificity is relatively stable. The robust distance method has nearly 100% specificity
in all scenarios and tends to display higher sensitivity than the leverage method, particularly for banding
and spike artifacts. While differences across artifact types are apparent, these are likely driven by the range
of intensities chosen.
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Fig. 4. Sensitivity and specificity of each method in the presence of artifacts by simulation setup. Each line shows
the mean across 1000 iterations for a given scan i = 1, 2, 3, and SNR. The dotted lines correspond to SNR of 0.05,
which is close to the observed SNR of the fMRI scans used to construct the simulated scans.

4. EXPERIMENTAL DATA RESULTS

Using a large, multi-site fMRI dataset, we assess the result of outlier removal on the scan-rescan reliability
of a common type of analysis. This section is organized as follows. We begin with a description of the
dataset employed and show an example. We then describe the reliability analysis. Finally, we quantify
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the improvement to reliability with the proposed outlier detection methods using a linear mixed model to
account for subject and site effects.

4.1. fMRI dataset

ABIDE is a publicly available resource of neuroimaging and phenotypic information from 1112
subjects consisting of 20 datasets collected at 16 sites (Di Martino and others, 2014). Fully
anonymized data from 91 children collected at Kennedy Krieger Institute after the ABIDE release
were also included. Image acquisition parameters and demographic information are available at
http://fcon_1000.projects.nitrc.org/indi/abide/. For each subject, a T1-weighted MPRAGE volume and
one or more rs-fMRI sessions were collected on the same day. Details of data pre-processing and quality
control are provided in supplementary material Appendix A available at Biostatistics online, where Table 1
lists the number of subjects in each dataset.

For a single example scan, Figure 5 shows the leverage and robust distance functions, along with six
motion parameters (roll, pitch, yaw, and translation in each direction) and their derivatives, which are
commonly used for artifact detection. Below the plot, the volumes corresponding to the spikes at time
points 60, 90, 134, and 150 are shown. Three of the spikes are leverage and distance outliers using any
of the thresholds considered (α ∈ [3, 8] for leverage; 1 − γ ∈ [99, 99.99] for robust distance), while the
spike at time point 90 is only a leverage outlier at α = 3. Obvious banding artifacts are seen at time points
60 and 150, a moderate banding artifact is seen at time point 134, and no visible artifact is apparent at
time point 90. While the artifact at time point 150 would be detected using motion measures, the other
spikes would likely go undetected.

4.2. Estimation of subject-level brain networks and connectivity

Resting-state brain networks represent regions of the brain that act in a coordinated manner during rest.
While such networks have traditionally been identified at the group level, there is growing interest in
estimating these networks at the subject level, where the higher levels of noise make accurate estima-
tion difficult. There is also interest in estimating the subject-level “functional connectivity,” or temporal
dependence of neuronal activation, between these different networks (van den Heuvel and Pol, 2010). We
assess the benefits of outlier removal on the reliability of these networks and their functional connectivity.
Details of the estimation of subject-level resting-state networks are provided in supplementary material
Appendix B available at Biostatistics online. Here we briefly describe the procedure. We begin by per-
forming group ICA (GICA) separately for each of the ABIDE datasets k = 1, . . . , 20. The result of GICA
is the Q × Vk matrix Sk , where Vk is the number of voxels in the group-level brain mask and Q = 30 is the
number of independent components (ICs). Each row of Sk may represent a source of noise (e.g. motion,
respiration) or a resting-state network. After identification of those ICs corresponding to resting-state net-
works, let S̃k denote the Qk × Vk matrix containing the Qk resting-state networks identified for dataset k .
Using dual regression (Beckmann and others, 2009), we obtain Yi ≈ AiSi, where Si is the Qk ×Vk matrix
whose rows contain the estimated resting-state brain networks for subject i, and Ai is the Ti × Qk “mixing
matrix” representing the activation of each network over time. We are interested in reliable estimation of
two quantities: Si and the Qk × Qk matrix Cor(Ai), which represents the functional connectivity between
each pair of networks.

4.3. Measuring reliability of subject-level brain networks and functional connectivity

Let Si1 and Si2 be two sets of estimated resting-state networks for subject i obtained by performing dual
regression separately for two different scanning sessions of subject i in dataset k . There is no need to

http://fconprotect LY1	extunderscore 1000.projects.nitrc.org/indi/abide/
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Fig. 5. For a single subject, the motion parameters, leverage function, and robust distance function. Below the plot,
the volumes corresponding to the spikes at time points 60, 90, 134, and 150 (shaded on the plot) are shown. Three
of the spikes are leverage and distance outliers using any of the thresholds considered (α ∈ [3, 8] for leverage;
1 − γ ∈ [99, 99.99] for robust distance), while the spike at time point 90 is only a leverage outlier at α = 3. Obvious
banding artifacts are seen at time points 60 and 150, a moderate banding artifact is seen at time point 134, and no
visible artifact is apparent at time point 90. While the artifact at time point 150 would be detected using motion
measures, the other spikes would likely go undetected using only motion.

match components between Si1 and Si2, since the ICs in each correspond to the same group-level ICs
in S̃k . To assess reliability, for each subject i and component q we compute the number of overlapping
voxels between Si1(q) and Si2(q) after both have been thresholded (as described in supplementary material
Appendix B available at Biostatistics online). We then average over all Qk networks to obtain the average
scan-rescan overlap for each subject per network, denoted Zikm for subject i in dataset k using outlier
removal method m. Outlier removal methods include no outlier removal, leverage-based outlier removal
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with α = {3, 4, 5, 6, 7, 8}, and robust distance-based outlier removal with 1 − γ = {99, 99.9, 99.99}.
Similarly, to assess reliability of functional connectivity between networks, let Ai1 and Ai2 be the mixing
matrices corresponding to Si1 and Si2. We compute the mean squared error (MSE) between the upper
triangles of Cor(Ai1) and Cor(Ai2) and denote the result Yikm for subject i in dataset k using outlier
removal method m.

Although most subjects in the ABIDE dataset have only a single scanning session, we can simulate
scan-rescan data by splitting each subject’s data into two contiguous subsets consisting of the first and
second half of time points, respectively. We use the resulting pseudo scan-rescan data to obtain Si1, Si2,
Ai1, and Ai2, then compute our reliability measures Zikm and Yikm. While this approach may produce an
optimistic estimate of the true scan-rescan reliability, this is not a concern as we are primarily interested
in the change in reliability due to outlier removal.

To test for changes in reliability of resting-state networks or functional connectivity due to outlier
removal, we fit a linear mixed effects model with a fixed effect for each outlier removal method, a fixed
effect for each dataset, and a random effect for each subject. We employ this model for its ability to test
several groups and methods simultaneously and to account for within-subject correlation across methods.
Using the 1091 subjects for whom at least one outlier was identified using any method, we estimate the
following model for Mikm ∈ {Yikm, Zikm}:

Mikm = bi0 + γk + δmIm>0 + εikm, εikm ∼ N (0, σ 2), bi0 ∼ N (0, τ 2),

where m = 0 indicates no outlier removal. Here, γk represents the baseline reliability for subjects in
dataset k when no outlier removal is performed, and δm represents the change in reliability when outlier
removal method m is used. To obtain coefficient estimates, we fit this model using the lme function from
the nlme package (Pinheiro and others, 2016). Since we have a large sample size, we compute Normal
95% confidence intervals.

4.4. The effect of outlier removal on reliability

Figure 6 displays estimates and 95% confidence intervals for the coefficients of the models for reliability
of resting state networks (a) and functional connectivity (b). For (a), larger overlap values represent greater
reliability; for (b), smaller MSE values represent greater reliability. The left-hand panels of (a) and (b)
display the fixed effects for each dataset (γk ) and illustrate the heterogeneity in baseline reliability across
ABIDE datasets before outlier removal. This reflects the substantial differences in acquisition, processing
and quality control methods across the data collection sites contributing to ABIDE. The middle and
right-hand panels of (a) and (b) display the coefficients for each outlier removal method (δm). The average
percentage of volumes labeled as outliers using each method is also displayed in gray. Both leverage-based
and distance-based methods significantly improve reliability of estimates of subject-level brain networks
and functional connectivity. Improvement in reliability is maximized using a threshold of α = 4 or 5 for
leverage-based outlier removal and 1 − γ = 99.99 for distance-based outlier removal. The maximum
improvement in overlap of resting-state networks is approximately 100 voxels using either method, while
the maximum reduction in MSE of functional connectivity is 0.005 and is achieved using leverage-based
outlier removal with α = 4.

We also stratify the model by those subjects who passed quality inspection and those who failed.
Figure 1 of supplementary material Appendix C available at Biostatistics online shows estimates and
95% confidence intervals for the model coefficients after stratification. While subjects who failed quality
inspection tend to improve more than those who passed quality inspection, differences are not statistically
significant, and both groups of subjects benefit substantially from outlier removal.
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(a)

(b)

Fig. 6. Estimates and 95% confidence intervals for the model coefficients for (a) the scan-rescan overlap of brain
networks and (b) the scan-rescan MSE of connectivity between each network. For both models, the left-hand plot
displays the fixed effects for each dataset (γk ) and illustrates the heterogeneity in reliability across datasets in ABIDE
before outlier detection. The middle and right-hand plots display the coefficients for each outlier removal method
(δm), which represent the change in reliability due to outlier removal. These plots also show the percentage of volumes
in each fMRI run labeled as outliers using each method. Both leverage and robust distance-based outlier removal
methods result in a statistically significant improvement to reliability of brain networks and connectivity. While both
methods appear to be fairly robust to the choice of threshold, reliability is maximized by choosing a cutoff of 4 times
the median for PCA leverage and the 99.99th quantile for PCA robust distance.

5. DISCUSSION

We have proposed a method to detect outlying time points in an fMRI scan by drawing on the traditional
statistical ideas of PCA, leverage, and outlier detection. The proposed methods have been validated through
simulated data and a large, diverse fMRI dataset. We have demonstrated that the proposed methods are
accurate and result in improved reliability of two common types of analysis for resting-state fMRI data,
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namely identification of resting-state networks through ICA and estimation of functional connectivity
between these networks.

The proposed techniques are, to the best of our knowledge, the first to provide a single measure of
outlyingness for time points in an fMRI scan, which can be easily thresholded to identify outliers. Unlike
motion-based outlier detection methods for fMRI, they are agnostic to the source of artifact and therefore
may be used as a general method to detect artifacts, including those unrelated to motion. Furthermore,
PCA leverage is directly related to the estimation of principal components, which are an important quantity
in the analysis of resting-state fMRI, as they are used as input to ICA for the identification of resting-state
networks.

One limitation of our approach is that we perform validation on a single dataset, the ABIDE. However,
this dataset is in fact a diverse collection of 20 datasets from 16 international sites, which strengthens the
generalizability of our results. Another limitation of the proposed methods is that they may be sensitive
to the number of principal components retained. However, we have found that the method performs well
with different model orders (e.g. 20 or 30), and we propose an automated method of selecting model order
in order to provide a fully automated approach.

A limitation of PCA leverage-based outlier removal is that the proposed thresholding rule is, as in
regression, somewhat ad-hoc. However, the use of the median leverage across observations as a benchmark
is a reasonable approach, and we have tested a range of thresholds. Based on our reliability analysis we
expect a threshold of 4 of 5 times the median leverage to work well in practice for fMRI, but for different
types of data the researcher may wish to re-evaluate this choice. In particular, fMRI volumes containing
artifacts tend to be very different from those volumes free of outliers, so a relatively high threshold for
leverage and robust distance tends to work well; in other contexts, outliers may be more subtle.

While the proposed methods have been designed and validated for resting-state fMRI data, they may
be easily extended to other types of medical imaging data, such as task fMRI and EEG data, as well as
other types of HD data. Furthermore, they may also be extended to group analyses. Future work should
focus on exploring these directions.

As the availability of large fMRI datasets continues to grow, automated outlier detection methods are
becoming essential for the effective use of such data. In particular, the reliability of analyses employing
these diverse datasets may be negatively impacted by the presence of poor quality data. The outlier
detection methods we propose have the potential to improve the quality of such datasets, thus enhancing
the possibilities to use these data to understand neurological diseases and brain function in general.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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