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SUMMARY

In comparative effectiveness research, we are often interested in the estimation of an average causal
effect from large observational data (the main study). Often this data does not measure all the necessary
confounders. In many occasions, an extensive set of additional covariates is measured for a smaller and
non-representative population (the validation study). In this setting, standard approaches for missing data
imputation might not be adequate due to the large number of missing covariates in the main data relative
to the smaller sample size of the validation data. We propose a Bayesian approach to estimate the average
causal effect in the main study that borrows information from the validation study to improve confounding
adjustment. Our approach combines ideas of Bayesian model averaging, confounder selection, and missing
data imputation into a single framework. It allows for different treatment effects in the main study and in
the validation study, and propagates the uncertainty due to the missing data imputation and confounder
selection when estimating the average causal effect (ACE) in the main study. We compare our method
to several existing approaches via simulation. We apply our method to a study examining the effect of
surgical resection on survival among 10 396 Medicare beneficiaries with a brain tumor when additional
covariate information is available on 2220 patients in SEER-Medicare. We find that the estimated ACE
decreases by 30% when incorporating additional information from SEER-Medicare.

Keywords: Bayesian data augmentation, Model averaging, Missing data, Bayesian adjustment for confounding,
Confounder selection

1. INTRODUCTION

In this new era of big data, it is becoming standard practice to address questions of comparative effective-
ness research and estimation of causal effects from analyses of large observational data (e.g. Medicare
claims data). A key feature of these data sources (which we will refer to as the main study) is that they
include very large and often nationally representative populations. For example, approximately 85% of the
US population of people older than 65-years-old is enrolled in the Medicare Fee For Service Plans. How-
ever, a potential limitation of these data is that they measure a limited number of potential confounders,
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that is, basic demographics, and some information on co-morbidities from previous claims. When the goal
is to estimate the average causal effect (ACE) of a particular treatment on an outcome, failure to measure
and therefore to adjust for even one key confounder will lead to biased estimates of causal effects.

In many settings, additional data on potential confounders (e.g. behavioral risk factors, biological
samples, tumor characteristics, electronic medical records etc.) is collected in a smaller subpopulation
compared to the main study. Sometimes this subpopulation is part of the main study, that is an internal
validation study. Examples of such studies include SEER-Medicare (Cooper and others, 2002), which
collects additional information regarding tumor characteristics on cancer patients in Medicare, or larger
cohorts such as the Nurses Health Study, which measure genetic information on a subset of the population
(Hiraki and others, 2014). Alternatively, additional data may be available from external validation studies
that collect outcome, treatment and more extensive covariate information on separate populations. In both
cases, the internal or external validation study might not be representative of the main study population
and the ACEs might be different than the ACE in the main study. In this context, we are challenged by
the need to efficiently augment the main study with covariate information from the validation study to
reliably estimate causal effects in the larger, more representative population. Although this could be cast
as a missing covariate problem, the smaller size of the validation data and the large number of missing
covariates in the main study make a standard application of multiple imputation highly variable and
sensitive to model assumptions.

More generally, this setting is met with the following challenges: (i) the need to reduce the dimension
of a possibly high-dimensional set of potential confounders; (ii) missing data imputation; (iii) propagation
of the uncertainty in the model selection and missing data imputation when estimating the ACE in the
main study; and (iv) potentially different treatment effects in the main and the validation studies. There
exist several approaches that address a subset of the aforementioned issues. Some of these approaches
have the inferential goal of predicting the outcome and not of estimation of causal effects. As discussed
in Crainiceanu and others (2008); Wang and others (2012); Wilson and Reich (2014); Vansteelandt and
others (2012), methods for covariate selection in the context of prediction are inadequate when the goal
is confounding adjustment for effect estimation.

1.1. Review of existing methods

Perhaps the most popular framework in causal inference to reduce the dimension of the confounders relies
on propensity score methods (Rosenbaum and Rubin, 1983). These approaches are attractive because they
avoid specifying a model for missing data imputation of a large vector of unobserved potential confounders
in the main study. In the context of propensity score methods, two approaches have been proposed to deal
with the setting of a main and validation study. The first is called propensity score calibration (Stürmer and
others, 2005) which estimates: (i) an error prone propensity score from the main study; and (ii) a “gold
standard" propensity score that relies on the additional covariates from the validation study. Then, it uses
regression calibration to impute the “gold standard” propensity score in the main study. This approach is
useful when no outcome information is available in the validation sample. However, it relies on a surrogacy
assumption that requires the outcome to be independent of the error prone propensity score conditional
on the gold standard propensity score (Stürmer and others, 2007).

The second approach, called conditional propensity scores (CPSs), was proposed in McCandless and
others (2012). The idea is to first estimate a propensity score in the validation study, and then define
the CPS as the linear component of the propensity score model that depends upon the covariates that
are observed in the validation study only. The treatment effect in the main study is then estimated by
integrating over the distribution of the missing CPS. This approach, however, relies on an assumption that
the CPS is independent from the treatment or outcome. A limitation common to both of these propensity
score based approaches is that they are only applicable to binary treatments.
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An alternative to propensity score methods in the context of missing potential confounders is to treat the
data from the main and validation studies as a combined data set and apply methods for multiple imputation
of the missing covariates in the main study. There exists a vast literature on multiple imputation (Little
and Rubin, 2014). One of the most common challenges is how to specify a correct imputation model, and
in our setting, this can be challenging as the number of missing covariates can be large. Nonparametric
Bayesian models such as those in Murray and Reiter (2016) flexibly specify the joint distribution of
the missing covariates, which alleviates problems that stem from the misspecification of the missing
data model. Several approaches have been developed to combine data sets and build a regression model,
when certain covariates are missing in some of the data sources. For example, Gelman and others (1998)
addressed the problem of multiple imputation across multiple surveys under the assumption of multivariate
normality. Jackson and others (2009) extended these ideas to more complicated structures in a graphical
modeling framework. All of these approaches, however, ignore a crucial challenge commonly faced in our
setting: the sample size of the validation data is small relative to the number of covariates being imputed,
which can limit the usefulness of existing approaches due to high estimation uncertainty. Thus our setting
necessitates introducing variable selection or dimension reduction to decrease the variability induced from
the imputation of a large number of missing covariates.

Approaches have been developed to perform simultaneous variable selection and missing data impu-
tation when the goal is prediction of an outcome. Yang and others (2005) implemented variable selection
within multiple imputation under multivariate Normality. Mitra & Dunson (2010) extended this approach to
binary covariates and implemented a second layer of variable selection on the imputation models. However,
as mentioned earlier, variable selection methods based on prediction can omit important confounders and
therefore a model selection tool that aims at dimension reduction when the goal is confounding adjustment
is required.

1.2. Proposed approach

In this article, we develop a new approach, which we will refer to as Guided Bayesian Adjustment for
Confounding (GBAC), that addresses the four challenges introduced above (dimension reduction on
the selection of confounders; missing data imputation; propagation of uncertainty; and treatment effect
heterogeneity) under a unified framework. We build upon the work by Wang and others (2012) called
Bayesian Adjustment for Confounding (BAC) and generalize it in the context of missing data in the main
study by adopting a proper Bayesian approach to modeling the missing data. Our proposed approach
will treat the main study and validation study as one combined data set while allowing for different
treatment effects in the two studies. By reducing the dimension of the covariate space to only the necessary
confounders we will improve the efficiency in estimating the ACE.

The remainder of the article is structured as follows: In section 2, we will introduce the modeling
approach including details on posterior simulation. In section 3, we will detail our modelling assumptions.
Here we will also demonstrate that that our proposed approach does not rely on the surrogacy assumption
nor the conditional independence assumption that are necessary in the propensity score calibration and in
the CPS approaches. In section 4, we will introduce a simulation that will compare our proposed method
to CPSs and standard multiple imputation. In section 5, we will analyze the effect of surgical resection on
cancer patients in Medicare, and we will conclude in section 6 with further discussion.

2. METHODS

2.1. Estimation of the ACE

Let N1 and N2 be the sample sizes of the main study and of the validation study, respectively where N2 < N1.
Let Yi be the outcome, Xi be the treatment, and Ci be the full vector of P pre-treatment covariates for
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subject i. Assume that (Yi, Xi, C1i, ..., CMi) are observed in both the main and the validation study and that
the P − M covariates (C(M+1)i, ..., CPi) are observed for the N2 subjects of the validation study but missing
for the N1 subjects in the main study. We also assume that P − M , the number of missing covariates, can
be large relative to N2, though not greater than N2.

Our goal is to borrow information from the validation study to estimate the ACE in the main study. We
define the AEC �(x1, x2) as follows

�(x1, x2) = EC [E(Y |X = x1, C) − E(Y |X = x2, C)] , (2.1)

where the expectations are taken with respect to the population represented in the main data. We forego
potential outcomes notation, but note that (2.1) is interpretable as the ACE of assignment to X = x1 versus
X = x2 under the assumption of strongly ignorable treatment assignment, which states that potential
outcomes under different levels of X are independent of assignment to X , conditional on C , and that
every observation has a positive probability of receiving any level of X . We will also assume that all the
necessary confounders required for the strong ignorability assumption to hold are an unknown subset
of C .

Letting Si be the indicator of whether or not individual i is in the validation study, we introduce the
following outcome model for estimating (2.1)

g(E(Yi|Xi, Ci)) = θ
y
0 + βXi + βSXiSi +

P∑
p=1

αy
pθ

y
p Cip +

M∑
p=1

αy
pθ

yS
p CipSi (2.2)

for i = 1, ..., N = N1 + N2, where g() is an arbitrary link function that falls within the Generalized linear
model (GLM) framework. We introduce the unknown parameter αy

p, such that if αy
p = 1 then covariate Cip

is included into the outcome model. Note that by including the interaction terms between Si and Xi as well
as between Si and Cip for p = 1, ..., M , we allow the treatment effect and adjustment of the fully observed
covariates to differ between the main and validation study, respectively. The parameters (θ y

p , θ y
p + θ yS

p )

denote the regression parameters for the potential confounders in the outcome model, and (β, β + βS)

are parameters representing the effect of X on Y conditionally on C in the two populations, respectively.
Estimation of the ACE comes with two major methodological challenges in this setting: (i) selection of
confounders in the outcome model that are necessary for the strong ignorability assumption to hold; (ii)
some of these confounders may be missing in the main study. We will address both of these challenges in
the following sections.

2.2. Prior distribution for confounder selection

Following the ideas of Wang and others (2012); Lefebvre and others (2014b); Wang and others (2015)
we introduce a treatment model as

f (E(Xi|Ci)) = θ x
0 +

P∑
p=1

αx
pθ

x
p Cip +

M∑
p=1

αx
pθ

xS
p CipSi, (2.3)

where θ x
p , θ x

p + θ pS
x , and αx

p have analogous interpretations as in the outcome model. We then define a prior
distribution on (αx, αy) as

P(αy
p = 1|αx

p = 1)

P(α
y
p = 0|αx

p = 1)
= ω

P(αy
p = 1|αx

p = 0)

P(α
y
p = 0|αx

p = 0)
= 1 (2.4)
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P(αx
p = 1|αy

p = 0)

P(αx
p = 0|αy

p = 0)
= 1

ω

P(αx
p = 1|αy

p = 1)

P(αx
p = 0|αy

p = 1)
= 1 for p = 1, ..., P. (2.5)

The goal of this prior is to assign high posterior probabilities to outcome models that include covariates
that are associated with both X and Y . Details of this prior distribution can be found in Wang and others
(2012), though we will briefly summarize them here. We assume that if a given covariate is included into
the treatment model, that is αx

p = 1, then the prior odds of including the same covariate into the outcome
model is equal to ω. If ω > 1, we assume that covariates that are associated with the treatment have higher
prior probabilities to be included into the outcome model. We also assume that if a covariate does not
enter into the treatment model, then the prior odds for this same covariate to be included into the outcome
model is 1. Wang and others (2012) showed that this prior distribution with a large ω assigns most of the
posterior mass, P(αy|Data), to models that include all the necessary confounders.

The remaining prior distributions are intended to reflect no prior information. We use non-
informative, Normal(0, K) prior distributions on all regression coefficients with K large and assign
Inv-Gamma(0.001, 0.001) prior distributions on all variance parameters in the model.

2.3. Modeling the missing data

A second major challenge is the fact that a large number of covariates are missing in the main data, and some
of these may be important confounders. We will be imputing them within a fully Bayesian framework.
Specifically, building upon ideas from Raghunathan and others (2001), we define the following sequence
of regression models for the missing covariates

h(E(Cip|Ci1, ..., Ci(p−1))) = θ
p
0 +

p−1∑
j=1

α
p
j θ

p
j Cij for p = M + 1, ..., P, (2.6)

where i = 1, ..., N = N1 + N2. For the remainder of this article, we will assume the missing covariates
are binary or continuous, and therefore h() is the identity or probit link functions to facilitate posterior
sampling using the latent variable approach of Albert & Chib (1993). An extension of the latent variable
approach to ordered categorical covariates is straightforward and is described in Mitra & Dunson (2010).
Here we have introduced a set of unknown parameters (α

p
j ) to indicate whether a given covariate enters

into the missing data models. That is α
p
j = 1 denotes that covariate j enters into the imputation model for

covariate p. We implement a non-informative prior on α
p
j for p = M + 1, ..., P that assigns equal weight

to all models as done in standard Bayesian model averaging (BMA).

2.4. Implementation

Full details of the posterior derivations and Markov Chain Monte Carlo (MCMC) sampling can be found
in Appendix A of the supplementary materials available at Biostatistics online. A brief description of how
we obtain posterior samples of the ACE using MCMC is as follows:

1. Sample from the posterior distribution of (αx, αy, αM+1, ..., αP) using the complete data set defined
by the observed data and the current state of the missing data imputations. Here we will make
repeated use of the BIC approximation to the Bayes factor between two models (Raftery, 1995).

2. For models defined by the current values of (αx, αy, αM+1, ..., αP) update all regression parameters.
Specifically, for all covariates with αy

p = 0, we force θ y
p = 0, and then update the remaining

regression parameters from their full conditional distributions. Analogous operations are performed
for the treatment and missing data models.
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3. Conditional on a chosen model identified by (αx, αy, αM+1, ..., αP) and current state of the regression
coefficients, the missing data are imputed from their full conditional distribution.

Once we obtain B draws of all the parameters and missing data we can obtain an estimate of the ACE as
follows:

̂�(x1, x2) = 1

BN1

B∑
b=1

N1∑
i=1

{
g−1

(
θ

y
0

(b) + β(b)x1 +
P∑

p=1

αy
p
(b)

θ y(b)
p C(b)

ip

)

−g−1

(
θ

y
0

(b) + β(b)x2 +
P∑

p=1

αy
p
(b)

θ y(b)
p C(b)

ip

)}
, (2.7)

where the superscript b denotes the bth draw from our posterior. Note that we sum over the N1 subjects
in the main study to approximate the distribution of C in the main study. This quantity is averaging over
the space of all models governed by αy as well as the missing data imputations, Cip for p = M + 1, ..., P.
Therefore, our final estimates of the ACE obtained from this procedure will account for the uncertainty
associated with model selection as well as variable imputations.

It is important to note that at each stage of the MCMC, the whole set of missing covariates is imputed,
however, only the covariates for which α

y
j = 1 enter into the outcome model and therefore directly impact

the estimate, ̂�(x1, x2). Other imputed covariates indirectly affect ̂�(x1, x2) if they are used to impute
another covariate that is included in the outcome model. Another important point is that the posterior
distribution of �(x1, x2) obtained from posterior samples of ̂�(x1, x2) is an approximation since there is a
nonzero probability that we will average over models that exclude a necessary confounder. Conditional on
having imputed the full data, Wang and others (2012, 2015) showed that the posterior of ̂�(x1, x2) primarily
uses outcome models that include the necessary confounders, thereby improving the approximation.

3. ASSUMED COMMONALITIES BETWEEN THE MAIN AND VALIDATION STUDIES

Beyond the typical assumptions required to infer causal effects from observational studies, we further
require certain quantities to be shared between the main and validation studies. Specifically, the distribution
of the missing covariates conditional on the observed data must be the same in the main and validation
study. Letting superscript 1 denote quantities in the main study and superscript 2 denote quantities in the
validation study, this assumption can be written as

P1(CM+1, ..., CP|C1, ..., CM , X , Y ) = P2(CM+1, ..., CP|C1, ..., CM , X , Y ). (3.1)

We rely on Assumption 3.1 to impute the missing covariates in the main study. This assumption is com-
monly made in the data fusion literature, which solves a different, though very related problem, where
certain variables are never jointly observed in the two data sets Reiter (2012); Rässler (2004). It is also
related to the assumption of transportability in the measurement error literature (Carroll and others, 2006;
Spiegelman and others, 2000), in which a model relating variables measured with noise to their true
counterparts is assumed to be shared between the main and validation studies. Assumption 3.1 is also
implicitly made in any implementation of multiple imputation, typically framed in terms of a missing data
mechanism that is missing at random (MAR). There is no empirical way of verifying that this assumption
holds, because CM+1, ...CP are completely missing in the main study, so careful consideration must be
given to whether the main and validation studies are similar enough for this assumption to be reasonable.
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While the model for the missing covariates in (2.6) is specified only in terms of C , the missing covariates
are imputed from their full conditional distribution conditional on observed values of X and Y as well.
This is an important distinction with McCandless and others (2012), which adopts the more restrictive
assumption that the missing CPS depends only on the observed C . This approach is also significantly
less restrictive than the methods in Stürmer and others (2005) that rely on the aforementioned surrogacy
assumption.

4. SIMULATION STUDY

We focus on a continuous outcome and a binary treatment to facilitate comparison between our approach
and propensity score based methods, though our approach can handle any treatment or outcome that falls
in the GLM framework. In all scenarios N = N1 + N2 = 1000, while we vary the validation sample size,
N2 from 100 to 500. We set M = 5 and P = 50, which means that 45 of the 50 covariates are missing
in the main data. All of the covariates are independent of each other. We let 1 of the M fully observed
variables to be a confounder (C2), 2 of the partially observed variables to be confounders (C6, C7), and the
remaining variables are not associated with either the treatment or outcome. To specify different treatment
effects in the two populations we set β = 0.5 and βS = 0.2. Specifically, we generate 1000 data sets from
the following models:

Yi = 1500 + 0.5Xi + 0.2XiSi + 0.15C2i + 0.15C6i + 0.15C7i + εi (4.1)

�−1(P(Xi = 1)) = −1 + 0.6C2i + 0.6C6i + 0.6C7i, (4.2)

where εi ∼ N (0, 1). In this setting, C2, C6, C7 are the minimal set of confounders required for valid
estimation. Since we are analyzing a continuous outcome, the ACE can be defined as �(1, 0) = β, where
β is the coefficient for the effect of X on Y in the outcome model. This implies that �(1, 0) = 0.5 in the
main study and �(1, 0) = 0.7 in the validation study. We implemented a variety of approaches aimed at
obtaining an unbiased estimate of the ACE in the main study:

1. Gold standard approach which fits the correct regression model to the main study that includes
(C2, C6, C7) as if they were fully observed in both studies.

2. CPS approach of McCandless and others (2012) with an interaction term between treatment and
study included in the outcome model to allow for differing treatment effects. We refer to this as
CPS.

3. GBAC with ω = ∞. We will refer to this as GBAC(∞)
4. GBAC with ω = 1. This is very similar to the approach in Mitra & Dunson (2010) as it performs

variable selection on the imputation model and outcome model, but ignores treatment information
when selecting variables for the outcome model and selects variables based on their ability to predict
Y . We will refer to this as GBAC(1)

5. Fully Bayesian Multiple imputation. This is the proposed GBAC approach fixing α
p
j = 1,

αx
p = 1, αy

p = 1 ∀ j, p. We will refer to this as MI.

To examine the performance of the various methods in estimating the ACE we look at three operating
characteristics: bias and mean squared error (MSE) of posterior mean estimates, and 95% credible interval
coverage, where credible intervals are taken to be the 0.025 and 0.975 quantiles of the posterior distribution.
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Fig. 1. Bias, MSE, and interval coverage of the various estimators across 1000 simulations. P = 50, M = 5.

4.1. Results of the simulation study

Figure 1 shows the bias, MSE, and interval coverage of the five methods. As expected the gold standard
method is unbiased, has the lowest MSE, and obtains the desired interval coverage. This is the scenario
in which we know the true values of the missing data and minimal confounder set, which will never
be the case in practice. The performance of the imputation based approaches is substantially different.
For any validation sample size, GBAC(∞) performs comparatively or better than GBAC(1) and the MI
approaches. This is evident particularly for smaller N2. For N2 = 100, The MSE for GBAC(∞) is 48% and
59% lower than MI and GBAC(1), respectively. These differences decrease as the sample size increases,
however, GBAC(∞) achieves the smallest MSE with the exception of N2 = 500 where the MI approach
has a slightly smaller MSE. The CPS approach also fares poorly when N2 = 100 as the MSE is twice that
of GBAC(∞), but improves as the validation sample size increases.

4.2. Posterior inclusion probabilities

It is also of interest to examine whether our model selects the correct covariates to enter in the outcome
regression model, which is used to estimate the ACE. Figure 2 shows the posterior inclusion probabilities
under GBAC(∞) and GBAC(1) for a variety of sample sizes. Specifically, we are interested in examining
the posterior inclusion probabilities of the true confounders (C2, C6, C7), where C2 is observed in the main
study and (C6, C7) are missing in the main study. When N2 = 100, we estimate P(α

y
6|data) = 0.76 for the

GBAC(∞) approach, and P(α
y
6|data) = 0.25 for GBAC(1), therefore GBAC(∞) selects C6 most of the

time, whereas GBAC(1) does not. This explains the bias seen for GBAC(1) as it is averaging over a set
of models that usually does not contain all the necessary confounders. As the sample size increases, both
approaches estimate posterior inclusion probabilities closer to 1 for the true confounders. For any sample
size, setting ω = ∞ dramatically increases posterior inclusion probabilities of true confounders. The MI
approach, by definition sets αy

p = 1 a priori for all p, which means that it always includes all covariates into
the outcome model. This comes at a cost, particularly at small sample sizes, because using imputations
from 45 covariates induces substantial amounts of variation. The posterior inclusion probabilities show
that our approach is a nice balance between balancing our desire to remove unnecessary covariates and
our desire to include all important confounders.
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Fig. 2. Estimated P(α
y
p|data) for each of the 50 covariates that can potentially enter into the outcome model, for

GBAC(∞) and GBAC(1). The points in black correspond to GBAC(∞), while those in grey correspond to GBAC(1).
Squares represent the true confounders (C2, C6, C7), while circles represent covariates that are noise. Points to the left
of the dotted line (indices 1–5) are covariates that are fully observed, while those to the right (indices 6–50) are only
observed in the validation study).

4.3. Sensitivity to assumptions and data generating mechanisms

Appendix B of the supplementary materials available at Biostatistics online presents a variety of simula-
tions under a large number of data generating mechanisms, and when the assumptions for validity of our
approach are not met. We first tested our approach against different treatment and confounding effects.
This included null treatment effects, correlated confounders, larger confounding bias, smaller confound-
ing bias, and different directions of confounding. We found similar results as the proposed approach was
again superior, particularly at small validation sample sizes, regardless of the data generating mechanism.
We also assessed the proposed approach’s ability to adjust for confounding when the missing data came
from a skewed distribution, different from the assumed model. If the true confounders are skewed, then
our method still correctly includes them into the model, though some bias is induced in estimation of
the ACE. This bias is not substantial, however, as the MSE of the proposed approach is only slightly
increased relative to the scenario with normal confounders. If the variables that aren’t confounders are
skewed, then our approach remains unbiased and still correctly excludes them from the outcome model a
large percentage of the time. Finally, we assessed our approach when either Assumption 3.1 fails or when
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the true exposure and outcome models are highly nonlinear. These are the worst case scenarios for our
approach, which relies heavily on these assumptions, and because of this we see more substantial bias
and MSE. Notably, our approach still performs the best in these scenarios in terms of MSE or bias, as the
CPS approach also relies on some of these assumptions.

5. ANALYSIS OF SEER-MEDICARE

We apply the methods proposed in this paper to estimate the ACE of resection versus biopsy on 30 day
survival for Medicare beneficiaries ages 65 and older, diagnosed with malignant neoplasm of the brain
between 2000 and 2007. We use the Medicare dataset as our main study, and the SEER-Medicare dataset
as our validation study. We focus on the subset of the Medicare population with no previous history of
cancer that underwent surgical resection or biopsy. The SEER-Medicare data can not be linked to the
Medicare data, therefore it is possible that some subjects could appear in both the main and validation
data. To avoid this problem, we subset the SEER-Medicare data to patients who underwent surgery
in even years (2000,2002,2004,2006), while we subset the Medicare data to patients from odd years
(2001,2003,2005,2007). After these restrictions, the sample size of the SEER-Medicare is N2 = 2220 and
the sample size of the Medicare sample is N1 = 10 396. For GBAC to provide an unbiased estimate of
the ACE, we require assumption 3.1 to hold. Warren and others (2002) studied the differences between
the SEER population and the general Medicare population and found that there were some differences in
terms of the race, poverty, and mortality rates, however, they suggest that the SEER-Medicare data is a
useful tool for studying cancer among the general elderly population. For this reason, we feel that using
the SEER-Medicare as validation data in this context is justified.

Table 1 shows descriptive statistics of all the covariates (the fully observed and the missing ones).
There are 16 covariates that are fully observed in the main study including age, sex, race, eligibility
for Medicaid, computerized tomography (CT) scan status, Magnetic resonance imaging (MRI) status,
as well as a variety of comorbid conditions. The covariates available only in SEER-Medicare include
marital status, Glioblastoma, income, and various covariates regarding the severity and location of the
tumors leading to seven variables that are not observed in Medicare. Variables such as tumor size and
location are of particular concern as they are likely related to surgical decisions and patient outcomes,
but are missing in the main study. For this analysis, we specify the outcome as a binary indicator of 30
day survival, and our treatment is a binary indicator of surgical resection versus biopsy. We set ω = ∞,
to provide extra protection against excluding important confounders from the analysis. Convergence of
posterior distributions was assessed via visual inspection of trace plots and calculation of the potential
scale reduction factor (Gelman and others, 2014). We analyze the data using the following approaches:
(i) GBAC(∞), (ii) GBAC(1), (iii) CPSs, (iv) MI, and (v) the validation only approach that only examines
the SEER-Medicare data.

To gauge the potential for biased effect estimates, Figure 3 shows the resulting estimates of the AEC
of surgical resection on the probability of 30 day survival under several approaches that use varying
amounts of information from the main and validation studies. In all cases, we see that surgical resection
is beneficial, mirroring results seen in Chaichana and others (2011), though the estimated effects differ
across the estimation approaches. Ignoring the covariates only available in SEER-Medicare and analyzing
the entire N1 subjects in Medicare (Medicare Naive) leads to a naive estimate of 0.056 (0.044, 0.068).
When we fit the same model in the SEER-Medicare data only and ignore the additional covariates (SEER
Naive), we obtain an estimate of 0.017 (-0.002, 0.037). The substantial difference between these two
estimates suggests that the effect of surgical resection on the probability of 30 day survival is different
in the two populations. Only analyzing SEER-Medicare, but with all available covariates (SEER), leads
to a causal effect estimate of 0.010 (-0.001, 0.030) which is a 41% decrease from the estimate obtained
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Table 1. Patient characteristics and posterior inclusion probabilities for covariates into the treatment and
outcome models under GBAC(∞). Binary variables are reported as number of patients (percentage), and
continuous covariates are reported as mean (standard deviation). Bold terms represent covariates with a
posterior probability greater than 0.5 of entering into both the treatment and outcome models

Covariate Biopsy Resection P(αx
j = 1|D) P(α

y
j = 1|D)

Main data 75 < Age < 85 1919 (0.41) 2717 (0.34) 1.00 1.00
+ validation Age > 85 445 (0.09) 453 (0.06) 1.00 1.00
(N1 + N2 = 12 616) Female 2339 (0.5) 3637 (0.46) 0.00 0.00

White 4352 (0.92) 7313 (0.93) 0.75 0.78
Head CT scan done 373 (0.08) 490 (0.06) 0.00 0.00
Brain MRI done 423 (0.09) 821 (0.1) 0.00 0.00
Dual eligible 387 (0.08) 637 (0.08) 0.00 0.00
Chronic Atherosclerosis 1045 (0.22) 1494 (0.19) 0.00 0.00
Substance abuse 335 (0.07) 624 (0.08) 0.00 0.00
Hypertension 2912 (0.62) 4650 (0.59) 0.25 0.25
Chronic Obstructive

Pulmonary Disease
520 (0.11) 996 (0.13) 0.03 0.99

Dementia 511 (0.11) 660 (0.08) 0.02 0.68
Depression 366 (0.08) 511 (0.06) 0.00 0.00
Seizure disorder 937 (0.2) 1604 (0.2) 0.00 0.00
Valvular and rheumatic

heart disease
293 (0.06) 423 (0.05) 0.00 0.00

Diabetes 913 (0.19) 1387 (0.18) 0.00 0.01

Validation only Married 395 (0.59) 1011 (0.65) 0.00 0.03
(N2 = 2220) Glioblastoma 461 (0.69) 1362 (0.88) 1.00 1.00

Number of tumors (1
tumor/> 1 tumor)

575 (0.87) 1385 (0.89) 0.00 0.07

Tumor location
(Supratentorial/other)

440 (0.66) 1256 (0.81) 1.00 1.00

Tumor size (> 3cm) 345 (0.52) 960 (0.62) 0.01 0.05
Income (High/Low) 244 (0.37) 514 (0.33) 0.00 0.05
Tumor stage

(Localized/other)
435 (0.66) 1315 (0.85) 1.00 1.00

CT, computerized tomography; MRI, Magnetic resonance imaging

by the SEER-Naive approach, which suggests important confounding from the additional covariates only
available in SEER-Medicare.

We can apply the aforementioned approaches aimed at adjusting for the unmeasured confounders in the
main data set. GBAC(∞) gives an estimate of 0.042 (0.021, 0.063) for the effect of surgical resection on
the probability of 30 day survival, which differs from the naive estimate of 0.056 that results from ignoring
the additional covariates from SEER-Medicare. The fully Bayesian MI gives a similar estimate of 0.041
(0.020, 0.062), while GBAC(1) gives an estimate of 0.056 (0.040, 0.071). The fully Bayesian MI includes
all covariates with probability 1, so if there is confounding by variables from SEER, then the estimate
obtained should account for the confounding assuming the imputation models are correct. GBAC(1) on
the other hand, does not include all the covariates and it is possible it is ignoring important confounders in
the final effect estimate. Table 2 shows the posterior inclusion probabilities for GBAC(∞) and GBAC(1).
GBAC(∞) always selects Glioblastoma, tumor location, and tumor stage into the outcome model, while
GBAC(1) almost never includes them. This is due to the dependence on the treatment variable as all three
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Fig. 3. Estimates and 95% posterior credible intervals for the average causal effect of surgical resection on the
probability of 30 day survival in the Medicare population.

Table 2. Posterior inclusion probabilities for covariates that are only available in SEER-
Medicare for both GBAC(∞) and GBAC(1)

GBAC(∞) GBAC(1)

variables P(αx
j = 1|D) P(α

y
j = 1|D) P(αx

j = 1|D) P(α
y
j = 1|D)

Married 0.00 0.03 0.06 0.02
Glioblastoma 1.00 1.00 1.00 0.05
Number of tumors (1 tumor/> 1 tumor) 0.00 0.06 0.03 0.05
Tumor location (Supratentorial/other) 1.00 1.00 1.00 0.03
Tumor size (> 3cm) 0.01 0.05 0.61 0.05
Income (High/Low) 0.00 0.05 0.02 0.04
Tumor stage (Localized/other) 1.00 1.00 1.00 0.06

of these covariates are strongly associated with the treatment as indicated by high P(αx
j = 1|D) estimates.

It’s possible that these variables are weakly associated with the outcome and therefore GBAC(∞) rightly
includes them into the outcome model.

6. DISCUSSION

In this article, we have combined ideas of Bayesian variable selection and missing data imputation to
estimate the effect of a treatment on an outcome when there are missing confounders in the data set, but
auxiliary information on the confounders is available through a validation data set. Our proposed method
has advantages particularly when the effect of the treatment on the outcome differs between the main and
validation study, and when the number of missing covariates in the main study is large relative to the sample
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size of the validation study. In these settings, reducing the dimension to only those covariates which are
required for valid effect estimation is a desirable feature. Through simulation we showed that our proposed
approach performs comparatively well to or better than existing approaches to utilizing validation data
to control for confounding. Finally, we illustrated our approach by combining data from SEER-Medicare
and Medicare. We found that there was likely unmeasured confounding bias from covariates missing in
Medicare. Our approach attenuated the naive estimate of the effect of surgical resection on 30 day survival
by 30% indicating that the original estimate may have been confounded.

Our proposed method combines and extends many different ideas from the missing data and confounder
selection literature. We have applied the prior distribution from Wang and others (2012) that facilitates
selection of confounders in model averaging to a setting with large amounts of missing data in the
confounders. We have adopted ideas from the missing data literature to impute these covariates within a
fully Bayesian framework, while simultaneously selecting those required for valid effect estimation. Due
to the modeling structure we have proposed, we are able to handle any treatment or outcome variable
that falls within the GLM framework making it more flexible than propensity score based approaches that
require binary treatments. We have also allowed for the effect of the treatment on the outcome to differ in
the two studies. This is an important point as we do not expect the effects to be shared across populations,
and we saw in our analysis of SEER-Medicare that the effects did appear to differ. This differs from the
model calibration literature (Breslow and others, 2009; Chatterjee and others, 2015), which also addresses
the question of missing covariates when validation data is available, because those approaches assume
that the relationships between the covariates and outcome are the same across data sets.

While the results of our simulation study suggest that our method is very useful in controlling for
confounding in the validation data setting, there are some limitations. In particular, the proposed methods
rely on correct specification of models for both X and Y , as well as models for missing covariates, all of
which determine the ultimate imputation of covariates in the main study. Thus, while the prioritization of
only genuine confounders via specification for (αy, αx, αM+1, ..., αP) can protect against some threats to
model misspecification by focusing inference only on the most salient covariates, such danger persists.
This is in contrast to, for example, the use of propensity scores to estimate causal effects, which are
less reliant on the correct specification of an outcome model. While the proposed methods do not share
many of the advantages of traditional propensity-score methods, the parametric models used here permit
consideration of non-binary treatments and the ability to imbed effect estimation within the mechanics of
model averaging and confounder selection. These issues are particularly advantageous in high-dimensional
settings where propensity scores can be difficult to implement.

Our approach also necessitates the selection of ω, which controls the strength of protection against
missing an important confounder. Throughout the manuscript we have recommended a large value of ω,
which comes with the undesirable feature of including instruments only associated with X with higher
posterior probability than if ω were small. While these variables can increase the variability of our estimate
of theACE, we believe this to be smaller than the potential increase in bias caused by omitting confounders.
If one is not comfortable with setting ω to a large value, they can adopt ideas from Lefebvre and others
(2014a), that aim to find a value of ω that optimizes the bias-variance trade-off associated with increasing
ω. Another approach could be to extend ideas from Hahn and others (2016) to scenarios with missing
data. Their approach re-parameterizes the exposure and outcome models in a way that prevents the need
for selecting a tuning parameter to dictate the strength of protection against confounder control.

In general, our approach makes a variety of assumptions and we recommend assessing sensitivity to
a number of these specifications. Assessing the sensitivity to the aforementioned ω tuning parameter is
important, but we also recommend assessing the sensitivity to the other prior distributions such as the
inverse gamma priors for variance parameters. Studies involving main and validation data sets are usually
large and therefore not likely to be sensitive to this prior specification, however, if the variance is small
then the selection of the inverse gamma hyper parameters can play an important role. One can adopt ideas
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from Gelman (2006) and use a uniform prior on the standard deviation, which generally reflects a lack of
prior information and compare with an inverse gamma prior.

In summary, we have proposed a procedure to control for confounding in the presence of missing
confounders when validation data is available. The proposed procedure utilizes a fully probabilisitic,
Bayesian approach, which accounts for the uncertainty in the selection of confounders and in missing data
imputations into the final effect estimates.

7. SUPPLEMENTARY MATERIAL

Details of the posterior calculation and additional simulation results can be found in the Supple-
mentary Material available online at http://biostatistics.oxfordjournals.org. R Software is available at
https://github.com/jantonelli111/Guided-BAC.
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