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SUMMARY

An increasing number of studies are using single-cell RNA-sequencing (scRNA-seq) to characterize the
gene expression profiles of individual cells. One common analysis applied to scRNA-seq data involves
detecting differentially expressed (DE) genes between cells in different biological groups. However, many
experiments are designed such that the cells to be compared are processed in separate plates or chips,
meaning that the groupings are confounded with systematic plate effects. This confounding aspect is
frequently ignored in DE analyses of scRNA-seq data. In this article, we demonstrate that failing to
consider plate effects in the statistical model results in loss of type I error control. A solution is proposed
whereby counts are summed from all cells in each plate and the count sums for all plates are used in
the DE analysis. This restores type I error control in the presence of plate effects without compromising
detection power in simulated data. Summation is also robust to varying numbers and library sizes of cells
on each plate. Similar results are observed in DE analyses of real data where the use of count sums instead
of single-cell counts improves specificity and the ranking of relevant genes. This suggests that summation
can assist in maintaining statistical rigour in DE analyses of scRNA-seq data with plate effects.
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1. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is increasingly being used to study molecular biology at the
cellular level. RNA is isolated from individual cells and reverse-transcribed into cDNA fragments that
are sequenced using massively parallel technologies (Stegle and others, 2015). Mapping of the sequence
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reads to a reference genome allows quantification of gene expression in each cell based on the number of
reads assigned to each gene. The count data can then be analyzed to identify cell subtypes by clustering of
the gene expression profiles; to identify highly variable genes contributing to cell-to-cell heterogeneity;
and to identify differentially expressed (DE) genes between groups of cells. The ability to assay expression
profiles for individual cells provides scRNA-seq studies with biological resolution that cannot be matched
by bulk RNA-seq experiments on cell populations. However, this comes at the cost of high technical noise
due to difficulties in sequencing low input quantities of RNA from single cells.

Most existing scRNA-seq protocols are based either on microwell plates (Picelli and others, 2014) or
microfluidics systems like the Fluidigm C1 (Pollen and others, 2014). In the former, cells are placed into
individual wells, typically with automated approaches such as fluorescently activated cell sorting (FACS).
The entire plate is processed to generate sequencing libraries for all cells at once. In the latter, individual
cells are captured in separate reaction chambers within the C1 chip (for simplicity, each chip will be
treated as being equivalent to a plate in the following text). All cells on each chip are then simultaneously
processed into libraries. Each plate or chip can only handle a limited number of cells, so data are usually
generated for multiple plates across several biological groups. All cells on each plate usually come from
the same population (e.g. cell culture or animal) from a single biological group. If replicate populations
are present in a group, a separate plate is typically used to process the cells from each population.

The experimental design described above is motivated largely by practicality. It is logistically simpler
to track and process cells when each plate corresponds to one population of one group, compared with
partitioning the plate into different groups. For example, FACS is typically performed such that all cells
on a plate are obtained by gating on a single subpopulation. In the C1, cells are captured randomly in
reaction chambers such that the identity of the cell in each chamber cannot be pre-specified. Ambiguity
in determining the group for each cell is avoided by only using cells from the same group on each chip.
However, this design can result in a “plate effect” where uncontrollable experimental variables have a
consistent effect on the observed counts for all cells on each plate but a variable effect across different
plates. These variables can be technical in origin, such as differences in library preparation or sequencing
between plates; or biological, due to inherent variability in gene expression across replicate populations
on different plates.

One common analysis applied to scRNA-seq data involves identifying DE genes between groups of
cells. This does not strictly require single-cell resolution, and is more conventionally performed with bulk
RNA-seq data. Nonetheless, there are some benefits to using single-cell data in this context. Rare cells
are more easily sequenced with single-cell protocols, and irrelevant cells from contaminating populations
can be screened out before analysis. It is also more practical to use existing scRNA-seq data compared
with generating bulk data exclusively for a DE analysis. The analysis itself is typically performed using
methods like edgeR (Robinson and others, 2010) and DESeq2 (Love and others, 2014), which were
originally designed for bulk data; or with methods such as Monocle (Trapnell and others, 2014) and
SCDE (Kharchenko and others, 2014), which were designed explicitly for single-cell data. Putative DE
genes are defined as those that exhibit significant differences in the average counts between two or more
groups of interest.

The presence of plate effects complicates the parameterization of the experimental design in the DE
analysis. Obviously, such effects are undesirable as they arise via uncontrolled experimental variability.
This increases the estimated variance and reduces the power to detect DE genes. However, plate effects
cannot be easily removed during statistical modelling since they are confounded with the groups of interest
(Hicks and others, 2015; Tung and others, 2016). In the most extreme case, consider a data set with multiple
groups where each group is comprised of cells from a single plate. Changes in gene expression due to plate
effects will be indistinguishable from genuine DE between groups. Any attempt to remove the former will
compromise the detection of the latter. This problem is still present in data sets with a few plates (e.g.
2–3) in each group, where stochastic plate-to-plate variability may explain some or all of the apparent
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DE between groups. Many studies ignore the plate effects and treat cells directly as replicates in the
DE analysis, such that the variance is estimated across cells in each group (Kumar and others, 2014;
Kolodziejczyk and others, 2015; Kowalczyk and others, 2015). This strategy is not statistically rigorous
as the variability due to systematic differences between plates will not be modelled properly.

This article demonstrates that plate effects must be handled appropriately to maintain the statistical
validity of a DE analysis. In a simple simulation, all analyses that ignored the plate effects failed to control
the type I error rate. This was caused by dependencies between cells on the same plate which compromised
inferences from the fitted model. To avoid detection of spurious DE, a summation approach was proposed
whereby counts for all cells on each plate were summed prior to the DE analysis. This restored control
of type I error across a range of simulation scenarios without compromising DE detection power. Similar
effects were observed in real data where summation improved detection specificity and the ranking of
relevant genes.

2. PLATE EFFECTS RESULT IN FALSE POSITIVES IN A DE ANALYSIS

2.1. Description of the experimental design and analysis strategies

Consider an experimental design consisting of multiple biological groups of interest. Each group consists
of cells sorted onto multiple plates, where all cells on each plate come from an independent population
of a single group. As previously mentioned, this is not an uncommon setup due to the logistics of the
experimental protocol, e.g. cell sorting onto a plate with FACS, cell capture with the C1. Further assume
that a plate effect exists in the data set, whereby the expression of each gene in all cells of a given plate
is modified in a gene- and plate-specific manner. The use of gene-specific effects is motivated by the
presence of biological variability between replicate populations, where uncontrolled differences in cell
culturing or animal treatment can affect expression in a gene-dependent manner.

Let Yijkg be a random variable representing the read count for gene i in cell j in plate k of group g. Define
δikg as a random variable representing the gene-/plate-specific effect for gene i in plate k of group g.Assume
that δikg for each plate is independently sampled from a distribution of positive values with a mean of unity
and non-zero variance. This is reasonable as each plate contains cells from an independent population and
is processed independently. Further define θjkg as a random variable representing the bias in cell j in plate k
of group g, also sampled from a distribution of positive values with a mean of unity and non-zero variance.
This is independent of δikg as it represents the cell-specific bias (e.g. library size, composition bias) within
each plate, which is separate from the gene-specific plate effects. Yijkg is sampled independently for each
gene in each cell, conditional on the observed values of δikg and θjkg . In the following text, we refer to
var(Yijkg|δikg , θjkg) as the conditional variance, while the conditional expectation is defined as

E(Yijkg|δikg , θjkg) = δikgθjkgμig ,

where μig as the expected read count for gene i in group g. This represents the impact of plate effects
on the data. For each gene, the mean for all cells on a given plate is scaled by the same value, δikg ,
which introduces systematic differences between plates. Such differences cannot be removed by scaling
normalization, e.g. based on library size or with more sophisticated methods (Anders and Huber, 2010;
Robinson and Oshlack, 2010). This is because these normalization methods compute a single scaling
factor for each cell to adjust for the cell-specific θjkg . In contrast, the plate effect varies across genes and
cannot be removed by a single factor for each cell.

One common aim of the data analysis for this experiment is to identify DE genes between the biological
groups of interest. However, this is complicated by the presence of confounding plate effects. Consider
an experimental design with one plate from each of two groups. A fold-increase in δikg between the two
plates cannot be distinguished from a matching increase in μig between the two groups. Any attempt to
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remove the former will affect detection of genuine DE in the latter. Even with multiple plates per group,
this problem is still present as stochastic increases in δikg for all plates in a group can explain part or all of
the observed DE between groups.

A common strategy is to ignore the plate effects and treat cells from different plates in the same group
as replicates. This is most obviously applied in a one-way layout with clearly defined groups. It is also
relevant to multi-factor designs with more plates than model coefficients, as these designs will contain
some level of replication between plates and thus between their constituent cells. DE genes can then be
detected using software designed for bulk data (e.g. DESeq) or with dedicated single-cell methods (e.g.
Monocle). Alternatively, a more sophisticated but lesser-used approach involves fitting a mixed model to
the counts for each gene (Tung and others, 2016). The plate of origin is treated as a random effect while the
groups are treated as fixed effects. This accounts for plate-to-plate variability while still allowing detection
of DE between groups. However, the performance of these strategies has yet to be rigorously assessed on
scRNA-seq data sets that contain plate effects.

2.2. Testing DE analysis methods on simulated scRNA-seq data

We designed simulations to mimic the characteristics of a real scRNA-seq data set
(Kolodziejczyk and others, 2015). We generated counts for 50–100 cells in each plate, for an experiment
containing three plates in each of two groups. Counts for each cell were conditionally NB-distributed and
the plate effect was log-normally distributed. Parameters of both distributions were estimated from real
data—see Supplementary Figure S1 and Section 1 of the supplementary material, available at Biostatistics
online, for details.

DE analyses of the simulated data were then performed using edgeR, DESeq2 (Love and others,
2014), voom (Law and others, 2014), Monocle, MAST (Finak and others, 2015), and generalized linear
mixed models (GLMMs) from the lme4 package (Bates and others, 2015). edgeR, DESeq2, and voom were
originally designed for analyzing bulk RNA-seq data. edgeR and DESeq2 fit NB generalized linear models
(GLMs) to the counts for each gene, while voom uses a normal distribution to model log-counts per million
(log-CPMs) with precision weights. Monocle and MAST were explicitly designed for analyzing scRNA-
seq data, and operate on pre-processed expression values such as (log-)CPMs. (In particular, Monocle
was designed to detect DE across a pseudo-temporal ordering of single cells, e.g. during differentiation,
but the same statistical framework can be applied to arbitrary covariates.) The GLMM approach is more
general, and uses NB distributions to model the counts with random plate effects and fixed group effects.

Each method was applied to the simulated data to test for DE between groups. For all methods, the
experimental design was parameterized as a one-way layout with two groups. All cells within each group
were treated as direct replicates—the plate of origin within each group was ignored. edgeR was run
twice, using either the quasi-likelihood (QL) framework (Lund and others, 2012) with robust empirical
Bayes (EB) shrinkage (Phipson and others, 2016) of the QL dispersions, or the likelihood ratio test (LRT)
(McCarthy and others, 2012) without any EB shrinkage of the NB dispersions. Similarly, the analysis with
voom was repeated after estimating the correlation between cells on the same plate (Smyth and others,
2005). The implementation details for each method are described in Section 2 of the supplementary
material available at Biostatistics online.

In this simulation, the null hypothesis is true for each gene i as μig is constant for all g. Any rejections of
the null represent type I errors, i.e. false positives. For a specified type I error rate α = 0.01, the observed
error rate was defined as the proportion of all genes with a p-value below α. This was averaged across
10 simulation iterations to obtain a stable estimate of the observed type I error rate for each method. A
method was considered to be liberal if its observed error rate in the simulation was above the specified
α. Note that this evaluation is only possible for methods that compute p-values for each gene—Bayesian
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Fig. 1. Observed type I error rates for each method on simulated data, in the presence or absence of a plate effect.
Error rates are shown on a log scale and represent the average across 10 simulation iterations. Each error bar represents
the standard error of the log-average rate. The threshold of 0.01 is represented by the dashed line. Only one iteration
was used for Monocle and GLMMs due to their long run times.

methods (Kharchenko and others, 2014; Vallejos and others, 2016) are not directly comparable and so
are not tested here.

2.3. Type I error control is lost by all methods

The observed type I error rate exceeds the specified threshold in all methods (Figure 1). For most methods,
the discrepancy between the observed and specified rates is greater than an order of magnitude. This
liberalness is attributable to the plate effect rather than any inherent fault with the methods. When the
simulations are repeated without any plate effect, the observed rates for all methods are substantially
closer to the specified level, if not below it. These results suggest that DE analyses will perform poorly
if the plate effect is simply ignored. Loss of type I error control will result in an unacceptable number of
false positives in the final set of DE genes.

Loss of error control is caused by plate-induced dependencies in the statistical model. In the one-way
layout, the count of each gene in each cell is modelled by a distribution with a mean equal to the product
of a gene- and group-specific expression term (the estimate of μig) and a cell-specific scaling factor (θjkg).
Most DE analysis methods assume that, for any given gene, the counts for all cells are independently
sampled from these distributions. However, this is clearly not the case when a plate effect is present. For
each gene, the true mean of the sampling distribution for each cell is scaled by a plate-specific factor
δikg , such that the residuals of the fitted model for cells on the same plate are more similar than expected
under independence. (Conditional independence between cells is irrelevant here, as the plate of origin
is not used in the model parameterization.) This reduces the amount of information in the data set as
cells on the same plate are effectively redundant. Methods that assume independence will overstate the
information available to estimate model parameters such as the group-specific means, the variance or the
NB dispersion. This results in overconfident inferences and liberalness during hypothesis testing.

The problem can also be described in terms of the residual degrees of freedom (d.f.) that are available in
the fitted model. The simulation uses an experimental design with 6×50 = 300 cells and two coefficients
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in a one-way layout. If all cells were truly independent—as is assumed by most methods—this design
would provide 298 residual d.f. At the other extreme, consider the scenario where all cells on a plate
have identical counts, i.e. there is no noise or heterogeneity between cells. This means that there are only
six independent samples (one cell per plate, as all other cells on that plate are redundant) and only four
residual d.f. This is substantially smaller than the expected 298 d.f., meaning that the uncertainty of various
parameter estimates will be underestimated. For example, the use of edgeR with the LRT assumes that
sufficient residual d.f. are present to estimate the dispersion for each gene separately, without requiring EB
shrinkage to share information between genes. This is no longer justifiable if only four d.f. are available.

The GLMM approach and voom with correlations exhibit the best performance of all tested methods
in the presence of a plate effect (Figure 1). This is because they explicitly account for the dependencies
between cells on the same plate during variance estimation. Nonetheless, both methods are still liberal,
with observed type I error rates that are approximately 3-fold higher than the specified threshold. This is
attributable to difficulties in estimating the variance of the random effect (for the GLMM approach) or the
correlation (for voom) in data sets with small numbers of replicate plates. Underestimation will result in
loss of type I error control as the dependencies will not be fully modelled. For voom, the effect of imprecise
estimation with few plates is mitigated by sharing information across genes to obtain a consensus value
of the correlation—however, this leads to biases when the true correlation varies between genes. GLMMs
are also prohibitively slow to fit, taking several hours to run for a single simulation iteration.

We also tested the performance of each method with other simulation settings. To this end, we repeated
the above simulation after halving the magnitude of the plate effect; increasing the variability of library
sizes across cells; increasing the variability in the number of cells per plate; increasing the number of plates
in each group; or sampling counts from a zero-inflated negative binomial distribution, with parameters
estimated from real data (Zeileis and others, 2008). In all scenarios, type I error control was not maintained
by any method (Supplementary Figure S2, available at Biostatistics online). This suggests that our results
are generally applicable to different scRNA-seq data sets.

3. IMPROVED PERFORMANCE WITH SUMMATION ACROSS CELLS IN EACH PLATE

3.1. Error control can be restored by summing over cells

A simple solution presents itself for restoring error control in the presence of plate effects. Firstly, the
counts for each gene are summed across all cells within each plate. These count sums are then used directly
in the DE analysis, where the plates themselves are treated as replicate samples for each biological group.
The use of plate-based observations avoids dependencies between samples in the statistical model. This
is because the plate effect is independently sampled for each plate and will not introduce unexpected
similarities between count sums for different plates. Similarly, the counts for cells within each plate are
conditionally independent and will not provide any information on the counts in other plates. Independence
of the count sums fulfills the expectations of the analysis methods and ensures that the number of residual
d.f. is not overestimated. Summation has the additional benefit of increasing the size and precision of the
counts. This makes the data more amenable for analysis with existing methods designed for bulk data.

Summation substantially reduces the liberalness of the DE analysis methods in the simulation (Figure 2).
Overconfident estimation of model parameters is avoided due to the presence of independent count sums.
Similar results are observed in the alternative simulation scenarios (Supplementary Figure S3, available
at Biostatistics online). Note that some mild liberalness is still observed for edgeR and DESeq2—this
is because the count sums are not NB-distributed which results in some inaccuracy during modelling.
In contrast, type I error control is fully restored for voom as it is more accurate for large counts and
log-normally distributed plate effects. The other methods are not used here, for various reasons—voom
with correlations and GLMMs cannot be applied on count sums from independent plates, as the plate-level
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Fig. 2. Observed type I error rate for each method after summation in simulations with and without a plate effect.
Error rates are shown on a log scale and represent the average across 10 simulation iterations. Error bars represent
standard errors, and the threshold of 0.01 is represented by the dashed line. The observed type I error rate for each
method without summation is also shown for comparison.

blocking factor would be confounded with the random error; Monocle and MAST are designed for per-cell
rather than summed per-plate counts; and for edgeR without EB shrinkage, there are insufficient residual
d.f. to stably estimate the dispersion.

Summation will not explicitly protect against pathological situations where, e.g. δikg > 1 for all plates
in one group and δikg < 1 for all plates in the other groups. Such genes are more likely than others to be
type I errors, regardless of whether single-cell or summed counts are used in the DE analysis. However,
the benefit of summation is that it provides more accurate control of these errors. This is achieved through
the appropriate consideration of the model uncertainty via low residual d.f., which reduces the significance
of spurious DE caused by variable δikg .

3.2. Summation does not compromise DE detection power

It should be stressed that summation of counts does not change the nature of the underlying changes
in expression. In a DE analysis, the average expression of a gene is computed for each group and then
compared between two or more groups. This is true regardless of whether those groups contain replicate
cells or replicate plates. In general, summation only affects the estimation of the variance rather than that
of the effect size, i.e. the log-fold change.

To demonstrate, we repeated the simulations after introducing DE genes between groups. We used
the various analysis methods with either the single-cell counts (i.e. ignoring the plate effect) or summed
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Fig. 3. ROC curves for each analysis method on simulated data with a plate effect and genuine DE, for both single-cell
(full) and summed counts (dashed). Curves are shown for DESeq2, voom, and QL edgeR. Each curve represents the
average result of 10 simulation iterations. The full curves are shown on the left, and an enlarged plot focusing on low
false positive rates is shown on the right.

counts to detect known DE genes. For each method, the receiver-operating characteristic (ROC) curve for
the analysis on summed counts was similar to that for the single-cell counts (Figure 3). This indicates that
detection power at any given false positive rate is not compromised by summation. In fact, at low false
positive rates, a modest increase was observed in the true positive rate of each analysis with summed counts
compared with its single-cell counterpart. Similar results were observed in additional simulation scenarios
involving no plate effect, stronger DE fold changes and more DE genes (Supplementary Figure S4,
available at Biostatistics online). Moreover, the observed false discovery rate (FDR) was only controlled
below the nominal 5% threshold when summation was used (Supplementary Figure S5, available at
Biostatistics online). This is consistent with the loss of error control when plate effects are ignored.

The comparable performance of analyses with and without summation is driven by several factors.
Firstly, as previously discussed, the (expected) DE log-fold change is the same regardless of whether the
average expression in each group is computed over cells or over plates. Secondly, the count sum per plate
is less variable than the count per cell. This is most obvious in voom where expression is quantified as
a (log-)CPM value. The CPM of a count sum effectively represents an estimate of the conditional mean
across all cells on a plate—by the law of large numbers, this should converge to its expectation for a large
number of conditionally independent cells. Similar behavior is observed in NB models where the variance
of the sum of identical and independently NB-distributed random variables approaches that of a Poisson
distribution. In both cases, the decrease in the conditional variance relative to the mean offsets the loss
of power from the decrease in the number of samples when plates are considered instead of cells. (See
also Section 3 of the supplementary material, available at Biostatistics online, for a discussion on how the
relative decrease in the conditional variance also improves model accuracy.) Thirdly, methods like edgeR,
DESeq2, and voom/limma share information between genes to estimate the dispersion or variance. This
mitigates the effect of reduced residual d.f. for count sums. Finally, the increase in power at low false
positive rates may be due to the greater suitability of statistical models for count sums. For example, the
log-normal model in voom is more accurate at larger counts where discreteness is less pronounced.
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3.3. Justifying summation in a single-cell study

Despite the obvious improvement in performance, the summation strategy may not have unqualified
appeal. After all, it seems to contradict the purpose of a scRNA-seq study. Why would one bother to
sequence the transcriptome of individual cells, only to add the counts together during the analysis? The
use of summed counts is equivalent to performing bulk sequencing on the pooled population, which would
be technically easier to undertake and analyze. In fact, this apparent contradiction is relevant to all DE
analyses of scRNA-seq data where average expression levels are compared between pre-defined groups of
cells. Such averages could be obtained directly with bulk sequencing of the groups, rather than sequencing
of the individual cells. Furthermore, detection of significant changes in the averages between groups only
requires modelling of their variability across replicate populations - knowledge of cell-to-cell variability
is unnecessary.

The resolution of this contradiction is based on the ability of single-cell approaches to characterize and
define the groups prior to the DE analysis. Purified populations of rare cells can be profiled by scRNA-seq if
they cannot be obtained in sufficient numbers for bulk sequencing. Low quality libraries or contaminating
cells can be identified and removed from each group to avoid distorting downstream inferences. Groups
can also be empirically identified based on gene expression patterns, though this requires some care to
avoid circularity in the subsequent DE analysis. Obviously, it is not mandatory to use the summed counts
exclusively. The single-cell counts can still be used for other aspects of the analysis, e.g. clustering,
identifying highly variable genes. Indeed, after DE genes have been detected, one can exploit the cellular
resolution of scRNA-seq data to characterize the differences between groups in more detail (Korthauer
and others, 2016) - specifically, is the change in expression being driven by a particular subset of cells,
or is it occurring consistently across the entire population? All of these advantages are lost when RNA
sequencing is performed at the population level.

Note that summation across cells in scRNA-seq data is not without precedent. Jaitin and others (2014)
pool single-cell expression profiles to obtain a combined vector of subpopulation-level counts for gene
clustering. Klein and others (2015) also pool single-cell counts within each group prior to performing a
DE analysis between groups, which increases the count size and stabilizes the estimates of the DE fold
change. However, the use of summation to restore type I error control in the presence of plate effects has
not yet been addressed in the literature.

4. SUMMATION RESULTS IN REDUCED DE DETECTION IN REAL DATA

4.1. Overview of the real data set and its analysis

To determine the relevance of the simulation results, DE analyses with single-cell and summed counts
were performed on real scRNA-seq data from a study of mouse embryonic stem cells (mESCs) grown
under three different types of culture conditions (Kolodziejczyk and others, 2015). This data set con-
tains multiple C1 chips across several batches for each culture type, where all mESCs on each chip
correspond to a single culture type (serum, 2i, or a2i). Count data for all genes were obtained from
http://www.ebi.ac.uk/teichmann-srv/espresso. To simplify the analysis, counts were only used from cells
in the two batches where all three culture types were represented. This resulted in 60–90 cells from each
of six plates (three culture types in each of two batches). To account for the batch effect, the experimental
design was parameterized as an additive model with culture-specific expression terms and batch-specific
blocking factors.

DE analyses were performed on the data using DESeq2, voom, and QL edgeR. These methods were
chosen as they could be applied on both the single-cell counts and summed counts for all cells in each
plate. Prior to analysis, low-abundance genes (defined as those with an average count below 1 across
all cells) were filtered out. Sample-level quality control was not applied as low-quality cells had already

http://www.ebi.ac.uk/teichmann-srv/espresso
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Table 1. Total number of DE genes detected by each method in each comparison at a FDR of 5%, using
the single-cell or summed counts. The number of DE genes detected with both counts is also shown

Comparison Counts DESeq2 voom QL edgeR

Single-cell 6243 9458 9107
2i vs. serum Summed 3014 1710 946

Both 2488 1698 946

Single-cell 5378 8850 8069
a2i vs. serum Summed 1688 774 241

Both 1487 763 241

Table 2. Proportion of the top-ranking DE genes shared between analyses using the single-cell or summed
counts. Top genes were defined as those with the smallest 20, 200, or 2000 p-values in each comparison

Comparison Top DESeq2 voom QL edgeR

20 0.15 0.05 0.10
2i vs. serum 200 0.27 0.43 0.18

2000 0.49 0.60 0.48

20 0.25 0.20 0.10
a2i vs. serum 200 0.30 0.53 0.17

2000 0.48 0.60 0.51

been removed. Each analysis method was applied with and without summation, to detect DE genes
between 2i and serum or between a2i and serum. In each analysis, normalization was performed using
the deconvolution method for the single-cell counts (Lun and others, 2016) or the DESeq method for the
summed counts for each plate (Anders and Huber, 2010)—see Section 2.2 of the supplementary material,
available at Biostatistics online, for more details on these normalization strategies. The set of DE genes
detected at a FDR of 5% was then reported for each method.

4.2. Numbers and ranking of DE genes are altered upon summation

In all comparisons, the number of DE genes detected with summed counts was substantially smaller than
that detected with single-cell counts (Table 1). In fact, the DE list from the former was generally a subset
of that from the latter. However, this does not mean that DE analyses with single-cell counts provide
more power. To assess specificity, we repeated each comparison after swapping the culture labels of the
samples being compared in one of the batches. Each group now contains one sample from each culture
type, such that no DE genes should be present between groups. Only the methods using summation were
able to control the type I error rate below the specified threshold (Supplementary Figure S6, available at
Biostatistics online). (Some conservativeness is expected as genuine DE between culture types inflates
the variances upon swapping.) In contrast, the single-cell analyses are liberal to a degree that is consistent
with the simulations. This suggests that the increased numbers in Table 1 correspond to detection of false
positives rather than genuine DE genes.

To determine the effect of summation on the gene ranking, genes were sorted based on the p-values
computed from each method. The identities of the top 20, 200, and 2000 genes were compared between
analyses using single-cell and summed counts. In general, less than half of the top-ranking genes are
shared between the two analyses for each method (Table 2). This difference is attributable to changes
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in variance modelling after summation, to focus on variability between plates rather than between cells.
These rankings are important as the genes driving the biological differences between groups are expected
to exhibit strong DE. Thus, the top-ranking genes are typically prioritized for further interpretation and
investigation. Changes to the ranking indicate that summation will affect the biological conclusions that are
taken from the analysis. Indeed, key pluripotency factors characterized by Kolodziejczyk and others (2015)
are more highly ranked in analyses using summed counts compared with single-cell counts (p = 1.9×10−4,
see Supplementary Figure S7, available at Biostatistics online). This suggests that summation can improve
the biological relevance of DE results.

One potential criticism of summation is that the variability between cells is hidden in the count sum.
One might expect that genes with DE driven by a few outlier cells would be ranked highly, as they would
not be penalized by a large cell-to-cell variance estimate. This would be inappropriate as such outlier
patterns are uninteresting. However, these genes do not seem to be favored in real data. The top set of DE
genes from summation exhibit robust differences between groups (Supplementary Figure S8, available
at Biostatistics online), whereas genes driven by outliers tend to be less significant. This is because the
conditional variance of the count sum will be larger with fewer contributing cells, i.e. technical noise
and heterogeneity will not average out if the sum is dominated by a few outliers. This increases the
total variance and decreases the relative significance of DE for outlier-driven genes. For genes with more
contributing cells, cell-to-cell variability will be hidden but this is not undesirable—see Section 4 of the
supplementary material available at Biostatistics online for details.

5. DISCUSSION

Confounding plate effects are often present in scRNA-seq data sets but are typically ignored during the
DE analysis. Our simulations indicate that this strategy is not statistically rigorous and will result in loss
of type I error control. In this article, a solution is presented involving the summation of counts across all
cells on each plate for each gene. The count sums can then be used in a DE analysis, effectively treating
plates as individual samples. This restores type I error control and avoids the detection of excessive false
positives. Summation prior to DE analyses also affects the biological conclusions of a real scRNA-seq
study, by decreasing the size of the DE lists and improving the ranking of relevant genes relative to a
conventional single-cell analysis.

We note that there are some situations where summation has fewer advantages. For example, cells
can be arranged onto plates such that each plate contains cells from multiple biological groups. DE
comparisons can then be performed directly between cells on the same plate, avoiding problems from
technical variability in processing between plates. This mitigates the plate effect (though an equivalent
“population effect” may be observed whereby dependencies are present between cells from the same
replicate animal or cell culture) and reduces the need for summation. In experiments involving one plate
in each group, summation will yield only one count sum per group. This cannot be easily analyzed by
existing methods as the variance within each group cannot be modelled without replication. A direct
analysis of single-cell counts is more straightforward as the variance can be estimated across cells. That
said, the latter analysis is only valid under the assumption that no plate effect exists. This is because the
variance estimate only accounts for variability within plates, not between plates. To verify this assumption,
one would have to generate data from replicate plates such that summation would be applicable.

In general, experimental designs involving several plates nested in each group seem to provide the
best compromise between statistical rigour and experimental practicality. This generates the necessary
replication across populations (assuming that each plate corresponds to a replicate population) while being
easier to set up than plates of mixed populations or groups. For such designs, the best way to handle plate
effects is to simply increase the number of plates. This provides more residual d.f. to precisely estimate the
plate-to-plate variability after summation, albeit at the cost of requiring more experimental resources. The
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choice of the number of plates is analogous to that of biological replicates in bulk RNA-seq experiments.
This suggests that 3–4 plates per group should be sufficient in most cases. The number of cells is less
important, though there should be enough cells per plate to obtain stable count sums. Summation also
reduces the computational time required for the DE analysis—only a small number of plates need to be
processed, instead of hundreds or thousands of cells—which may be useful in large data sets.

Summation is a simple but effective approach to overcome the problem of plate effects in a DE analysis.
This complements other aspects of the data analysis that use single-cell counts, e.g. in cell clustering or
to identify highly variable genes. Summation also reduces technical noise and may be a more general
strategy to improve data quality when many cells are available.

6. SOFTWARE

All software packages are publicly available from the Bioconductor project (http://bioconductor.org).
Simulation scripts are available at https://github.com/MarioniLab/PlateEffects2016.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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