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SUMMARY

This paper is motivated by the recent interest in the analysis of high-dimensional microbiome data. A key
feature of these data is the presence of “structural zeros” which are microbes missing from an observation
vector due to an underlying biological process and not due to error in measurement. Typical notions of
missingness are unable to model these structural zeros. We define a general framework which allows for
structural zeros in the model and propose methods of estimating sparse high-dimensional covariance and
precision matrices under this setup. We establish error bounds in the spectral and Frobenius norms for the
proposed estimators and empirically verify them with a simulation study. The proposed methodology is
illustrated by applying it to the global gut microbiome data of Yatsunenko and others (2012. Human gut
microbiome viewed across age and geography. Nature 486, 222–227). Using our methodology we classify
subjects according to the geographical location on the basis of their gut microbiome.
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1. INTRODUCTION

With the advancement of high-throughput technologies it is now common to encounter high-dimensional
data where the number of parameters d exceeds the sample size n. One of many such examples is the
human microbiome data obtained by the 16s rRNA sequencing technology. The resulting data, known as
operational taxonomic units (OTUs), represent counts of thousands of microbial taxa (Mandal and others,
2015). In this setting it is often of interest to investigate relationships among the microbes to understand
their effects on health outcomes. These relationships can in turn be used to predict the health status of an
individual based on his/her microbial composition.
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Many such objectives can be achieved via the estimation of the covariance matrix (�) or its inverse, the
precision matrix (� = �−1), which characterize the dependence or the conditional dependence structure
between variables, respectively. In the high-dimensional setting, estimation of � and � has been discussed
extensively in the literature and the existing literature can be broadly classified into two categories, the
first approach involves estimation of the precision matrix by exploiting its natural sparsity in comparison
to the covariance matrix (Friedman and others, 2008; Rothman, Bickel and others, 2009; Cai and others,
2011). A limitation of this approach is that it does not apply to low-rank matrices � since the precision
matrix does not exist in this case. The second popular approach is to estimate � by assuming that � is
itself sparse. One of several methods for this purpose is to threshold each element of the sample covariance
matrix (Bickel and Levina, 2008; Rothman, Levina and others, 2009).

The current literature assumes the availability of independent and identically distributed (i.i.d.) copies
of the vector X = (X1, X2, ..., Xd)

T whose distribution is Gaussian or more generally sub-Gaussian with
μ and � as the d-dimensional mean vector and covariance matrix, respectively. Note that a real-valued
random variable (r.v.) X1 is said to be sub-Gaussian if there exists a b > 0 such that for every t ∈ R, one
has EetX1 ≤ eb2t2/2.

In contrast to typical high-dimensional data, not all variables (i.e. microbes) are observed in a sample
of microbiome data. Thus if X represents a vector of abundances of d microbes in a specimen, then not
all components of X may be observed. We refer to this missingness as structural zeros, and it is due to the
underlying biology and not due to error in measurement or values below the minimum detection level.
For example, it is known that the bacterial genus Bacteroides is prevalent in the human gut when the
associated diet is high protein/fat diet, whereas it may not be present otherwise, e.g. carbohydrate rich
diet. The total abundance of such bacteria is coded as 0 counts in the observational vector X.

The missing structure required to model structural zeros is more general than typical notions of missing-
ness in the literature. More precisely, in the classical notions of missingness, such as missing completely
at random or missing at random (MAR), it is assumed that in place of X we observe a surrogate vec-
tor U = X ⊕ W, where ⊕ represents a component-wise product and W is a d-dimensional vector
of independent Bernoulli r.v.’s. In effect, not all components of X are observed in U. For example,
U = (0, 0, X3, .., Xd)

T corresponds to the case where the first two components of X = (X1, ..., Xd)
T are

not observed in U with W = (0, 0, 1, ..., 1)T . In this example, although X1 and X2 are absent in U, they
still influence the distribution of the remaining components X3, .., Xd through the underlying dependence
structure of � and are only hidden by the corresponding multiplicative Bernoulli noise vector W. In
contrast, for the case of structural zeros the observed vector itself is X = (0, 0, X3.., Xp), i.e. the first two
components are truly absent from the observation and thus the missing components should not influence
the distribution of the remaining components. It should also be noted from this example that in the latter
case, implementing classical methods of imputation under such conditions would be a logical error due
to the definition of a structural zero.

In this paper we introduce a framework which allows for structural zeros in the model and discuss
consistent methods of estimating sparse high-dimensional covariance and precision matrices. We establish
consistency in estimation of the proposed methodology and empirically support it with a simulation study.
We also apply our methodology to classify observations to geographical locations based on the global
human gut microbiome data of Yatsunenko and others (2012).

Some work related to ours in the literature is that of Kurkland and Heagerty (2005) who provide a
regression setting for the analysis of longitudinal data truncated by deaths, here they make a similar
distinction between zeros in response variable due to an individual dropping out of the study or due to
death, in this context the zero due to death can be described as a structural zero in our definition. Estimation
of covariance and precision matrices in the traditional missing values setting has also been discussed in
the literature (Loh and Wainwright, 2012; Lounici, 2014; Kaul and others, 2016). As noted above and
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as shall become more apparent in the following sections, our model allows for a more general notion of
missingness while assuming weaker conditions in comparison to typical notions of missingness.

2. NOTATIONS AND FRAMEWORK

For any matrix A = [aij] define the Sup, Frobenius and spectral norms as ‖A‖∞ = maxi,j |aij|, ‖A‖F =√∑
i,j a2

ij and ‖A‖2 = sup||x||2≤1 ||Ax||E , respectively, where ‖· ‖E represents the usual Euclidean norm of

a vector. We shall also require the matrix �1 norm, ‖A‖1 = maxj
∑

i |aij| and the elementwise �1 norm,
‖A‖L1 = ∑

i,j |aij|. The notation A � 0 indicates the matrix A is positive definite and symbols c0, c1,
and c2 represent generic constants which may change according to the context but are independent of any
model parameters. The notation an = O(bn) represents that an ≤ cbn for some constant c < ∞ and n large
enough. For any set of indices S, its cardinality is denoted by |S| and for a subset A ⊆ {1, 2, · · · , d}, bA

denotes the vector of components of b with indices in A. Finally we partition a d × d matrix � as follows:

� =
(

�AA �AAc

�AcA �AcAc

)
, where Ac denotes the compliment set of A. (2.1)

We begin by describing a framework that characterizes structural zeros. As stated in the previous
section, these structural zeros represent components that are biologically absent in the specimen. Thus,
the framework should allow for the distribution of the specimen to be determined by only the observed
components. For this purpose, let S be the sample space of possible configurations of missing components
be as follows.

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, . . . , 1),

(0, 1, . . . , 1), (1, 0, . . . , 1), . . . , (1, . . . , 1, 0)

(0, 0, 1, ...1), (0, 1, 0.., 1), . . . , (1, . . . , 0, 0)

.

.

(0, 0, . . . , 1), (0, 0, . . . , 1, 0), . . . , (1, 0, ...0)

. (2.2)

Here 0, 1 correspond to the cases where a component is unobserved or observed in the sample, respec-
tively. We represent each of the above 2d − 1 events of the sample space by Configuration (Config.) ( j),
j = 1, 2, . . . , 2d − 1, in the order written in (2.2). For example, Config. (1) is the case where all compo-
nents are observed and Config. (2d −1) corresponds to the configuration where only the first component is
observed.Assume for the ith sample, the missing structure is generated by independent r.v.’s Mi, 1 ≤ i ≤ n,
with sample space described in (2.2).

In many applications, including the analysis of microbiome data, it may be unreasonable to assume
that the missingness is generated by identically distributed r.v.’s since this distribution function may be
influenced by factors or covariates such as geographical location, age, race, and gender of the subject. We
allow for this flexibility by defining the distribution of the r.v.’s Mi, 1 ≤ i ≤ n as follows,

P
(

Mi is in Config. ( j)
)

= δi
( j), 0 ≤ δi

( j) ≤ 1, 1 ≤ j ≤ 2d − 1. (2.3)

Under this general definition each sample may have a different probability of each configuration. This
feature of allowing the missingness to be acting independently but not identically is reminiscent of the
MAR structure. We now proceed to define the conditional distribution of the observed components of a
specimen.
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Let μ = (μ1, ..., μd)
T ∈ R

d and � = [σij]d×d be a d-dimensional vector and positive definite matrix,
respectively. For the ith subject, with missing configuration given by the r.v. Mi, we denote the observed
components by the index set

Ai = {j, Mij = 1}. (2.4)

Note that the index set Ai is a random set which is determined by the r.v. Mi. Now assume that conditioned
on Mi, the components of Xi with indices in the index set Ai jointly follow a Gaussian distribution with
mean and covariance being the corresponding sub-vector of μ and sub-matrix of �, respectively, i.e. for
any x ∈ R

d ,

P
(

XAi ≤ xAi

∣∣∣Mi

)
= �Ai (xAi ), (2.5)

where �Ai represents the Gaussian distribution function with mean μAi
and covariance matrix �AiAi . For

example let Mi = (1, 1, 0, . . . , 0), then the observed vector is Xi = (Xi1, Xi2, 0, . . . , 0) with the conditional

distribution of the observed components as P
(

Xi1 ≤ xi1, Xi2 ≤ xi2

∣∣∣Mi

)
= �(xi1, xi2). This completes the

description of the distributional structure assumed in this paper. Under this definition, the zero components
of an observation do not influence the distribution of the nonzero components, thus characterizing what
we refer to as structural zeros.

To proceed further we shall require the following definitions. For all 1 ≤ l, m ≤ d, let n(l) = {i : l ∈
Ai, 1 ≤ i ≤ n}, and n(l, m) = {i : l, m ∈ Ai , 1 ≤ i ≤ n} be the number of subjects where lth component
is observed and the number of subjects where both lth and mth components are observed, respectively.
Note that these are random quantities determined by the random set Ai which in turn is determined by the
r.v.’s Mi, 1 ≤ i ≤ n. Also define for each observation i = 1, 2, . . . , n, and the indices 1 ≤ l, m ≤ d, the
collections,

Ci(l) = {
1 ≤ j ≤ 2d − 1, component l is present in Config. ( j) in r.v. Mi

}
Ci(l, m) = {1 ≤ j ≤ 2d − 1, components l and m are present in Config. ( j) in r.v. Mi

}

In the sequel we make the following additional assumption over the missing structure.

(A1)There exists a constant δmin > 0 such that for any 1 ≤ l, m ≤ d,

(i)
1

n

n∑
i=1

∑
j∈Ci(l)

δi
( j) = δ(l) > δmin and (ii)

1

n

n∑
i=1

∑
j∈Ci(l,m)

δi
( j) = δ(l, m) > δmin.

The condition (A1) is a mild assumption on the missing structure. If the r.v.’s Mi, 1 ≤ i ≤ n are assumed to
be i.i.d., then (A1)(i) requires that each component is present in an observation with a nonzero probability,
i.e.

∑
j∈C(l) δ( j) > δmin, and (A1)(ii) requires that every pair of components are present in each observation

vector with a nonzero probability, i.e.
∑

j∈C(l,m) δ( j) > δmin.

3. METHODOLOGY

In this section we discuss methodologies to estimate the covariance and precision matrices. First we
provide a �1 minimization approach to estimate the precision matrix �. Then a generalized thresholding
procedure to estimate the covariance matrix �. We shall provide error bounds for estimates obtained
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by these methods that hold with asymptotic probability 1, unconditional on the missing structure. These
error bounds shall also allow for the dimension d to increase exponentially with the sample size, thus
allowing for high dimensions. To describe our methodology we require the following definitions. For each
1 ≤ l, m ≤ d let

μ̂l = 1

|n(l)|
∑
i∈n(l)

Xil , 1 ≤ l ≤ d (3.1)

and define a “re-normalized sample covariance” matrix �̂ as follows,

σ̂lm =
∑

i∈n(l,m)

(Xil − μ̂l)(Xim − μ̂m)
/

|n(l, m)| and �̂ = [
σ̂lm

]
l,m=1,..,d

. (3.2)

The matrix �̂ forms an initial estimator for obtaining consistent estimates of the covariance matrix and
the precision matrices in the high-dimensional setting. The following lemma provides an approximation
result between �̂ and � in the Sup norm and shall be key to providing convergence rates of the estimators
to follow later in this section.

Lemma 3.1 Suppose the observations Xi, 1 ≤ i ≤ n follow the distribution (2.5) and that the missing
structure satisfies condition (A1). In addition assume that the variance components of the covariance
matrix � are bounded above, i.e. σjj ≤ σx, 1 ≤ j ≤ p, for a constant σx < ∞. Then with probability at
least 1 − c1 exp(−c2 log d),

∥∥�̂ − �
∥∥

∞ ≤ c0
σ 2

x

δmin

√
log d

n
, (3.3)

for some universal constant c0 < ∞.

To appreciate this result note that the re-normalized sample covariance matrix �̂ is defined through
the r.v.’s Xi, 1 ≤ i ≤ n, whose distribution is in turn defined conditionally of the missing structure Mi.
However, Lemma 3.1 provides an unconditional probability bound on the desired random quantity with
only a mild assumption (A1) on the missing structure. The proof of this result relies on the observation
that |n(l, m)|, 1 ≤ l, m ≤ d is a sum of independent r.v.’s, i.e. |n(l, m)| = ∑n

i=1 Iilm where Iilm = 1
[
Mil =

1 & Mim = 1
]

for every 1 ≤ l, m ≤ d. Here 1 represents the indicator function. This observation allows the
applicability of the Hoeffding’s inequality (Hoeffding, 1963) in combination with conditional expectation
arguments. The details of the proof are provided in the supplementary material available at Biostatistics
online. To proceed with the estimation of � and � we require these matrices to belong to the following
class of approximately sparse matrices.

(A2)Assume that the covariance and precision matrices belong to the following classes of matrices,
respectively: define for 0 ≤ q < 1,

(i) M(q, so(d), K) =
{
� : σii ≤ K , max

1≤i≤d

d∑
j=1

|σij|q ≤ s0(d)
}

and

(ii) U(q, so(d), K) =
{
� : � � 0, ‖�‖L1 ≤ K , max

1≤i≤d

d∑
j=1

|ωij|q ≤ s0(d)
}

.
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The quantity s0(d) is allowed to depend on d and thus is not and explicit restriction on sparsity. Two
examples of matrices which satisfy this restrictions are, a p-diagonal matrix that satisfies this condition
with any 0 ≤ q < 1 and s0(d) = Kqp. Second, an AR(1) covariance matrix where σij = ρ |i−j|, which
satisfies the restriction with s0(d) = c0 for some constant c0 < ∞.

3.1. Estimation of the precision matrix �

The problem of estimation of the precision matrix � has received wide attention in the literature. Several
solutions have been proposed in the context of i.i.d. sub-Gaussian observation and one such solution
has been the penalized likelihood method for which exploits the i.i.d. Gaussian structure of observations
(Friedman and others, 2008; Ravikumar and others, 2011). In our setup however, the observations Xi,
1 ≤ i ≤ n are no longer identically distributed, and hence such likelihood-based approaches are no longer
feasible. However this problem can be overcome by adapting penalized moment-based approaches such
as the method “Clime” of Cai and others (2011) under our setting. Such moment-based approaches to the
estimation of high-dimensional precision matrices do not rely on an explicit likelihood functions, instead
only require probabilistic bounds on the quantity ‖�̂ −�‖∞, and thus Lemma 3.1 stated earlier forms the
connecting link between such approaches and the distributional structure of Section 1 without requiring
the observations Xi, 1 ≤ i ≤ n to be identically distributed.

Let �̂1 be the solution of the following convex program,

min ‖�‖1 subject to
∣∣�̂n� − I

∣∣
∞ ≤ λ
, � ∈ R

p×p, (3.4)

with a suitable choice of λ� > 0. Here I represents the identity matrix and �̂ as defined in (3.2). Since
the solution �̂1 may not be symmetric in general, the final estimate �̂ is obtained by symmetrizing
�̂1 = [ω1

ij]d×d by choosing the smaller of |ω1
ij| and |ω1

ji| in the final estimate �̂, i.e. �̂ = (ω̂ij), with
ω̂ij = ω̂ji = ω̂1

ij1[|ω1
ij| ≤ |ω̂1

ji|] + ω̂1
ji1[|ω1

ij| > |ω̂1
ji|].

The estimator �̂ is not guaranteed to be positive definite; however, the following theorem shows that
it converges to a positive definite limit with asymptotic probability 1. To ensure positive definiteness, in
practice one may add a small constant to the diagonal elements of this matrix, or project the matrix onto
the cone of positive definite matrices.

Theorem 3.1 Suppose Xi, 1 ≤ i ≤ n follow the distribution (2.5) and that the missing structure satisfies
condition (A1). Also assume that � ∈ U and the regularizer is chosen λ� = c0Kσ 2

x

√
log d

/
δmin

√
n, then

the following bounds hold with probability at least 1 − c1 exp(−c2 log d),

(i) ‖�̂ − �‖∞ = O
[√ log d

n

]

(ii) ‖�̂ − �‖2 = O
[
s0(d)

(√
log d

n

)1−q]
, and,

(iii)
1

d
‖�̂ − �‖2

F = O
[
s0(d)

(√
log d

n

)2−q]
.

This methodology was introduced by Cai and others (2011) under the standard i.i.d. Gaussian setup,

which is implemented using the sample covariance matrix �̂
S = ∑n

i=1 XiXT
i /n as the initial estimate.

The proof for the error bounds of Theorem 3.1 follows by deterministic arguments on the event where the
inequality (3.3) holds and follows from the arguments of Cai and others (2011), a sketch of this proof has
been provided in the supplementary material available at Biostatistics online.
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3.2. Estimation of the covariance matrix �

In this sub-section we discuss thresholding methods of estimating the covariance matrix � in our set-
ting with structural zeros. These methods were first proposed in the standard i.i.d. setting by Wu and
Pourahmadi (2003) and have also been studied by Bickel and Levina (2008) and Levina and others (2008)
amongst several others. Although assuming sparsity on the covariance matrix is a stronger assumption
than assuming the same on the precision matrix, however thresholding carries very little computational
burden in comparison to the penalized methods such as the one described in the previous sub-section. Thus
this procedure forms an attractive alternative to estimating the precision matrix, especially in very high-
dimensional problems and real time applications. We adopt this methodology in our setup with structural
zeros as follows.

Let sλ(x) be a generalized thresholding operator as defined by Rothman, Levina and others (2009). We
restate the definition for the convenience of readers. A function sλ : R → R satisfying

(i) |sλ(x)| ≤ |x|, (ii) sλ(x) = 0 for |x| ≤ λ , and (iii) |sλ(x) − x| ≤ λ (3.5)

is said to be a generalized thresholding operator. In view of this definition, the covariance matrix � can be
estimated by elementwise thresholding as, sλ(�̂) = [

sλ(σ̂ij)
]

i,j=1,...,d
. The two common examples of these

operators are the hard- and soft-thresholding operators defined as,

sh
λ(x) = x1(|x| > λ), ss

λ(x) = sign(x)(|x| − λ)+, (3.6)

respectively. The soft-thresholding operator can also be defined as ss
λ(x) = arg minθ

{
(θ − x)2 + λ|θ |

}
,

and has been studied by various authors, including Donoho and others (1995) and Tibshirani (1996). The
hard-thresholding operator has been investigated by Bickel and Levina (2008) among others. Additional
examples of thresholding operators include SCAD of Fan and Li (2001), adaptive Lasso of Zou (2006).
The following result provides the consistency of this estimator.

Theorem 3.2 Suppose Xi, 1 ≤ i ≤ n follow the distribution (2.5) and that the missing structure satisfies
condition (A1). Also assume that sλ satisfies condition (3.5). Then uniformly on M(q, s0(d), K) choosing
the regularizer λ = c0σ

2
x

√
log d

/
δmin

√
n we obtain

∥∥sλ(�̂) − �
∥∥

2
= O

[
s0(d)

(√
log d

n

)1−q]
, (3.7)

with probability at least 1 − c1 exp(−c2 log d).

In the standard i.i.d. setting, Rothman, Levina and others (2009) introduced this generalized thresh-

olding methodology based on usual sample covariance matrix �̂S . The proof of this theorem relies on
deterministic arguments of Rothman, Levina and others (2009) on the set where the bound provided in
Lemma 3.1 holds and a sketch is provided in the supplementary material available at Biostatistics online.

4. SIMULATION STUDY

In this section we numerically illustrate that the methodology of Section 3 provides consistent estimates
of � and 
. We confirm that our method provides a significant improvement over the typical method of

using the sample covariance �̂
S = ∑n

i=1 XiXT
i /n as the initial estimate in the methods of Sections 3.1 and

3.2, note that using the sample covariance matrix ignores the presence of these structural zeros.
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Fig. 1. Comparisons of Frobenius norms of error in estimation due to soft (left) and hard (right) thresholding, x-axis:
n, y-axis: ‖sλ(�̂) − �‖F , results at d=75.

4.1. Simulation setup and results

The missingness is generated by r.v.’s Mi = (
Mi1, ..., Mid

)
where each Mij ∼i.i.d. Bernoulli(1 − ρj),

1 ≤ i ≤ n, 1 ≤ j ≤ d. Here ρj denotes the probability of jth component being a structural zero. These
ρj’s 1 ≤ j ≤ d are chosen by uniformly between (0, 0.35). Finally, for each 1 ≤ i ≤ n, the components
of Xi with indices in the set Ai defined in (2.5) are assumed to be zero mean Gaussian r.v.’s with the
covariance being the corresponding sub-block of the matrix �AiAi .

We set the covariance matrix as � = [σij]i,j=1,..,p where σij = 0.5|i−j| and all entries <0.01 are set to zero.
Under this setting we estimate � as described in Section 3.2 by the hard- and soft-thresholding operations
of (3.6) on the initial re-normalized (RN) estimate (3.2), we shall refer to these estimates as “RN-hard”
and “RN-soft,” respectively. Similarly we estimate � as described in Section 3.1 and refer to the estimates
obtained as “RN-clime.” We also illustrate that our method provides a significant improvement over the

standard method of using the sample covariance �̂
S = ∑n

i=1 XiXT
i /n as the initial estimate for the hard/soft

thresholding and clime procedures, we refer to these as “S-hard,” “S-soft,” and “S-clime,” respectively.
We repeat simulations on ∼ 100 independent data sets that are generated under the following settings.

(i) d is fixed at 75 and n is allowed to vary from 50 to 250 with increments of 2, leading to 101 independent
data sets; and (ii) d is allowed to vary from 10 to 100 with increments of 15 and n is allowed to vary from
50 to 200 with increments of 10 leading to 112 independent data sets.

Figures 1 and 2 illustrate the results of our simulation. Here each dot (triangle) represents Frobenius
norm of estimation error for each independent data set. To measure the average performance over the
simulated models, nonparametric regression lines are fit via the Loess method with its smoothing parameter
set at 0.75. The solid line represents the average performance of our methods and the dotted line represents
the average performance of the standard method which ignores the presence of structural zeros. For the
soft-/hard-thresholding case, the tuning parameter λ is chosen via cross-validation under the Frobenius
loss, and for the “clime” method, the tuning parameter is chosen by cross-validating with the loss function
Tr(�̂�̂ − I)2.

Results of thresholding procedures are provided in Figure 1. This figure plots ||sλ(�̂) − �||F for
different sample sizes n for the case d = 75. From this figure, it is clear that the error corresponding to
the proposed estimator under both soft and hard thresholding tends to get smaller with sample size faster
than the standard estimator that ignores the structural zeros. The left panel of Figure 2 plots of the errors
for different values of scaled sample sizes n/ log d, for the soft-thresholding operator. This figure seems
to confirm the result of Theorem 3.2 regarding the rate of convergence of the estimator. Similarly, the
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Fig. 2. Left panel: Comparison of Frobenius norms of error in estimation due to soft thresholding the renormalized
sample covariance at scaled sample size, x-axis: n/ log d, n ∈ [50, 200], d ∈ [10, 100]; y-axis: ‖ss

λ(�̂) − �‖F . Right
panel: Comparison of spectral norms of error in estimation due to Clime procedure on the renormalized sample

covariance, ‖�̂ − �‖F and Clime procedure on the standard sample covariance ‖�̂S − �‖F . Results at d = 75.

right panel of Figure 2 describes the results of the simulation for the “clime” methodology described in
Section 3.1.

5. ANALYSIS OF GLOBAL HUMAN GUT MICROBIOME DATA

In this section we analyze the global human gut microbiome data ofYatsunenko and others (2012) available
at the repository MG-RAST (http://metagenomics.anl.gov/) under accession numbers qiime:621 for fecal
microbiome shotgun sequencing data sets. Here we estimate the precision matrix � and use this estimate
to classify observations according to geographical locations. Further details on the availability of data
have been provided in the supplementary material available at Biostatistics online.

The data consist of microbial OTU counts obtained from individuals of United States (US), Venezuela
(VE), and Malawi (MA). Our analysis is based on the “genus” level of bacterial taxonomy. We subdivide
the data into two age categories “under 2 years” and “at least 2 years.” This stratification is done since it is
known that microbial composition of infants changes drastically when they switch over from breast milk
(or formula milk) to solid food (Lozupone and others, 2013). The sample sizes in the two strata (under 2
years, at least 2 years) for US, VE and MA samples are (70, 225), (15, 74) and (32, 72), respectively. After
several pre-processing steps of the raw OTU data we obtain for each age group and each location, a matrix
of observations with d = 75 microbes and inherent structural zeros. Each row of these matrices is assumed
to follow the conditional Gaussian distribution of (2.5). Note that for the “under 2 years” category for the
pair VE–MA, the total number of observations is 47 and thus we have a high-dimensional scenario. The
pre-processing of data is described in detail in the supplementary material available at Biostatistics online.
For each pair of locations, we randomly split 5/6-th data into training set and the remaining one-sixth as
the test set. The training set is used to estimate the common precision matrix using the procedure described
in Section 3.

5.1. Tuning parameter

The regularizer λ� is chosen via 5-fold cross-validation within the combined training data for each pair of
locations. The loss function used to evaluate cross-validation error is Tr(�̂�̂−I)2.Also, in the construction
of �̂ in (3.2) if a pair (l, m) does not occur then we set the pairwise covariance to zero.
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Table 1. Percentages of correct classification between locations

US–MA US–VE VE–MA

Age
/

% Correct US MA Total US VE Total VE MA Total

Age < 2 years 87.5 80.9 85.6 79.6 81.2 79.8 76.1 60.5 69.4
Age ≥ 2 years 92.8 95.0 93.3 80.9 73.3 73.3 62.1 57.5 60.0

5.2. Classification of subjects to geographical locations

In this section we exploit the assumed conditional Gaussian structure of observations to classify subjects
of the test set to one of two geographical locations by using estimates of the corresponding precision
matrices.We perform pairwise classifications of samples into (i) US and MA, (ii) US and VE, and finally
(iii) VE and MA. Let μ̂r , r = 1, 2 be the estimated d-dimensional mean vector obtained as in (3.1) for each
of the two populations under consideration, and � be the common precision matrix of the two locations.

Let X = (X1, .., Xd)
T represent the observation to be classified and let A = {j ; Xj �= 0} denote the

collection of indices of the non-zero components of X. For location r = 1, 2, We implement the following
classification rule: let

δr(XA) = XT
A �̂

−1

AAμ̂rA − 1

2
μ̂

T
rA�̂

−1

AAμ̂rA (5.1)

denote the linear discriminant function where an observation XA is classified into population 1 if δ1(XA) >

δ2(XA), otherwise classified into population 2. The percentage of correctly classified observations from
the test set is computed and the above process is repeated 20 times to obtain average correct classification
percentages. The results for the two age groups and for every pair of locations are summarized in Table 1.

The classification results depend on the two populations under consideration. The trends in the correct
classification rates (column “Total” in Table 1) are the same in both age categories, the best being US–MA
and the worst VE–MA. A possible reason for this is that the microbial composition between US and MA
is more different relative to the other two pairs. This is illustrated in Figure 3, which plots the largest 25
absolute differences in the signal-to-noise ratios (SNR) for each of the three pairs of location for the “at

least 2 years” age group. More precisely, for each j, j = 1, 2, . . . , d, we plot
∣∣∣(μ̂US

j /σ̂ US
j ) − (μ̂MA

j /σ̂ MA
j )

∣∣∣,∣∣∣(μ̂US
j /σ̂ US

j )−(μ̂VE
j /σ̂VE

j )

∣∣∣, and
∣∣∣(μ̂VE

j /σ̂VE
j )−(μ̂MA

j /σ̂ MA
j )

∣∣∣. This decreasing trend in the absolute difference

of SNRs is a possible reason for the lower correct classification rate between MA and VE than between
US and MA.

6. DISCUSSION

New technologies such as the 16s RNA sequencing have yielded high-dimensional data with characteristics
that cannot be modeled by standard i.i.d. formulations of multivariate data. In this paper we describe one
such characteristic, namely “structural zeros,” which are encountered in microbiome studies. We proposed
a conditional Gaussian distributional structure that characterizes these zeros and provide methods to
estimate covariance and precision matrices in this context. We show that in spite of the distribution being
conditional, it is indeed possible to obtain results that are unconditional. As future work, we believe that
the conditional Gaussian distributional structure proposed in this paper can be used to carry forward the
work of Kurkland and Heagerty (2005) in the high-dimensional setting where the covariates are subjected
to structural zeros.
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Fig. 3. Comparison of absolute difference in SNR for each pair of locations in descending order for the top 25
microbes. Results for the “at least 2 years age” category.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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