
Biostatistics (2018) 19, 2, pp. 137–152
doi:10.1093/biostatistics/kxx026
Advance Access publication on June 25, 2017

Simple fixed-effects inference for complex
functional models

SO YOUNG PARK∗, ANA-MARIA STAICU, LUO XIAO

Department of Statistics, North Carolina State University, Raleigh, NC, USA

spark13@ncsu.edu

CIPRIAN M. CRAINICEANU

Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA

SUMMARY

We propose simple inferential approaches for the fixed effects in complex functional mixed effects models.
We estimate the fixed effects under the independence of functional residuals assumption and then bootstrap
independent units (e.g. subjects) to conduct inference on the fixed effects parameters. Simulations show
excellent coverage probability of the confidence intervals and size of tests for the fixed effects model
parameters. Methods are motivated by and applied to the Baltimore Longitudinal Study of Aging, though
they are applicable to other studies that collect correlated functional data.
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1. INTRODUCTION

Rapid advancement in technology and computation has led to an increasing number of studies that collect
complex-correlated functional data. In response to these studies research in structured functional data
analysis (FDA) has witnessed rapid development. A major characteristic of these data is that they are
strongly correlated, as multiple functions are observed on the same observational unit. Many new studies
have functional structures including multilevel (Morris and others, 2003; Morris and Carroll, 2006; Di and
others, 2009; Crainiceanu and others, 2009), longitudinal (Greven and others, 2010; Chen and Müller,
2012; Scheipl and others, 2015), spatially aligned (Baladandayuthapani and others, 2008; Staicu and
others, 2010; Serban and others, 2013), or crossed (Aston and others, 2010; Shou and others, 2015).

While these types of data can have highly complex dependence structures, one is often interested
in simple, population-level, questions for which the multi-layered structure of the correlation is just an
infinite-dimensional nuisance parameter. For example, the Baltimore Study of Aging (BLSA), which
motivated this article, collected physical activity levels from each of many participants at the minute level
for multiple consecutive days. Thus, the BLSA activity data exhibit complex within-day and between-day
correlations. However, the most important questions in the BLSA tend to be simple; in particular, one may
be interested in how age affects the daily patterns of activity or whether the effect is different by gender.
In this context, the high complexity and size of the data are just technical inconveniences.
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Such simple questions are typically answered by estimating fixed effects in complex functional mixed
effects models. Our proposed approach avoids complex modeling and implementation by: (i) estimating the
fixed (population-level) effects under the assumption of independence of functional residuals; and (ii) using
a nonparametric bootstrap of independent units (e.g. subjects) to construct confidence intervals and conduct
tests.A natural question is whether efficiency is lost by ignoring the correlation. While the loss of efficiency
is well documented in longitudinal studies with few observations per subject and small dimensional within-
subject correlation, little is known about inference when there are many observations per subject with an
unknown large dimensional within-subject correlation matrix. An important contribution of this article
is to evaluate the performance of bootstrap-based inferential approaches in this particular context. Our
view is that estimating large dimensional covariance matrices of functional data may hurt fixed effects
estimation by wasting degrees of freedom. Indeed, a covariance matrix for an n by p matrix of functional
data (n = number of subjects and p = number of subject-specific observations) would require estimation
of p(p + 1)/2 matrix covariance entries when the covariance matrix is unstructured. When p is moderate
or large this is a difficult problem. Moreover, the resulting matrix has an unknown low rank and is not
invertible.

We will consider cases when multiple functional observations are observed for the same subject. This
structure is inspired by many current observational studies, but we will focus on the BLSA, where activity
data are recorded at the minute level over multiple consecutive days, resulting in daily activity profiles
(each as a function of time of the day) observed for each participant over multiple days. Specifically, we
will focus on data from 332 female BLSA participants with age varying between 50 and 90. A total of 1580
daily activity profiles were collected (an average of 4.7 monitoring days per person), where each daily
profile consists of 1440 activity counts measured at the minute level. Thus, the activity data considered in
this paper is stored in a 1580 × 1440 dimensional matrix. Our primary interest is to conduct inference on
the fixed effects of covariates, such as age and body mass index (BMI), on daily activity profiles. Because
data from each participant were collected on consecutive days in a short period (about a week on average),
age and BMI in the BLSA data are subject-specific but visit-invariant.

While our covariates are time-invariant, we propose methods that can accommodate both time-invariant
and time-dependent covariates. Assume that the observed data is of the form {Yij(·), Xij}, where Yij(·) is
the jth unit functional response (e.g. jth visit) for the ith subject, and Xij is the corresponding vector
of covariates. This general form applies to all types of functional data discussed above: multilevel, lon-
gitudinal, spatially correlated, crossed, etc. The main objective is to make statistical inference for the
population-level effects of interest using repeatedly observed functional response data.

A naïve approach to analyze data with such a complex structure is to ignore the dependence over the
functional argument t, but to account for the dependence across the repeated visits. That is, by assuming
that the responses Yij(t) are correlated over j and independent over t. Longitudinal data analysis literature
offers a wide variety of models and methods for estimating the fixed effects and their uncertainty, and for
conducting tests (see for example Laird and Ware (1982); Liang and Zeger (1986); Fitzmaurice and others
(2012)). These methods allow to account for within-subject correlation, incorporate additional covariates,
and make inference about the fixed effects. However, extending these estimation and inferential procedures
to functional data is difficult. In the literature this has been addressed by modeling the within- and between-
curve dependence structure using functional random effects. These approaches are highly computationally
intensive, require inverting high dimensional covariances matrices, and make implicit assumptions about
the correlation structures that may not be easy to transport across applications.

Another possible approach is to completely ignore the dependence across the repeated visits j, but
account for the functional dependence. That is, assume Yij(t) are dependent over t, but independent over
j. Function on scalar/vector regression models can be used to estimate the fixed effects of interest; see for
example Faraway (1997); Jiang and others (2011); Ivanescu and others (2015). In this context, testing
procedures for hypotheses on fixed effects are available. For example, Shen and Faraway (2004) proposed



Simple fixed-effects inference for complex functional models 139

the functional F statistic for testing hypotheses related to nested functional linear models. Zhang and
others (2007) proposed L2 norm based test for testing the effect of a linear combination of time-varying
coefficients, and approximate the null sampling distribution using resampling methods. However, failing
to account for dependence across visits results in tests with inflated type I error.

In contrast, development of statistical inferential methods for correlated functional data has received less
attention. Fully Bayesian inference has been previously considered in the literature for complex designs;
see, for example, Morris and Carroll (2006), Morris and others (2006), Morris and others (2011), Zhu
and others (2011), and Zhang and others (2016). These approaches take into account both between- and
within-function correlations using MCMC simulations of the posterior distribution. In contrast, we focus
on a frequentist approach to inference that avoids modeling of the complex correlation structures. In the
frequentist framework, Crainiceanu and others (2012) discussed bootstrap-based inferential methods for
the difference in the mean profiles of correlated functional data. Staicu and others (2014) proposed a
likelihood-ratio type testing procedure, while Staicu and others (2015) considered L2 norm-based testing
procedures for testing that multiple group mean functions are equal. Horváth and others (2013) developed
inference for the mean function of a functional time series. However, these approaches focus on testing
the effect of a categorical variable, and do not handle inference on fixed effects in full generality.

Here we consider a modeling framework that is a direct generalization of the linear mixed model
framework from longitudinal data analysis, where scalar responses are replaced with functional ones. We
propose to model the fixed effect of a scalar covariate either parametrically or nonparametrically while
the error covariance is left unspecified to avoid model complexity. We estimate the fixed effects under
the working independence and account for all known sources of data dependence by bootstrapping over
subjects. Based on this procedure, we propose confidence bands and L2 norm-based testing for fixed effects
parameters. An important contribution of this article is to investigate and confirm the performance of the
bootstrap-based inferential approaches when data have a complex functional dependence structure.

2. MODELING FRAMEWORK AND ESTIMATION

Consider the case when each subject is observed at mi visits, and data at each visit consist of a functional
outcome {Yij� = Yij(tij�) : � = 1, . . . , Lij} and a vector of covariates including a scalar covariate of
interest, Xij, and additional p-dimensional vector of covariates, Zij. We assume that tij� ∈ T , where T is
a compact and closed domain; take T = [0, 1] for simplicity. For convenience, we assume a balanced
regular sampling design, i.e. tij� = t� and Lij = L, though all methods apply to general sampling designs.
Furthermore, we assume that {Xij : ∀ i, j} is a dense set in the closed domain X ; this assumption is needed
when the fixed effect of Xij is modeled nonparametrically (Ruppert and others, 2003; Fitzmaurice and
others, 2012). A common approach for the study of the effect of the covariates on Yij(·) is to posit a model
of the type

Yij(t) = μ(t, Xij) + ZT
ij τ + εij(t), (2.1)

where μ(t, Xij) is a time-varying smooth fixed effect of the covariate of interest, Xij, and τ is a p-dimensional
parameter quantifying the linear additive fixed effect of the covariate vector, Zij. εij(t) is a zero-mean ran-
dom deviation that incorporates both the within- and between-subject variability. μ(t, Xij) can be modeled
either parametrically or nonparametrically; see Section 6 (F2.) for some possible mean structures. While
technically more difficult to implement, nonparametric smoothing is useful when limited information
about the mean structure is available.

Here we present the most complex case where the mean structure for μ(t, X ) is an unknown bivariate
smooth function. We construct a bivariate basis using the tensor product of two univariate B-spline bases,
{Bt

1(t), · · · , Bt
dt
(t)}, and {Bx

1(x), · · · , Bx
dx

(x)}, defined on T and X respectively. The unspecified mean is
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then expressed as μ(t, x) = B(t, x)T β, where B(t, x) is the dtdx-dimensional vector of Bt
l(t)B

x
r(x)’s and

β is the vector of parameters βlr . Typically, the number of basis functions is chosen sufficiently large to
capture the maximum complexity of the mean function and smoothness is induced by a quadratic penalty
on the coefficients. There are several penalties for bivariate smoothing; see, for example, Marx and Eilers
(2005), Wood (2006), and Xiao and others (2013, 2016). In this article we used the following estimation
criterion

argmin
β, τ , λ

∑
i,j,�

[Yij� − {B(t�, Xij)
T β + ZT

ij τ }]2 + βT Pλβ (2.2)

with a penalty matrix Pλ described in Wood (2006) and a vector of smoothing parameters, λ. Specifically,
we used Pλ = λtPt ⊗ Idx + λxIdt ⊗ Px and λ = (λt , λx)

T , where ⊗ denotes the tensor product, and Pt

and λt are the marginal second order difference matrix and the smoothing parameter for the t direction,
respectively; Px and λx are defined similarly for the x direction. Here Idt and Idx are the identity matrices of
dimensions dt and dx, respectively. For a fixed smoothing parameter, λ, the minimizer of (2.2) has the form

[̂βT

λ , τ̂ T
λ ]T = (MT M + Pλ)

−1MT Y where M = [M1

... M2] with M1 the matrix with rows B(t�, Xij) and M2

the matrix obtained by row-stacking of ZT
ij , while the estimated mean is μ̂(t, x)+ZT

ij τ̂ = B(t, x)T
̂βλ+ZT

ij τ̂ λ.
In this article, the generalized cross validation (GCV) is used to select the optimal smoothing parameters,
while other criteria such as the restricted maximum likelihood can be used; relevant literatures on selection
of the smoothing parameter include Wahba (1990) and Ruppert and others (2003).

Estimation of the fixed effects in model (2.1) under the working independence assumption is not
new; see for example Scheipl and others (2015) and Chen and Müller (2012). However, our approach to
inference for the population level fixed effects in the context of structured functional data has not been
studied. The novelty of this article consists precisely in filling this gap in the literature. We consider an
estimation approach of fixed effects under working independence and a bootstrap of independent units
approach to appropriately account for complex correlation.

3. CONFIDENCE BANDS FORμ(t, x)

We now discuss inference for μ(t, x) using confidence bands and formal hypothesis testing. Without loss
of generality, assume that the mean structure is μ(t, x) = B(t, x)T β, where B(t, x)T can be as simple
as (1, t, x) or as complex as a vector of prespecified basis functions. The mean estimator of interest is
μ̂(t, x) = B(t, x)T

̂β. One could study pointwise variability for every pair (t, x), that is var{μ̂(t, x)}, or
the joint variability for the entire domain T × X , that is cov{μ̂(t, x) : t ∈ T , x ∈ X }. Irrespective of the
choice, the variability is fully described by the variability of the parameter estimator ̂β.

3.1. Bootstrap algorithms

We consider a flexible dependence structure for εij(t) that describes both within- and between-subject
variability. We make minimal assumption that εij(t) is independent over i but correlated over j and t,
though we do not specify the form of this correlation. Deriving the analytical expression for the sampling
variability of the estimator ̂β in such contexts is challenging. Instead, we propose to use two bootstrap
algorithms: bootstrap of subject-level data and bootstrap of subject-level residuals. These approaches
have already been studied and used in nonparametric regression for independent measurements; see, for
example, Härdle and Bowman (1988), Efron and Tibshirani (1994), and Hall and others (2013) among
many others. Bootstrap of functional data for fixed effects has also been considered, including by Politis
and Romano (1994) for weakly dependent processes in Hilbert space, by Cuevas and others (2006) for
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independent functional data, and by Crainiceanu and others (2012) for paired samples of functional data.
However, studying these bootstrap algorithms for functional data with complex correlation is new.

The subject-level bootstrap algorithm for correlated functional data is provided below.

Algorithm 1 Bootstrap of the subject-level data [uncertainty estimation]

1: for b ∈ {1, . . . , B} do
2: Re-sample the subject indexes from the index set {1, . . . , n} with replacement.

Let I (b) be the resulting sample of n subjects.
3: Define the bth bootstrap data by:

data(b) = [{Yi∗j(t�), Xi∗j, Zi∗j, t�} : i∗ ∈ I (b), j = 1, . . . , mi∗ , and � = 1, . . . , L].
4: Using data(b) fit the model (2.1) with the mean structure of interest modeled by

μ(t, x) = B(t, x)T β, by employing criterion (2.2). Let ̂β
(b)

λ(b) be the corresponding estimate of

the parameter of interest; similarly define μ̂(b)(t, x) = B(t, x)T
̂β

(b)

λ(b) . end for

5: Calculate the sample covariance of {̂β(1)

λ(1) , . . . , ̂β
(B)

λ(B)}; denote it by V
̂β .

The bootstrap of subject-level data is more generally applicable, while the bootstrap of subject-level
residuals approach relies on two important assumptions: (i) the covariates do not depend on visit, that is
Xij = Xi and Zij = Zi; and (ii) both the correlation and the error variance are independent of covariates.
These assumptions ensure that sets of subject-level errors, i.e. {εij(t) : j = 1, . . . , mi} for i = 1, . . . , n, can
be resampled over subjects without affecting the sampling distribution. These assumptions are reasonable
when covariates are independent of the visit, as is the case in the BLSA application. Indeed, in BLSA we
consider age and BMI, which are time-invariant because repeated measures per subject were collected
within a week.

Similarly, we introduce the algorithm for bootstrapping residuals. We start by fitting the model (2.1)
with the mean structure of interest modeled by μ(t, x) = B(t, x)T β, using the estimation criterion described
in (2.2), and calculating the residuals eij(t�) = Yij(t�) − B(t�, Xi)

T
̂βλ − ZT

i τ̂ λ.

Algorithm 2 Bootstrap of the subject-level residuals [uncertainty estimation]

1: for b ∈ {1, . . . , B} do
2: Re-sample the subject indexes from the index set {1, . . . , n} with replacement. Let I (b) be

the resulting sample of subjects. For each i = 1, . . . , n denote by m∗
i the number of repeated

time-visits for the ith subject selected in I (b).
3: Define the bth bootstrap sample of residuals

{e∗
ij(t�) : i = 1, . . . , n, j = 1, . . . , m∗

i , and � = 1, . . . , L}.
4: Define the bth bootstrap data by:

data(b) = [{Y ∗
ij (t�), Xi, Zi, t�} : i = 1, . . . , n, j = 1, . . . , m∗

i , � = 1, . . . , L], where Y ∗
ij (t�) =

B(t�, Xi)
T
̂βλ + ZT

i τ̂ λ + e∗
ij(t�).

5: Using data(b) fit the model (2.1) with the mean structure of interest modeled by

μ(t, x) = B(t, x)T β, by employing criterion (2.2). Let ̂β
(b)

be the corresponding estimate of

the parameter of interest; similarly define μ̂(b)(t, x) = B(t, x)T
̂β

(b)

λ(b) . end for

6: Calculate the sample covariance of {̂β(1)

λ(1) , . . . , ̂β
(B)

λ(B)}; denote it by V
̂β .

Based on our numerical investigation (see Section 6) the bootstrap of subject-level residuals has excel-
lent performance and is recommended when the necessary assumptions are satisfied, though the bootstrap
of subjects is a good alternative.
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3.2. Bootstrap-based inference

For fixed (t, x), the variance of the estimator μ̂(t, x) = B(t, x)T
̂β can be estimated as var{μ̂(t, x)} =

B(t, x)T V
̂β B(t, x), by using the bootstrap-based estimate of the covariance of ̂β. A 100(1−α)% pointwise

confidence interval for μ(t, x) can be calculated as μ̂(t, x)±z∗
α/2

√
var{μ̂(t, x)}, using normal distributional

assumption for the estimator μ̂(t, x), where z∗
α/2 is the 100(1 −α/2) percentile of the standard normal. An

alternative is to use the pointwise 100(α/2)% and 100(1 − α/2)% quantiles of the bootstrap estimates
{μ̂(b)(t, x) : b = 1, ..., B}.

In most cases, it makes more sense to study the variability of μ̂(t, x), and draw inference about the
entire true mean function {μ(t, x) : (t, x) ∈ Dt × Dx}. Thus, we focus our study on constructing a joint
(or simultaneous) confidence band for μ(t, x). Constructing simultaneous confidence bands for univariate
smooths has already been discussed in the nonparametric literature. For example, Degras (2009), Ma
and others (2012), and Cao and others (2012) proposed asymptotically correct simultaneous confidence
bands for different estimators, when data are independently sampled curves; Crainiceanu and others (2012)
proposed bootstrap-based joint confidence bands for univariate smooths in the case of functional data with
complex error processes. Here, we present an extension of the approach considered by Crainiceanu and
others (2012) to bivariate smooth function estimation for general functional correlation structures.

Let T∗ = {tgt : gt = 1, . . . , Gt} and X∗ = {xgx : gx = 1, ..., Gx} be the evaluation points that are
equally spaced in the domains Dt and Dx, respectively. We evaluate the bootstrap estimate μ̂(b)(t, x) of
one bootstrap sample at all pairs (t, x) ∈ T∗ × X∗, and denote by μ̂(b) the GtGx-dimensional vector with
components μ̂(b)(t, x). Let B be the dim(β) × GtGx-dimensional matrix obtained by column-stacking
B(tgt , xgx ) for all gt and gx. Let s(tgt , xgx ) = √

var{μ̂(tgt , xgx )} as defined above. After adjusting for the
bivariate structure of the problem, the main steps of the construction of the joint confidence bands for
μ(t, x) follow similarly to the ones used in Crainiceanu and others (2012) for univariate smooth parameter
functions.
Step 1. Generate a random variable u from the multivariate normal with mean 0dim(β) and covariance matrix
V

̂β ; let q(tgt , xgx ) = B(tgt , xgx )
T u for gt = 1, . . . , Gt and gx = 1, . . . , Gx.

Step 2. Calculate q∗
max = max(tgt ,xgx ) {|q(tgt , xgx )|/

√
s(tgt , xgx ) : (tgt , xgx ) ∈ T∗ × X∗}.

Step 3. Repeat Step 1. and Step 2. for r = 1, . . . , R, and obtain {q∗
max,r : r = 1, . . . , R}. Determine the

100(1 − α)% empirical quantile of {q∗
max,r : r = 1, . . . , R}, say q̂1−α .

Step 4. Construct the 100(1 − α)% joint confidence band by: {μ̄(tgt , xgx ) ± q̂1−α

√
s(tgt , xgx ) : (tgt , xgx ) ∈

T∗ × X∗}. Here μ̄(t, x) = B−1
∑B

b=1 μ̂(b)(t, x).
The joint confidence band, in contrast to the pointwise confidence band, can be used as an inferential tool
for formal global tests about the mean function, μ(t, x). For example, one can use the joint confidence
band for testing the null hypothesis, H0 : μ(t, x) = f0(t, x) for all pairs (t, x) ∈ Dt × Dx and for some
prespecified function f0(t, x), by checking whether the confidence band μ̄(tgt , xgx ) ± q̂1−α

√
s(tgt , xgx )

contains {f0(tgt , xgx )} for all (tgt , xgx ) ∈ Dt × Dx. If the confidence band does not contain {f0(tgt , xgx )}
for some (tgt , xgx ), then we conclude that there is significant evidence that the true mean function is the
prespecified function f0.

4. HYPOTHESIS TESTING FORμ(t, x)

Next, we focus on assessing the effect of the covariate of interest X on the mean function. Consider the
general case when the model is (2.1) and the average effect is an unspecified bivariate smooth function,
μ(t, x). Our goal is to test if the true mean function depends on x, that is testing:

H0 : μ(t, x) = μ0(t) for all t, x, (4.1)
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for some unknown smooth function μ0 : Dt → R against HA : μ(t, x) varies over x for some t.
To the best of our knowledge, this type of hypothesis, where the mean function is nonparametric

both under the null and alternative hypotheses, has not been studied in FDA. The problem was extensively
studied in nonparametric smoothing, where the primary interest centered on significance testing of a subset
of covariates in a nonparametric regression model; see, for example, Fan and Li (1996), Lavergne and
Vuong (2000), Delgado and Manteiga (2001), Gu and others (2007), and Hall and others (2007). However,
all these methods are based on the assumption that observations are independent across sampling units;
in our context requiring independence of Yij(tijk) over j and k is unrealistic and failing to account for this
dependence leads to inflated type I error rates.

To test hypothesis (4.1) we propose a test statistic based on the L2 distance between the mean estimators
under the null and alternative hypotheses. Specifically we define it as:

T =
∫

X

∫
T
{μ̂A(t, x) − μ̂0(t)}2dtdx, (4.2)

where μ̂0(t) and μ̂A(t, x) are the estimates of μ(t, x) under the null and alternative hypotheses, respectively.
In particular, μ̂A(t, x) is estimated as in Section 2. The estimator μ̂0(t) is obtained by modeling μ(t) =∑dt

l=1 Bt
l(t)βl = B(t)T β for the dt-dimensional vector β and by estimating the mean parameters β based

on a criterion similar to (2.2).
Deriving the finite sample distribution of the test statistic T under the null hypothesis is challenging

and we propose to approximate it using the bootstrap. As in Section 3, the smoothing parameter selection
is repeated for each bootstrap sample and model, μ0(t) and μA(t, x).

Algorithm 3 Bootstrap approximation of the null distribution of the test statistic, T

1: for b ∈ {1, . . . , B} do
2: Re-sample the subject indexes from the index set {1, . . . , n} with replacement. Let I (b) be

the obtained sample of subjects. For each i = 1, . . . , n denote by m∗
i the number of repeated

time-visits for the ith subject selected in I (b).
3: Define the bth bootstrap sample of pseudo-residuals

{e∗
ij(t�) : i = 1, . . . , n, j = 1, . . . , m∗

i , and � = 1, . . . , L}. For each i = 1, . . . , n
let {Z∗

ij : j = 1, . . . , m∗
i } the corresponding sample of the nuisance covariates for the

ith subject selected in I (b). Similarly define X ∗
ij .

4: Define the bth bootstrap data by: data(b) = [{Y ∗
ij (t�), X ∗

ij , Z∗
ij] : i = 1, . . . , n, j = 1, . . . , m∗

i ,
� = 1, . . . , L}, where Y ∗

ij (t�) = μ̂0(t�) + Z∗
ij τ̂A + e∗

ij(t�)

5: Using data(b) fit two models. First, fit model (2.1) with the mean structure modeled by
μ(t, x) = B(t, x)T β and estimate μ̂

(b)

A (t, x). Second, fit model (2.1) with the mean model
μ(t) = B(t)T β and estimate μ̂

(b)

0 (t). Calculate the test statistic T (b) using (4.2). end for

6: Approximate the tail probability P(T > Tobs) by the p-value = B−1
∑B

b=1 I (T (b) > Tobs),
where Tobs is obtained using the original data and I is the indicator function.

When the covariates Xij and Zij do not depend on visit, i.e. Xij = Xi and Zij = Zi, the algorithm can be
modified along the lines of the ‘bootstrap of the subject-level residuals’ algorithm.

5. APPLICATION TO PHYSICAL ACTIVITY DATA

Physical activity measured by wearable devices such as accelerometers provides new insights into the
association between activity and health outcomes (Schrack and others, 2014); the complexity of the data
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also poses serious challenges to current statistical analysis. For example, accelerometers can record activity
at the minute level for many days and for hundreds of individuals. Here we consider the physical activity
data from the BLSA (Stone and Norris, 1966). Each female participant in the study wore the Actiheart
portable physical activity monitor (Brage and others 2006) for 24 h a day for a number of consecutive
days; visit duration varied among participants with an average of 4.7 days. Activity counts were measured
in 1-min epochs and each daily activity profile has 1440 minute-by-minute activity counts measurements.
Activity counts are proxies of activity intensity. Activity counts were log-transformed (more precisely,
x → log(1 + x)) because they are highly skewed and then averaged in 30-min intervals. For simplicity,
hereafter we refer to the log-transformed counts as log counts. Here we focus on 1580 daily activity
profiles from a single visit of 332 female participants who have at least two days of data. Women in the
study are aged between 50 and 90 years. Further details on the BLSA activity data can be found in Schrack
and others (2014) and Xiao and others (2015).

Our objective is to conduct inference on the marginal effect of age on women’s daily activity after
adjusting for BMI. We model the mean log counts as μ(t, Xi) + Ziβ(t), where Xi and Zi are the age
and BMI of the ith woman during the visit, μ(t, x) is the baseline mean log counts for time t within
the day for a woman who is x-years old, and β(t) is the association of BMI with mean log counts for
time t within the day. We test whether μ(t, x) varies solely with t. We use the proposed testing statistic,
T = ∫ ∫ {μ̂A(t, x) − μ̂0(t)}2dtdx as detailed in Section 4. The estimate μ̂A(t, x) is based on the tensor
product of 15 cubic basis functions in t and 7 cubic basis functions in x and the estimate μ̂0(t) is based
on 15 cubic basis functions. Goodness of fit is studied by comparing the observed data with simulated
data from the fitted model; see Figure S6 of the supplementary materials available at Biostatistics online.
Figure S1 of supplementary material available at Biostatistics online shows the null distribution of the
statistic T . The observed test statistic is T = 0.041 and the corresponding p-value is less than 0.001 based
on 1000 MC samples. This indicates that there is strong evidence that daily activity profiles in women
vary with age.

Figure 1 displays the estimated baseline activity profile as a function of age, μ̂(t, x), using the average
of all bootstrap estimates. The plot indicates that the average log counts is a decreasing function of age
for most times during the day. Furthermore, it depicts two activity peaks, one around 12 pm and the other
around 6 pm. The 6-pm peak seems to decrease faster with age, indicating that afternoon activity is more
affected by age than morning activity. We use joint confidence band to evaluate the sampling variability
of μ̂(t, x). The joint lower and upper 95% confidence limits based on methods described in Section 3
are displayed in the bottom plots of Figure 1; the plots show that across all ages, the estimated low
average activity at night has relatively small variability while the estimated high-average activity during
the day has relatively high variability. To visualize the results, we display the estimated activity profile for
60-years-old women, μ̂(t, 60), and the corresponding 95% joint confidence band in Figure 2. Figure S2
of supplementary material available at Biostatistics online displays the estimated association of BMI with
mean log counts as a function of time of day; it suggests that women with higher BMI have less activity
during the day and evening, albeit more activity at late night and in early morning.

5.1. Validating the testing results via simulation study

We conducted a simulation study designed to closely mimic the BLSA data structure. Specifically, we
generated data from model (2.1) with μ(t, x) = cos(2π t) + δ{μ̂(t, x) − cos(2π t)}, where μ̂(t, x) is the
estimated mean log counts, and δ is a parameter quantifying the distance from the null and alternative
hypotheses. When δ = 0 the true mean profile μ(t, x) = cos(2π t), whereas when δ = 1 then μ(t, x) =
μ̂(t, x). The errors εij(t) are generated with a covariance structure that closely mimics that of the residuals
from the BLSA data. Specifically we use the model εij(t) = ui(t, xi)+ vij(t, xi)+ wij(t) and the associated
model estimates from Xiao and others (2015), where ui(·, xi) and vij(·, xi) are subject-specific and subject-
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Fig. 1. Heat map of average of bootstrap estimates of log counts as a bivariate function of time of day and age (top
left panel); average of bootstrap estimates of log counts for five different age groups (top right panel); and heat maps
of joint confidence bands for the estimate in the top left panel (bottom panels). The legend on the right applies to both
of the bottom plots.

Fig. 2. Average of bootstrap estimates of log counts as a function of time of day at age 60 and the associated joint
confidence bands.
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Table 1. Empirical type I error of the
test statistic T based on the Nsim =
1000 MC samples; Mean function is
μ(t, x) = cos(2π t), τ = 0

μ(t, x) = cos(2π t), τ = 0

α = 0.05 α = 0.10 α = 0.15

0.06 0.11 0.16
(0.01) (0.01) (0.01)

Standard errors are presented in parentheses.

and visit-specific random processes with mean zero and wij(t) is white noise. Xi and mi are generated
uniformly from {30, . . . , 90} and {5, . . . , 9}, respectively. Sample size is set to be the number of female
participants in the BLSA. Estimation is done exactly the same as in our data analysis. Table 1 shows the
rejection probabilities in 1000 simulations when δ = 0 and indicates that the empirical size is close to the
nominal levels. Figure S3 of supplementary material available at Biostatistics online displays the power
in 500 simulations, when δ > 0. When the true μ(t, x) is the estimated bivariate mean log counts of the
BLSA data, i.e. δ = 1, the rejection probability reaches 1.

6. SIMULATION STUDY

We evaluate the performance of the proposed inferential methods. Data are simulated using the model (2.1)
where Xij = Xi, Zij = Zi. The errors εij(t) are generated from the model εij(t) = ∑3

l=1 ξijlφl(t) + wij(t),
where for each i and l the basis coefficients {ξijl}j are generated from a multivariate normal distribution with
mean zero and covariance cov(ξijl , ξij′l) = λlρ

|Vij−Vij′ |, whereρ is a correlation parameter and Vij is the actual
time of visit at which Yij(·) is observed; a similar dependence structure has been considered in simulation
studies by Park and Staicu (2015) and Islam and others (2016). The residuals wij(·) are mutually indepen-
dent with zero mean and variance σ 2. The number of repeated measures is fixed at mi = 5, (λ1, λ2, λ3) =
(3, 2, 1/3), and the functions [φ1(t), φ2(t), φ3(t)] = [√2cos(2π t),

√
2sin(2π t),

√
2cos(4π t)]. The subject-

specific covariates Xi and Zi are generated from a Uniform[0, 1]. The grid of points {t� : � = 1, . . . , L} is
set as 101 equally spaced points in [0, 1]. The variance of the white noise process σ 2 is set to 5.33, which
provides a signal to noise ratio SNR= ∑3

l=1 λl/σ
2 equal to 1.

We consider different combinations of the following factors: F1. number of subjects: (a) n = 100, (b)
n = 200, and (c) n = 300; F2. bivariate mean function: (a) μ1(t, x) = β0 + βt t + βxx for (β0, βt , βx) =
(5, 2, 3), (b) μ2(t, x) = β0 + βt t + βxx + βtxtx for (β0, βt , βx, βtx) = (5, 2, 3, 7), (c) μ3(t, x) = cos(2π t) +
βxx for βx = 3, and (d) μ4(t, x) = cos(2π t)+δ((x/4)−t)3 for δ = 0, 2, 4, and 6, with/without the addition
of linear effect of nuisance covariate Zi, i.e. τ = 0 (no effect) and τ = 8; lastly, F3. between-curves
correlations: (a) ρ = 0.2 (weak) and (b) ρ = 0.9 (strong).

Confidence bands for model parameters are evaluated in two ways. First, we model the data by assuming
the correct model and by evaluating the accuracy of the inferential procedures. Second, we model the data
using a bivariate mean, μ(t, x), and evaluate the performance of the confidence bands of μ(t, x) for covering
the true mean even when the true mean has a simpler structure, i.e. F2 i.(a)–(c). The results for the first case
are included in Section B of the supplementary material available at Biostatistics online, whereas those
for the second case are presented below, because in the BLSA we used bivariate nonparametric fitting.
Estimation is done as detailed in Section 2. We use dt = dx = 7 cubic B-spline basis functions, and select
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the smoothing parameters via GCV; specifically, for the bivariate smooth, dtdx = 49 basis functions are
used.

The performance of the pointwise and joint confidence bands is evaluated in terms of average
coverage probability (ACP), and average length (AL) of the confidence intervals. Specifically, let
(μ̂isim , l(t, x), μ̂isim , u(t, x)) be the 100(1 −α)% pointwise confidence interval of μ(t, x) obtained at the isim

Monte Carlo generation of the data, then

ACPpoint = 1

NsimGtGx

Nsim∑
isim=1

Gt∑
gt=1

Gx∑
gx=1

1
{
μ(tgt , xgx ) ∈ (μ̂isim , l(tgt , xgx ), μ̂isim , u(tgt , xgx ))

}

ALpoint = 1

NsimGtGx

Nsim∑
isim=1

Gt∑
gt=1

Gx∑
gx=1

|μ̂isim , l(tgt , xgx ) − μ̂isim , u(tgt , xgx ))|,

where {tgt : gt = 1, . . . , Gt} and {xgx : gx = 1, ..., Gx} are equi-distanced grid points in the domains Dt ,
and Dx, respectively. Next, let (μ̂isim , l(t, x), μ̂isim , u(t, x)) be 100(1 − α)% joint confidence interval. The
AL is calculated as above, while the ACP is calculated as:

ACPjoint
μ(t,x) = 1

Nsim

Nsim∑
isim=1

1
{
μ(tgt , xgx ) ∈ (μ̂isim , l(tgt , xgx ), μ̂isim , u(tgt , xgx )) : for all gt , gx

}
.

The performance of the test statistic T is evaluated in terms of its size for the nominal levels α = 0.05,
0.10, and 0.15, and power at α = 0.05. The results for the size are based on Nsim = 1000 MC samples,
while the results for ACP and AL of the confidence bands, and power of the test are based on Nsim = 500
MC samples. For each MC simulation we use B = 300 bootstrap samples.

Table 2 shows the ACP and AL for the 95% confidence bands based on the bootstrap of subject-level
residuals when the sample size n = 100 and when μ(t, x) is modeled nonparametrically regardless of the
true mean structure; the results for other nominal coverages (85% and 90%) are included in Section A of
the supplementary material available at Biostatistics online. Overall, the pointwise/joint confidence bands
achieve the nominal coverage for all of the mean structures considered. The confidence bands tend to be
wider when the between-curves correlation is strong (ρ = 0.9).

We also investigate the performance of the confidence band when the correct structure of μ(t, x) is
used; the corresponding results for the bootstrap of subject-level residuals and observations are included
in Section B and Section C of the supplementary material available at Biostatistics online. The results
show the good coverage of the pointwise/joint confidence bands based on the bootstrap of residuals by
subjects for all of the mean structures considered. The bootstrap of observations by subjects leads to
equally good coverage when the true effect of the covariate X is linear (cases F2 i.(a)–(c)), whereas it
leads to slight under–coverage when the true effect of X is nonlinear (case F2 i.(d)). However, in the
case of a visit-varying covariate Xij the joint confidence band maintains nominal coverage even when the
effect of X is nonlinear; see Table S9 of the supplementary material available at Biostatistics online. These
results indicate that for a time-invariant covariate, Xi, the bootstrap of subject-level residuals is narrower
and has better coverage. In terms of computational cost, fitting a nonparametric model is much slower
than fitting a parametric model. For example when the true mean F2 i. (c) is used to generate the data,
fitting a nonparametric model for B = 300 bootstrap samples takes 337 s whereas the same procedure for
a parametric model takes 50 s; the results are based on 100 MC samples on a computer with a 3.60 Hz
processor.
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Table 2. Simulation results for 95% confidence bands based on the bootstrap of subject-level residuals when
a nonparametric bivariate function is fitted for μ(t, x); results are based on 500 MC samples

Case True mean function ρ ACPpoint ALpoint ACPjoint
μ(t,x) ALjoint

μ(t,x)

(a) μ(t, X ) = 5 + 2t + 3X 0.20 0.94 (< 0.01) 1.65 (0.01) 0.94 (0.01) 3.22 (0.01)
0.90 0.94 (< 0.01) 2.17 (0.02) 0.93 (0.01) 4.24 (0.01)

τ = 8 0.20 0.93 (0.01) 0.14 (< 0.01)
0.90 0.93 (0.01) 0.14 (< 0.01)

(b) μ(t, X ) = 5 + 2t + 3X + 7tX 0.20 0.94 (< 0.01) 1.65 (0.01) 0.94 (0.01) 3.22 (0.01)
0.90 0.94 (< 0.01) 2.17 (0.02) 0.93 (0.01) 4.24 (0.01)

τ = 8 0.20 0.93 (0.01) 0.14 (< 0.01)
0.90 0.93 (0.01) 0.14 (< 0.01)

(c) μ(t, X ) = cos(2π t) + 3X 0.20 0.94 (< 0.01) 1.65 (0.01) 0.93 (0.01) 3.23 (0.01)
0.90 0.94 (< 0.01) 2.18 (0.02) 0.93 (0.01) 4.25 (0.01)

τ = 8 0.20 0.93 (0.01) 0.14 (< 0.01)
0.90 0.93 (0.01) 0.14 (< 0.01)

(d) μ4(t, X ) 0.61 0.94 (< 0.01) 1.65 (0.01) 0.93 (0.01) 3.23 (0.01)
0.90 0.94 (< 0.01) 2.18 (0.02) 0.93 (0.01) 4.26 (0.01)

τ = 8 0.20 0.93 (0.01) 0.14 (< 0.01)
0.90 0.94 (0.01) 0.14 (< 0.01)

Standard errors are presented in parentheses.

Table 3. Empirical Type I error of the test statistic T based on the Nsim = 1000 MC samples

μ(t, x) = cos(2π t), τ = 0

α = 0.05 α = 0.10 α = 0.15

n = 100 ρ = 0.2 0.08 (0.01) 0.14 (0.01) 0.21 (0.01)
ρ = 0.9 0.09 (0.01) 0.14 (0.01) 0.20 (0.01)

n = 200 ρ = 0.2 0.07 (0.01) 0.13 (0.01) 0.17 (0.01)
ρ = 0.9 0.08 (0.01) 0.12 (0.01) 0.18 (0.01)

n = 300 ρ = 0.2 0.06 (0.01) 0.11 (0.01) 0.16 (0.01)
ρ = 0.9 0.06 (0.01) 0.12 (0.01) 0.16 (0.01)

μ(t, x) = cos(2π t), τ = 8

α = 0.05 α = 0.10 α = 0.15

n = 100 ρ = 0.2 0.07 (0.01) 0.15 (0.01) 0.20 (0.01)
ρ = 0.9 0.08 (0.01) 0.15 (0.01) 0.21 (0.01)

n = 200 ρ = 0.2 0.07 (0.01) 0.13 (0.01) 0.17 (0.01)
ρ = 0.9 0.08 (0.01) 0.12 (0.01) 0.18 (0.01)

n = 300 ρ = 0.2 0.06 (0.01) 0.11 (0.01) 0.16 (0.01)
ρ = 0.9 0.06 (0.01) 0.12 (0.01) 0.16 (0.01)

Standard errors are presented in parentheses.
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Table 3 shows the empirical size of the proposed testing procedure for testing H0 : μ(t, x) = μ0(t),
where μ0(·) is a smooth effect depending on t only. Results indicate that, as sample size increases, the
size of the test gets closer to the corresponding nominal levels. In the simulation settings considered, the
test attains the correct sizes with sample size n ≥ 300, which is the case in our motivating BLSA data
application. Including an additional covariate in the model seems to have no effect on the performance
of the testing procedure. Figure S4 of supplementary material available at Biostatistics online illustrates
the power curves, when the true mean structure deviates from the null hypothesis. It presents the power
as a function of the deviation from the null that involves both t and x, μ(t, x) = 2 cos(2π t) + δ(x/4 − t)3.
Here δ quantifies the departure from the null hypothesis. As expected, for δ > 0 rejection probabilities
increase as the departure from the null hypothesis increases, irrespective of the direction in which it
deviates. As expected, rejection probabilities increase with the sample size. Our investigation indicates
that the strength of the correlation between the functional observations corresponding to the same subject
affect the rejection probability: the weaker the correlation, the larger the power. There is no competitive
testing method available for this null hypothesis. Lastly we conducted a simulation study to evaluate
the robustness of the proposed methods to non-Gaussian error distributions and obtained similar results
with those from the Gaussian case; see Section D of the supplementary material available at Biostatistics
online.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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