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Introduction
In recent years, there has been increasing recognition of the 
need to develop drugs within the context of the specific patient 
biology and disease, in order for therapies to be better regarded 
as safe and effective.1–3 One field that has arisen to address this 
need is Quantitative Systems Pharmacology (QSP), which has 
been increasingly used in the industry and has been gaining 
support from governmental agencies and academic pro-
grams.1–4 Quantitative Systems Pharmacology involves the 
creation of mathematical models to represent the biological 
processes and mechanisms of a disease and its treatment and to 
connect molecular and cellular level processes to measurable 
clinical outcomes. Parameters of the model are informed by a 
combination of different data sources. Understanding the 
underlying structure across model parameters brings us a step 
closer to more rigorous parameter estimation and calibration of 
QSP models, as the number of parameters relative to available 
data presents obstacles to more traditional model fitting para-
digms useful for smaller models.2,5 By including detail in the 
model about the behavior and kinetics of the proteins or path-
ways that will be directly targeted by the treatment, and relat-
ing these mechanisms to clinical outcomes, QSP models are an 
important tool for identifying components of the biological 

background that will alter the efficacy and safety of a drug. In 
this way, QSP models can be used to investigate new targets for 
treatment and suggest potential combination therapies that 
would improve drug response.

Quantitative Systems Pharmacology models have been 
developed in many different disease areas,5 such as dysregula-
tion of cholesterol,6–8 human immunodeficiency virus,9 and 
rheumatoid arthritis.10,11 They have been successfully used to 
inform selection of drug candidates by connecting predictions 
of safety and efficacy or by comparing predicted efficacy of a 
new therapy to the standard of care.3 To fully use this type of 
model, we not only need to understand the biology and response 
to therapy of an “average” patient but also be able to represent 
and explore the spectrum of disease phenotypes present in the 
larger population so that we can predict how these populations 
will differ in their response to therapies of interest.1,5 However, 
the best methodology for generating representative and useful 
virtual subpopulations for a disease is still up for debate.

Variability in patient response to drug can be caused by 
many diverse aspects of a patients’ background biology, which 
are not always well understood; thus it is not straightforward to 
qualify and represent this variability in a QSP model.1,5 Virtual 
patient (VP) constructs in QSP models consist of different 
parameterizations of the model which produce a range of  
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possible responses to therapy reflecting the range of clinical 
responses.12 The approach to creating virtual populations gen-
erally includes the following: selection of parameters which 
have the most impact on model output to individually vary 
across VPs, optimization of these parameters to fit the biologi-
cal range measured in clinical data, and qualification of this 
parameter choice, often by testing the model on a new clinical 
data set.7,9,10,12 The rationale for the initial choice of parame-
ters is somewhat arbitrary and is not often discussed in detail. 
Correlation between parameters can be estimated and included 
in the model10 but is often expected to be 0 or very low,9,10,12 
and the process of including parameter covariance is not sys-
tematically handled for all parameters.

Existing VP methods have led to insights about patient pop-
ulations. For example, by analyzing the VPs that best responded 
to rituximab, Schmidt et al10 identified patients with low IFN-β 
production rates as the best responders, which was in agreement 
with clinical reports. The effectiveness of anti-PCSK9 therapy 
in patients on statin background or with impaired low-density 
lipoprotein receptor (LDLR) function has been analyzed using 
VP methodology previously,7 predicting that patients on statins 
will be better treated than patients with no statin exposure, and 
patients with low functional LDLR will be low responders to 
therapy. Our goal in this work is to build on these existing 
methods of VP creation using parameters identified as having  
a large effect on the model, but to use concepts from control 
theory13 to suggest an avenue for describing structural relation-
ship among parameters and systematically propagating variabil-
ity in identified parameters throughout the system to create VP 
profiles representative of the full range of variability in response 
that we can anticipate from measurably similar patients. This 
will help us not only to predict patient response but also to 
understand the key mechanisms controlling the effectiveness of 
therapy in patient populations.

We demonstrate the use of the Linear-In-Flux-Expressions 
(LIFE) by applying it to a model of cholesterol metabolism, 
described in detail in this issue.14 Many different types of 
patients have high cholesterol levels; patients have different 

comorbidities and respond differently to available therapies. 
Our current work discusses the development of virtual popula-
tions of patients whose cholesterol is effectively lowered by sta-
tin therapy (“statin responders”) or patients who are not treated 
effectively by statin therapy (“statin nonresponders”). We show 
that our approach will create 2 virtual populations with distinct 
responses to anti-PCSK9 therapy, and that within each popu-
lation, patients may have the same baseline values, but response 
to therapy will vary around the mean population value. The 
methodology described in this article was developed with the 
recognition that patients with the same baseline clinical levels 
at the start of a trial may respond in different ways to treat-
ment. We aim not only to optimize the parameters that control 
typical response of a patient to drug but also to understand the 
myriad different ways in which a patient can come to have the 
same clinical levels before treatment. Through this understand-
ing, we can predict how these different biological characteris-
tics will alter the effect of treatment, and how we can better 
differentiate and treat patient subpopulations.

Methods
The LIFE method gives us a systematic way to 
define structural relationships between model 
parameters

We refer to this technique as the “LIFE” method (Figure 1). 
The LIFE method begins by precisely defining a network of 
biochemical reactions (metabolism) as a graph, where the 
nodes are reactants/products of metabolic reactions; the edge 
labels represent reaction rate constants. We describe a system 
of ordinary differential equations (ODEs) which governs the 
quantities of biochemical molecules over time.

In Figure 2, a simple graph of a metabolic network is shown. 
In this network, there are 6 metabolites X x ii= =| { , , , }1 2 6

. 
xi  indicates the time derivative of metabolite, xi . Although 

the system itself can be generally nonlinear, it is linear with 
respect to the flux, and we represent the system as a matrix 
multiplied by a vector of fluxes:
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In Figure 2, the fluxes inside squares ( , , )f f f1 2 3  represent 
constant source terms, whereas those in circles are the rates of 
first-order reactions. Specifically, the amount of x1  (in units of 
nmol) molecules increases at a rate of f1  (in units of nmol/h). 
This gives us the first term on the right-hand side of x1 . The 
other term in x1  is “ x f1 4⋅ ” This term represents the conver-
sion of metabolite x1  into x4  at the rate f 4 . All 6 equations 
 x x1 6,...,  govern the dynamics of our example system. We 

write this system as follows:

X S X f= ⋅( )

S X( )  is a matrix dependent on metabolite values, X . S X( )  is 
referred to as the “stoichiometric matrix.” Traditionally, this 

type of system is modeled differently, whereby the system is 
written X S f X= ⋅( ) , as in Mirzaev and Gunawardena.15

For this example, S X( )  is a 6 10×  matrix. The entries of 
this matrix are either real numbers or algebraic expressions of 
variables (representing metabolite values), and f  is a vector 
composed of all 10 rate constants, called fluxes: ( , , )f f1 10  
(Figure 2). A similar method for modeling biochemical net-
works is explained in the study by Palsson.16

We may write this system of 6 ODEs from our example 
matrix in equation (1). One advantage of writing our system 
this way is we can calculate the null-space for large systems, as 
in the study by Palsson.16 The null-space of S  is a set of flux 
vectors which describe the steady states of a system. We call an 
element of this set f . These vectors are special in the sense 
that the following equation holds for all f :

Figure 1.  Outline of the LIFE algorithm used to model human lipid metabolism and generate VPs. The orange steps indicate steps of the algorithm 

requiring supervision, whereas blue steps can be automated. LIFE indicates Linear-In-Flux-Expressions; VP, virtual patient.
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Figure 2.  Example metabolic network. Each node represents a biomolecule, or metabolite and each edge represent a rate constant, or flux. From this 

graph, we obtain a system of ordinary differential equations that govern metabolite levels over time.

S X f( ) ⋅ = 0 	 (2)

f  in equation (2) leads to steady-state dynamics because the 
metabolite levels do not change over time. For each f , there 
are many configurations of metabolites which will remain in 

steady state. This steady state represents the disease state main-
tained for a patient on standard of care therapy or not on treat-
ment. Regimens such as PCSK9 inhibitor therapy perturb the 
system dynamics and can lead to a new steady state reflecting 
the treatment effect. We calculate the null-space of S( )X  for 
Figure 2 as follows:
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In equation (3), we can see the null-space for our matrix from 
the system shown in Figure 2. Note that there are 4 free varia-
bles, a a a a1 2 3 4, , , , in this null-space for any fixed set of metabo-
lite levels, X. We call these free variables as “core parameters”:
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The advantage of this representation is that we are able to 
identify fluxes in the model that are independent, as well as 
fluxes that are dependent, or calculated from other fluxes. The 
independent subset of fluxes facilitates the identification pro-
cess for parameters, so that fewer parameters must be given 
values based on the literature or available data. Thus, by bound-
ing the core parameters of the null-space, we generate bounds 
for the remaining fluxes. To randomly sample a set of fluxes f , 
we randomly choose a’s that represent the flux f , as shown in 
Figure 2. Choosing all coefficients this way permits us to ran-
domly sample fluxes in the steady state of the system.
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Remark.  The basis (4 vectors) shown in equation (3) is not 
unique; however, we view the null-space of the system with 
respect to these fluxes.

VP generation
Traditional approach for VP generation.  To demonstrate the 
advantages of the LIFE method, we contrast our approach for 
generating VPs to a standard approach used in the literature. In 
both approaches, we begin with a parameterization of the 
model that has been calibrated to the average patient response. 
In the traditional approach, key fluxes that have been identified 
to prominently contribute to variability in the model are sam-
pled to create a patient population. Typically, bounds are placed 
on the parameters of interest based on experiments or guide-
lines in the literature, and some type of optimization or weight-
ing is used to narrow down which parameter values within 
these bounds are feasible based on how simulated trajectories 
compare with clinical data.7,9,12 In this work, we aim to evaluate 
the performance of the LIFE method, rather than to validate 
the QSP model to which this method is applied, so we use a 
simpler traditional VP method for comparison. The traditional 
approach we implement does not use clinical data to tailor 
results but generates all results proscribed by the model based 
on the parameter values given and constrained by physiological 
knowledge of plausible output ranges. We sample key flux val-
ues from lognormal distributions, using the optimized param-
eter values as the mean and the same sigma value (set to 0.25 in 
these simulations). Once the key flux values are chosen, the 
simulation is run to generate VP response.

LIFE method approach.  We again start with the objective of 
introducing variability into the identified key fluxes of the 
model, but do this by directly varying the core fluxes in the 
null-space which control the variability of the key fluxes (equa-
tion (4)). If multiple fluxes in the null-space control variability 
for a key flux, we choose to vary the null-space flux with the 
largest effect. In inducing variability in the null-space flux 
parameters, our goal is to sample randomly from a lognormal 
distribution. To sample from a distribution that reflects vari-
ability in the clinical data, our approach needs to envelope the 
observed variability while remaining within known physiologi-
cal bounds and maintaining positivity for all fluxes.

A sample flux s  is called “suitable” if it satisfies the inequality:

0 5 1 5. .× ≤ ≤ ×f s f 	 (5)

where f  is the average value of the flux we are sampling.
For a parameter, our goal is to find a standard deviation for 

our sampling distribution such that it will generate a “suitable” 
s  with a 95% confidence interval. A standard deviation for a 
parameter is found when all fluxes dependent on the parameter 
generate “suitable” sample at least 95% of the time.

To evaluate the standard deviation of a parameter ( )a1  we use 
a simplified “importance sampling.”17 We choose equally spaced 
values from the 2.5th percentile of the lognormal distribution to 
the 97.5th percentile. From these chosen values, we observe 

which fluxes, which are dependent on a1 , are “suitable” fluxes. 
This is depicted in Figure 3. If the total number of “suitable” 
fluxes dependent on a1  is below 95%, we decrease our standard 
deviation, σ , effectively narrowing the sampling distribution; if 
the number of “suitable” fluxes is above 95%, we increase σ .

For example, in equation (3), the fluxes dependent on a1  are 
  f f f1 4 8, , ,  and f10 .

For each VP, extra bounds may be needed to ensure that all 
fluxes are positive. The 9 fluxes we sample determine other flux 
values to guarantee that our system has a steady state.

The standard deviations in Table 1 do provide more than 
90% confidence that all fluxes are between 0.5 f  and 1 5. f ; 
however, for simple cases, we add several strict bounds to be 
sure that a flux is not sampled in a way that will cause another 
flux to be negative (Supplementary Table 1).

We use this algorithm separately for each of 9 fluxes that we 
intend to sample. This method generated the following stand-
ard errors shown as σ µ/  in Table 1. Once we have determined 
the distributions of each of the core null-space fluxes to use for 
our VP population, we use the following steps to run simula-
tions of the VP population:

1.	 Sample each core null-space flux value from its distribu-
tion to generate values for these fluxes for each VP.

2.	 Calculate values for all fluxes in the model, using the 
VP-specific core flux values, and the constant values for 
the remaining fluxes in the null-space and the steady-
state species values.

3.	 Run the simulation for each VP.

Results
LIFE methodology has 3 main benefits compared 
with the traditional way of defining populations of 
VPs

We have developed the LIFE method to create VP populations 
which are informed by the biological structure represented in 

Figure 3.  An example of “importance sampling.” The blue curve is a 

sampling distribution of a flux f. To estimate the range of fluxes resulting 

from a sample, we calculate fluxes dependent on f using the red tick marks, 

which are equally spaced from 2.5th percentile to the 97.5th percentile.
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the QSP model. Our approach has 3 main methodological 
advantages over the traditional approach (see “Methods” section 
for details on both LIFE and traditional methods for VP gen-
eration). Linear-In-Flux-Expressions first allows us to identify 
a subset of parameters which represent variability along the 
pathways controlling mechanistic phenotypes of disease, rather 
than leaving the choice of parameters to be more empirically 
evaluated. Once parameters are identified, LIFE allows us to 
represent the relationships between parameters so that their 
interdependence is systematically taken into account, and we do 
not need to assume that parameters are independent. Finally, 
when a perturbation is introduced into the system (such as a 

drug), the LIFE method gives us a mechanistic way of under-
standing the impact of this perturbation on the network.

To compare the performance of our method with the tradi-
tional method used to simulate VP response to therapy, we 
apply both approaches to a QSP model of cholesterol metabo-
lism, which encompasses the processes of lipoprotein creation 
and transfer of cholesterol, the role of PCSK9 in regulating 
LDLR levels, and the action of statin or PCSK9 inhibitor ther-
apy in this system.14 In the original development of the model, 
we identified 12 parameters which could be used to define 2 
typical patient profiles (Table 2)—the first represents a patient 
treated effectively by statin therapy (“statin responder”) and the 

Table 1.  Standard error ( σ/µ ; σ = standard deviation, µ = mean) of flux sampling distributions for each VP class.

f1 f2 f3 f4 f5 f6 f7 f8 f9

VP0 1.2545 0.7855 0.2020 0.0466 152.1765 17.5696 0.7536 3.4829 10−6 2.9733

VP1 1.3230 0.8745 0.2910 0.0365 97.6538 12.2185 0.7536 4.4700 10−7 0.6412

VP2 1.2310 0.6585 0.2900 0.0365 97.6538 12.2185 0.7536 7.4850 10−6 0.5211

VP3 1.3170 0.5575 1.0420 0.0361 97.6538 12.2185 0.7389 4.3671 10−6 0.6154

VP4 1.4870 1.1310 0.0117 0.0370 97.6538 12.2185 0.7608 6.4475 10−6 3.7740

Abbreviation: VP, virtual patient.
f1 = rate constant for the trafficking of newly synthesized low-density lipoprotein receptor (LDLR) to the surface of peripheral cells.
f2 = rate constant for the trafficking of newly synthesized LDLR to the surface of hepatocytes.
f3 = rate constant for the clearance of PCSK9 from the plasma.
f4 = PCSK9 LDLR internalization rate in peripheral cells.
f5 = rate constant for the exchange of cholesterol from high-density lipoprotein (HDL) to low-density lipoprotein.
f6 = rate constant for the exchange of cholesterol from HDL to very-low-density lipoprotein.
f7 = PCSK9 LDLR association rate in plasma.
f8 = rate of cholesterol production by hepatocytes.
f9 = rate constant for secretion of biliary cholesterol into the gastrointestinal tract plus bile acid cholesterol secretion rate k.
f10 = PCSK9 intracellular to plasma release rate in hepatocytes. f10 is dependent on the sample flux f3.

Table 2.  Identified and core parameters defining variability in virtual patients.

Name of flux identified to define variability in virtual 
patients

Control flux used to set variability in identified flux

Biliary cholesterol secretion rate Biliary cholesterol secretion rate

Hepatic cholesterol production rate Hepatic cholesterol production rate

HDL to VLDL exchange rate HDL to VLDL exchange rate

HDL to LDL exchange rate HDL to LDL exchange rate

PCSK9 plasma clearance rate PCSK9 plasma clearance rate

Hepatic intracellular production rate of PCSK9 Rate of hepatic secretion of intracellular PCSK9 into plasma

Hepatic intracellular production rate of LDLR Rate of peripheral cell intracellular LDLR trafficking to cell surface

Peripheral cell intracellular production rate of LDLR Rate of hepatic intracellular LDLR trafficking to cell surface

Isolated LDLR degradation rate in hepatic endosomes Rate of hepatic intracellular LDLR trafficking to cell surface

PCSK9-LDLR dissociation rate in endosomes PCSK9-LDLR association rate in plasma and PCSK9-LDLR peripheral 
cell internalization rate

PCSK9-LDLR dissociation rate in plasma PCSK9-LDLR association rate in plasma and PCSK9-LDLR peripheral 
cell internalization rate

Isolated LDLR degradation rate in peripheral cell endosomes Rate of peripheral cell intracellular LDLR trafficking to cell surface

Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; VLDL, very low-density lipoprotein.
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second of which represents a patient who is poorly treated by 
statins (“statin nonresponder”). Although the creation of these 
2 patients allowed us to gain insight into the most important 
individual mechanisms for statin response, these patient pro-
files represented extreme examples of response or nonresponse 
and do not give us an understanding of how a representative 
population of patients with different underlying biological 
characteristics would fall between these extremes. It further did 
not allow us to predict which of these patient populations 
would be best treated by a different therapeutic intervention, 
such as PCSK9 inhibitors, which could be beneficial for 
patients on statin with elevated levels of PCSK9.18 We demon-
strate here how the performance of the traditional vs the LIFE 
virtual population methods compare in generating populations 
of statin responders and nonresponders in terms of the 3 key 
areas described above: identification of key model parameters, 
representation of relationships between parameters, and pre-
diction of the systemic effect of a perturbation to the model.

LIFE methodology can be used to identify 
parameters controlling variability along key 
mechanistic pathways

We represent the model at steady state as a network of “fluxes,” 
representing the rates at which different biological processes 
are conducted. This representation allows us to see the inter-
connections between these processes and to calculate how a 
change in one rate can be compensated by changes in the 
kinetics of other processes to maintain the same steady-state 

biology. The placement of the identified typical patient param-
eters within the network representation of the cholesterol 
model is shown in Figure 4A. Within this network, all inde-
pendent fluxes defining the null-space are on the left side of 
the graph; fluxes past this left side of the graph are defined as a 
linear combination of the independent fluxes. Some subnet-
works can be identified in this depiction, such as the cluster of 
fluxes controlling absorption of dietary cholesterol in the top-
left corner (f1-f9) and the cluster of fluxes related to the anti-
body (in green). Overall, one can see that there are many 
interconnections between different processes in the model and 
that fluxes chosen to define pharmacodynamics (PD) variabil-
ity in VPs are located in different places throughout the net-
work (colored in red, Figure 4A).

Using LIFE, we found the 10 core independent parame-
ters included in the null-space of the system, controlling 
variability in the 12 identified typical patient fluxes (Table 2 
and Figure 4B). Some of the fluxes identified to define VPs 
were confirmed to be core parameters, such as those fluxes 
controlling reverse cholesterol transport (f34 and f35). In other 
instances, core parameters differed from the identified 
parameters and may appear to be less evenly distributed 
across different parts of the network. This is because in sub-
sections of the model without any core parameters, variabil-
ity could be induced through interconnections to other parts 
of the model (Figure 4B).

We also represent the pharmacokinetic (PK) parameters in 
the model as fluxes in part of the larger network (in green, 
Figure 4A). The drug dose is included as a flux and is connected 

Figure 4.  From the original set of identified virtual patient–defining parameters, LIFE method determines a core set of parameters which control this 

variability in the model. The Quantitative Systems Pharmacology model of cholesterol synthesis can be represented as a network of fluxes (f’s). The 

null-space defines a connectivity matrix between all reaction rates (f’s) of the model and the core f’s controlling the variability in the model. (A) highlights (in 

red) the 12 reaction rates originally identified to define virtual patients within this network context. (B) shows core fluxes (in red) used to control variability in 

network approach. The target-mediated drug disposition model of anti-PCSK9 inhibitor is incorporated into the model (green nodes) and is shown in isolation 

in (C). One flux was used to create variability in the PK portion of the model (shown in red). LIFE indicates Linear-In-Flux-Expressions; PK, pharmacokinetics.
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only to the rate of drug absorption (Figure 4C, f72 and f73, 
respectively). The other parameters defining the PK model for 
the anti-PCSK9 antibody (MAb) are dependent on the steady-
state level of PCSK9 but form an interconnected network that 
is independent of the fluxes involved in the PD part of the 
model. We choose to vary the rate of MAb-PCSK9 elimination 
to simulate variability in patient processing of drug (indicated in 
the network as f80 in Figure 4C) which will be propagated 
through to the 2 direct connections of this flux, f74 and f76.

LIFE approach results in less variability in 
simulated outputs because the interdependencies 
among parameters are taken into account. This 
allows for better differentiation of statin responder 
and nonresponder virtual populations

We induced variability in the key model parameters using the 
LIFE method or the traditional VP approach. Lognormal 

distributions were created for each of the identified parameters 
through both methods, but the distributions were noticeably 
different for some parameters (Figure 5A). The LIFE method 
generates variability in the values of core parameters that gov-
ern the variability in the original 12 VP fluxes rather than the 
original parameters themselves (Table 2, Figure 5B), which 
contributes to the different distributions seen in 7 of the iden-
tified VP parameters which are not directly varied in LIFE 
(Figure 5A, bottom row and last 3 plots of middle row). For the 
other 5 identified VP parameters, particularly for the bile cho-
lesterol secretion, hepatic cholesterol production, and PCSK9 
plasma clearance rates (Figure 5B), distributions generated by 
LIFE are significantly narrower (10-fold lower in range) due to 
restrictions on what parameter values are physiologically rele-
vant when parameter relationships are considered (distribution 
parameters given in Table 1 and further constraints imposed to 
ensure positivity of all fluxes given in Supplementary Table 1). 

Figure 5.  Both LIFE and traditional VP methods generate variability around parameters originally identified to define VPs. However, the LIFE method also 

creates variability in other key model parameters, and it generates different parameter distributions for identified parameters. Parameter distributions were 

generated either by individually varying identified VP-defining fluxes (blue, cyan) or using LIFE method (red, yellow) to vary core fluxes controlling 

variability in the network and to calculate values for parameters dependent on these fluxes. Plots show overlaid histograms of the parameter value 

distributions generated with both approaches for (A) identified VP-defining parameters, defining the statin responder population and (B) core parameters 

controlling variability in the model for the statin responder population. In (C and D), identified VP-defining parameter distributions are shown for (C) the 

LIFE method, using parameter values for a typical statin responder (red) vs nonresponder (yellow) patient and for (D) the traditional method, using 

parameter values for a typical statin responder (cyan) vs nonresponder (blue) patient. Unstable or unphysiological simulations (with final LDL > 300 mg/dL) 

were excluded from plots. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LIFE, Linear-In-

Flux-Expressions; VLDL, very low-density lipoprotein.
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This is of key importance in creating virtual populations which 
distinguish the statin responder and nonresponder virtual pop-
ulations. Because of the very limited range for the bile choles-
terol secretion rate and hepatic cholesterol production rate 
generated by the LIFE method, we can clearly distinguish that 
the distinct values for these parameters define the main differ-
ence between statin responders and nonresponders across the 
identified fluxes (Figure 5C, top left plots). This distinction is 
strongly reduced in the traditional VP method because of the 
uniformly wide distributions generated for all parameters 
(Figure 5D). Using the traditional approach, the distribution of 
bile cholesterol secretion rates is nearly identical between statin 
responders and nonresponders, and the intersection between 
distributions generated for hepatic cholesterol production, and 
hepatic and peripheral LDLR production rates is noticeably 
larger in the traditional method. Comparing the virtual popu-
lation parameterizations generated by these 2 methods (Figure 
5C and D), we can predict that the distinct responses of statin 
responder and nonresponder subpopulations will not be well 
preserved using the traditional approach.

To gain insight from these parameterizations of the model 
into how each patient will react to a PCSK9 inhibitor therapy, 
we can look at parameters altered in the production and clear-
ance pathways that are most important in controlling response 
to the new therapy (Figure 6). Using the traditional individual 
fluxes approach, we see that some of the identified parameters 
lie in the PCSK9 and low-density lipoprotein (LDL) path-
ways, including PCSK9 plasma clearance, PCSK9 intracellular 
production, PCSK9-LDLR dissociation, and high-density 
lipoprotein (HDL) to LDL exchange rate, and will likely gen-
erate some variability in response to this new therapy. In the 
LIFE method, many of the core parameters used to control 
variability in the identified parameters are in the PCSK9/LDL 
pathways themselves, such as PCSK9-LDLR peripheral 
uptake (Figure 6A, bottom-right plot). In addition to these 
parameters, we see that variability has been propagated to all 
other parameters involved in PCSK9 production and clearance 
in the model using the LIFE method (Figure 6A), suggesting 
that PCSK9 biology is highly involved in statin response and 
that there is likely to be a variability in response to PCSK9 
inhibitor therapy as well. Using LIFE, there is variability gen-
erated for 5 out of 8 parameters controlling LDL flux, whereas 
only HDL to LDL exchange rate is varied in the traditional 
approach (Figure 6B).

In the PK portion of the model, the same flux was used in 
both the traditional and LIFE VP approaches, the MAb-
PCSK9 elimination rate (Figure 6C). However, in the LIFE 
method, variability was generated in 2 additional fluxes of the 
PK model due to connections across the network, representing 
relationships between parameters (Figure 6C). The implemen-
tation of the target-mediated drug disposition (TMDD) 
model in the LIFE framework and propagation of variability 
through parameters that will affect both the model PK (through 

MAb) and PD (through PCSK9) shows that the LIFE method 
can be used not only to represent relationships within the PD 
vs PK compartment but also to represent covariance of param-
eters across these categories.

LIFE prediction of the effect of PCSK9 inhibitor 
treatment on the biological network allows us to 
differentiate variability in patient response from 
variability in baseline values and to produce VPs 
who have reduced variability in key outputs of the 
model

Although the traditional approach generates patient profiles 
with different baseline levels of lipoproteins and PCSK9 which 
can then be weighted or optimized based on the baseline dis-
tribution of patients in clinical trials, the LIFE method allows 
us to create a population of patients with the same baseline 
levels of lipoproteins and PCSK9, but with fundamentally dif-
ferent biology, based on the structure of the network repre-
sented in the model itself. We used both the traditional and 
LIFE approaches, for both statin responder and statin nonre-
sponder patients to simulate population response to PCSK9 
inhibitor treatment (Figure 7). Subcutaneous administration of 
a 150-mg dose of the PCSK9 inhibitor was simulated every 
2 weeks from baseline to 90 weeks. At this point, outputs of the 
LIFE method appeared to be in a steady state (on drug), but 
there were some continuing downward trends in the very-low-
density lipoprotein (VLDL) levels of VPs created by the tradi-
tional approach. Overall trends predicted by both approaches 
were similar; MAb therapy had an effect on all VPs, but of 
varying degrees. However, there were some key differences in 
the simulated outputs from virtual populations created under 
the 2 approaches.

The traditional approach consistently inflated variability 
predicted for lipoprotein outputs over the LIFE methodology. 
This is readily apparent by comparing predictions of HDL 
using the LIFE approach (Figure 7D and L) and the tradi-
tional approach (Figure 7H and P). The LIFE approach pre-
dicts a very small level of variability in HDL throughout 
treatment, whereas the traditional approach creates a virtual 
population where the standard deviation of the distribution is 
10% of the mean value. This is likely due to the variability 
added to parameters controlling transfer of cholesterol from 
HDL to LDL and VLDL through the reverse cholesterol 
transport (RCT) pathway (Figures 5A and B and 6B). In the 
traditional approach, this variability is not compensated for by 
changes to any other parameters in the model and has a dispro-
portionate effect on HDL at baseline, which contributes to the 
wide HDL variability throughout the simulation. In contrast, 
the LIFE approach imposes variability across RCT-related 
parameters to balance out the HDL level (Figure 6B). Larger 
variability can also be seen in the populations predicted for 
LDL and VLDL using the traditional approach (Figure 7F, G, 
N, and O). The final standard deviation across VP simulations 
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Figure 6.  The different VP approaches generate different levels of variability in key pathways of interest. Virtual populations based on the statin 

responder profile were created using the LIFE (red) and traditional (cyan) VP methods. Variability generated in (A) parameters controlling synthesis and 

clearance of PCSK9, (B) parameters controlling synthesis and clearance of LDL, and (C) pharmacokinetics-related parameters is shown. Unstable or 

unphysiological simulations (final LDL > 300 mg/dL) were excluded from plots. LDL indicates low-density lipoprotein; LDLR, low-density lipoprotein 

receptor; LIFE, Linear-In-Flux-Expressions, VP, virtual patient.
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of LDL is 4.6 times larger (58.56 vs 12.62) using the tradi-
tional approach compared with the LIFE approach, for the 
statin responder population, and the standard deviation of 
VLDL is 3.9 times larger (3.17 vs 0.82). Again, this is a com-
bination of variability at baseline and in response to drug. More 
VPs created this way develop unrealistic levels of LDL over 
time compared with the LIFE approach: 0 statin responder 
and 2 statin nonresponder VPs had final LDL levels > 300 mg/
dL using the LIFE approach compared with 38 and 13 VPs 
using the first approach.

Overall, the LIFE approach allows us to better distinguish 
between the statin responder and nonresponder populations 
once a drug is given. The populations created by the traditional 
approach have a lot of variability in their response to drug, to 
the point where these 2 populations cannot be clearly distin-
guished. The HDL and VLDL responses seem to be nearly the 
same in both VP populations, and the range of LDL levels pre-
dicted for the statin nonresponder population by the traditional 
approach seems to correspond to the LDL in a subset of the 

statin responder population (Figure 7N to P vs F to H). Using 
the LIFE methodology, the population responses can be more 
clearly distinguished for statin responder and nonresponder 
populations. The LDL and VLDL mean responses are observ-
ably higher for statin responders after MAb treatment, and 
there is little overlap in the ranges of responses for both VPs 
(Figure 7B and C vs J and K). As we noted, the overlap between 
parameter distributions in statin responders and nonrespond-
ers generated by the traditional approach makes the parameter-
izations of these virtual populations less distinguishable and 
thus generates patient responses that are not distinct (Figure 
5D vs C).

Low-density lipoprotein receptor expression level is key to 
the efficacy of PCSK9 inhibitor therapy. By examining LDLR 
levels at the cell surface and degradation of LDLR in both 
approaches, we can get insight into the mechanism of action of 
the therapy. We find that the statin nonresponder population 
gains a higher level of LDLR at the cell surface with treatment 
than the statin responder population (Figure 8A, D, G, and J) 

Figure 7.  LIFE methodology minimizes variability by taking covariance between parameters into account and creates populations with the same baseline 

values but different drug responses. Simulations were run to simulate 90 weeks of once every two weeks dosing with 150-mg anti-PCSK9 antibody. 

Predicted outputs are shown for (A-H) statin responder and (I-P) nonresponder populations, created by fluxes using the traditional or using the LIFE 

network approach. Plots show the mean (in blue) ± SD (dotted line) of the virtual patient responses generated from each simulation of (A, E, I, and M) 

PCSK9, (B, F, J, and N) LDL, (C, G, K, and O) VLDL, and (D, H, L, and P) HDL. Unstable or unphysiological simulations (with final LDL > 300 mg/dL) were 

excluded from plots. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LIFE, Linear-In-Flux-

Expressions; VLDL, very low-density lipoprotein.
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Figure 8.  Model predictions about LDLR again show increased variability predicted from simulations of a virtual population created using the traditional 

approach compared with the LIFE method. Simulations were run to simulate 90 weeks of once every two weeks dosing with 150-mg anti-PCSK9 antibody. 

Predicted outputs are shown for (A-F) statin responder and (G-L) nonresponder populations, created with (A-C, G-I) the LIFE approach or (D-F, J-L) the 

traditional approach. Plots of hepatic LDLR at the cell surface (A, D, G, and J) show the mean (in blue) ± SD of the VP responses generated from each 

simulation. Plots of the amount of LDLR degraded in the endosome per hour when isolated (B, E, H, and K) or in complex with PCSK9 (C, F, I, and L) 

show time courses for each VP. Unstable or unphysiological simulations (with final LDL > 300 mg/dL) were excluded from plots. LDL indicates low-density 

lipoprotein; LDLR, low-density lipoprotein receptor; LIFE, Linear-In-Flux-Expressions; VP, virtual patient.

in accordance with the better response of this population to 
PCSK9 inhibitor therapy. In examining the degradation of 
LDLR in endosomes when it is alone or in complex with 
PCSK9 (Figure 8B, C, E, F, H, I, K, and L), we find that there 
is a similar range of LDLR degraded independently of PCSK9 
for both VP populations, but that there is more variability in 
the amount of LDLR degraded in complex with PCSK9 over 
time for statin nonresponders using both approaches. For both 
populations, again, more variability is present in simulations 
using the traditional approach than in simulations from LIFE.

Finally, we can see the contribution of PK vs PD variability 
throughout the system using the LIFE method. We ran simula-
tions of the model for 90 weeks of biweekly treatment with a 
150-mg dose of the antibody. We compared outputs from simu-
lations which included only PD variability with outputs where 
both PK and PD variability was used (Figure 9) and found that 
the additional influence of PK variability was evident in some 
but not all outputs. Because the PK of the antibody are 

represented as a TMDD model and are dependent on the levels 
of PCSK9 in plasma, there is some variability in the MAb-
PCSK9 compound in the simulation where only PD variability 
is used (Figure 9A and D). This variability is noticeably 
enhanced when the PK variability is added (Figure 9G and J). 
Other MAb outputs from the model, such as free MAb in the 
plasma, did not noticeably change when PK variability was 
added (data not shown). Similarly, for lipoproteins, the effect of 
the included PK was not always noticeable, but in PCSK9, we 
noted an increase in the variability of predicted levels when PK 
was added (Figure 9H, K, I, and L compared with 9B, E, C, and 
F). Moreover, as we have consistently showed, the simulations 
of the traditional VP approach have much larger variability 
compared with the LIFE approach in both PK and PD simula-
tions, inflating the contribution of PD variability on PK outputs 
such as MAb-PCSK9 concentration (Figure 9D) and making it 
more difficult to distinguish variability in response to treatment 
from variability in the original population.
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Figure 9.  Key model outputs are influenced by both PK and PD variability. Simulations were run after using either the traditional or the LIFE approach to 

generate parameter distributions for use in the model. Simulations were based on the typical statin responder profile. Parameters varied included (A-F) 

PD parameters only or (G-L) PD and PK parameters. The simulation was run over a period of 90 weeks. 2.5 stable cycles once every two weeks MAb 

dosing are shown, for simulated levels of (A, D, G, and J) MAb-PCSK9 in plasma and (B-C, E-F, H-I, and K-L) PCSK9 in plasma. The mean (blue) ± SD 

(dotted black lines) values are shown in plots (A-B, D-E, G-H, and J-K), whereas individual virtual patient predictions are overlaid on the same plot in (C, 

F, I, and L). Unstable or unphysiological simulations (with final LDL > 300 mg/dL) were excluded from plots. LDL indicates low-density lipoprotein; LIFE, 

Linear-In-Flux-Expressions; PD, pharmacodynamics; PK, pharmacokinetics.

Discussion
We present a VP methodology which leverages the QSP model 
structure to derive relationships among parameters and uses 
these relationships to create VP populations, thus systemati-
cally taking into account the interdependence of parameters in 
the model. We show a method for sampling parameter values, 
which creates distributions for each parameter of interest that 
maximizes variability in the parameter space while constrain-
ing fluxes in the null-space to produce biologically reasonable 
values for all fluxes in the model. This will ensure that most of 
the simulations will produce results within the physiological 
range. The LIFE method propagates variability in key model 
parameters to other fluxes in the model, generating more vari-
ability in pathways of interest. These pathways can be analyzed 
with a view to a new therapeutic intervention, to predict the 
range of responses expected to a different type of treatment. 
Our methodology generates VPs with tighter ranges of 

variability around model outputs than the traditional method 
of VP creation, which uniformly predicts large variance in all 
model outputs. In this way, our method better maintains sepa-
ration between distinct patient populations and allows us to see 
clearly what outputs will differ across VPs in response to treat-
ment and which should not. We show that variability in both 
PK and PD parameters can be incorporated using this meth-
odology so that interdependence of PK and PD parameters can 
be taken into account as well. This representation will allow us 
to systematically analyze whether patient response is due to 
properties of the drug that can be altered to make treatment 
more effective or whether there is an underlying biological 
cause of nonresponsiveness. Finally, it is important to note that 
VPs generated by the LIFE methodology can have the same 
baseline values, but different responses to drug, because drug 
response is dictated by the underlying processes which give rise 
to this state. By enabling us to systematically identify and 
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analyze the factors controlling the different responses of 
patients with similar baseline clinical measurements to treat-
ment, the LIFE method enables us to better understand what 
clinical data are needed to accurately identify drug responders.

A VP consists of a set of specific parameter values which 
represent different kinetic rates in a patient’s biology. To deter-
mine how the parameter values should vary across VPs, differ-
ent approaches are used. Generally, a typical value or an upper 
and lower bound is set for each parameter based on what is 
known in the literature, and each parameter is sampled from a 
normal or uniform distribution within these bounds.7,9,12 From 
this initial set of VPs, a subset is selected by comparing model 
predictions for these VPs with clinical baseline or time course 
data of key outputs and using a weighting scheme such as prev-
alence weighting19 to select patients who replicate the distribu-
tion of this data.7,9,10,12 Thus, the distributions of parameters 
can be examined after the virtual population is defined, but 
there is no fundamental understanding of what the distribution 
and covariance of parameters should be. Using the LIFE meth-
odology, we sample parameters in a directed way from a log-
normal distribution and calculate the feasibility of the resulting 
parameter set by considering the values of other parameters 
generated from the core fluxes. We use a cost function which 
considers feasibility of the parameter set generated rather than 
the feasibility of the baseline patient values because we know 
that the baseline values will be equal to the steady-state values 
that we put into the LIFE method. Using this procedure, we 
demonstrated how the LIFE method can be useful for discern-
ing the differential impact of key parameter values and treat-
ment responses in distinct VP populations.

The LIFE method allows us to systematically include the 
structural relationship of parameters in the model by represent-
ing the relationships between the parameters at steady state. 
This representation tells us which parameters can be indepen-
dently varied, and how these independent fluxes will propagate 
variability to other parts of the model through these relation-
ships. This way of representing interdependence in the model 
is an advantage over current VP methodologies where this 
interdependence must be empirically explored for sets of 
parameters9,12 or potentially estimated from the data set.10 The 
LIFE method allows the interdependence to be an intrinsic 
part of the parameter calculation. As shown in Figures 7 to 9, 
this results in outputs which have more realistic variability. 
This also helps to reduce the number of parameters in the 
model which can be used to generate variability in a VP 
response, better informing the initial choice of parameters to 
define a VP. Finally, it gives us mechanistic insight into how 
clinical steady-state levels will change based on different 
parameter values or on treatment with a new drug before we 
run the model.

Extensive work has been done in the field of population PK 
to model interindividual variability of parameters in the model 
by fitting the variance and covariance of PK and simple PD 

parameters to clinical data.20 Many VP cohorts developed from 
QSP models are created by varying PD parameters affecting 
intrinsic patient biology, without considering PK variability.9,10 
The work by Gadkar et al7 simulates variability in both PD and 
PK parameters using the prevalence weighting method, but 
covariance between these parameters is not mentioned. The 
LIFE methodology is a novel approach to enable modeling of 
variability in PK and mechanistically specific PD parameters, 
where interdependence among these parameters is handled in 
the same coherent way as interdependence among PD param-
eters. This approach more accurately represents the different 
factors that can alter patient response. It is especially important 
for TMDD models, such as the one used for the anti-PCSK9 
antibody in this work, because the clearance and transport of 
the drug are inextricably linked to the target.

Virtual patient methods in the literature focus on generat-
ing patients with a range of initial output values that are similar 
to the clinical range and distribution for each output.7,12 This 
approach seeks to replicate the range of patients who enter into 
a trial, with different baseline levels across patients for key 
parameters. The LIFE method can be used to create popula-
tion of subjects with a distribution of baseline measurements. 
However, the LIFE method was developed with the knowl-
edge that patients with the same baseline levels may have vastly 
different responses to drug, meaning that the LDL and HDL 
of a patient at baseline are not enough to predict the efficacy of 
treatment for this patient. The LIFE method enables us to 
advance mechanistic hypotheses on the factors driving this 
variable drug response. We can create populations with the 
same baseline values but different biology to analyze the effect 
of biological and PK variability on treatment outcome. Previous 
work by Hosseini and MacGabhann9 shows some analysis of 
VPs with different parameterizations but a similar time course 
of disease progression, which speaks to this idea. Our method-
ology gives the user an analytical representation of this set of 
patients and an understanding of how they relate so that we 
can efficiently generate a population of these VPs using the 
flux relationship structure rather than numerically determining 
individual patient profiles empirically. This is of key impor-
tance in identifying responder subpopulations so that we can 
better target trial populations to include patients who have a 
higher probability of being treated by drug because of their 
underlying biology. This approach can also be connected to a 
disease progression model, to help us predict how patients with 
the same clinical end point levels in the short term will have 
different long-term outcomes.

We have demonstrated here the ability of the LIFE method 
to create VP populations and the advantages that it has over 
existing virtual population development methods, including 
more restricted variability in key identified parameters, 
enhanced variability in other parameters in relevant pathways, 
and more applicable range of therapeutic outcomes when both 
PK and PD parameters are varied. Our ultimate goal is to use 
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this method to match clinical data for different patient sub-
groups and to hypothesize mechanistic characteristics likely to 
lead a patient to best respond to therapy. Existing methods for 
VP generation have been used to this effect,7,9,10 and we would 
like to see what additional information can come from our 
understanding of the model as a system of connected fluxes. 
Our method can give insight into key parameters to use in 
optimizing parameter values and in generating VPs. In the 
QSP model presented here, from an original set of 101 param-
eters, our method generates 49 core fluxes which are indepen-
dently responsible for variability in the model and can be used 
for VP creation. We would like to further develop our method 
to determine from these 49 parameters, which are most impor-
tant to vary, and how many parameters are necessary to encom-
pass all variability seen in the clinical data. We believe that the 
LIFE method can make a significant contribution toward 
improving the efficiency and robustness of existing VP meth-
ods and ultimately allowing for more comprehensive QSP 
simulators that advance mechanistic hypotheses ascertaining a 
drug’s mechanism of action, and disease mechanisms commen-
surate with drug mechanism of action, linking the right drug to 
the right patient.
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