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Abstract

The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven 

activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and 

locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced 

dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by 

triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje 

neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or 

primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review 

mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for 

these forms of plasticity in Arc-dependent formation of sparse neural representations of learned 

experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD 

in human cognitive disorders such as intellectual disability, autism and Alzheimer’s disease.
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Arc/Arg3.1 is one of the most strongly induced immediate early genes in response to 

experience and neural activity and evidence indicates that Arc-induction marks neuronal 

ensembles that encode learned behaviors [1–7]. Deletion of Arc in mice leads to deficits in 

many forms of learning and memory, as well as experience-dependent plasticity of circuits 

[5, 8–11]. Thus, it is hypothesized that experience-dependent induction of Arc in a neuron, 

or network of neurons, leads to plasticity circuits that mediate memory of that experience 

[3–5, 11]. Arc has unique qualities among the immediate early genes that make it well suited 

to cause plasticity of circuits; its mRNA is rapidly transported to dendrites [12] where it is 

locally translated in response to glutamate [13–16] and it encodes a protein that affects 

synapse function directly [17–19]. An accumulating body of work implicates dendritic Arc 
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translation in synaptic weakening, or long-term depression (LTD) [13, 14, 20], and synapse 

elimination in response to activation of Group 1 metabotropic glutamate receptors 

(mGluR1/5) [21, 22]. Here we will review the roles of Arc in these related forms of synaptic 

depression and evidence for their dysfunction in human cognitive disease. We also attempt 

to integrate roles for mGluR-LTD and/or synapse elimination with recent results revealing 

roles for Arc in formation of sparse neural representations of learned experience [5].

Arc mRNA is rapidly translated in dendrites in response to Group 1 

metabotropic glutamate receptors

The robust transcriptional and translational regulation of the Arc gene and mRNA make it an 

ideal candidate to couple experience-dependent activation of neuronal circuits to synaptic 

plasticity within these circuits. For example, in hippocampal CA1 neurons, which encode a 

memory for place or a spatial environment, Arc is induced rapidly, within 30 s, in response 

to a novel environment [23]. Once Arc is induced in neurons, its mRNA is promptly 

transported to dendrites [12, 24, 25] where it can be rapidly translated, within seconds to 

minutes, in response to activation of glutamatergic synapses [13–16]. A specific agonist for 

Group 1 metabotropic glutamate receptors (mGluR1/5), DHPG, is sufficient to induce Arc 

translation [13–15], but glutamate-induced dendritic Arc translation relies on both NMDA 

receptors and mGluR1/5 [16], which may be more relevant in vivo. Glutamate or DHPG 

induces remarkably fast (~15s) translation of Arc in dendrites as observed by imaging newly 

synthesized Arc that was tagged with a bright, rapidly decaying Gaussia-Luciferase (Gluc) 

[16] or Venus [15]. Interestingly, Arc translation did not occur primarily at synapses, but 

appeared to be coordinated within a dendritic segment. Although the Arc 3’UTR enhances 

dendritic trafficking of Arc mRNA [26], the coding region of Arc mRNA is sufficient for 

glutamate-stimulated local translation [16]. This result, combined with the fact that 

glutamate stimulates Arc translation in seconds, and occurs in the presence of translation 

initiation inhibitors, suggested that glutamate stimulates ribosomal movement, or elongation, 

onto Arc mRNA that is already initiated and ribosomes may be stalled on Arc mRNA in 

dendrites [16]. In support of this idea, mGluRs potently activate elongation factor 2 kinase 

and phosphorylation of elongation factor 2 which regulates translational elongation and is 

necessary for mGluR-induced Arc translation [13]. Furthermore, Arc mRNA interacts with 

Fragile X Mental Retardation Protein (FMRP), an RNA binding protein implicated in 

ribosomal stalling and processivity [27, 28] that is necessary for mGluR-induced translation 

of Arc [15, 29–31].

Dendritic translation of Arc is necessary for an mGluR1/5-induced long-

term synaptic depression

A major function of Arc is to weaken synapses by stimulating endocytosis of postsynaptic 

ionotropic AMPA subtype receptors (AMPARs) and reducing their surface and synaptic 

expression [16–18]. Arc contributes to multiple forms of activity-induced synaptic 

weakening; including homeostatic downscaling of synapses [19], mGluR-LTD [13, 14, 20] 

and synapse elimination [21, 22]. If and how these different forms of Arc-dependent 

synaptic weakening interact, if they affect the same synapses or utilize the same molecular 
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mechanisms (e.g. endocytosis of AMPARs), but are induced in diverse ways is unclear at 

present and discussed below. For this review, we focus on forms of Arc-dependent synaptic 

weakening and elimination that require mGluR1/5.

Brief activation of mGluR1/5 (minutes) leads to a LTD of excitatory and inhibitory synaptic 

transmission in multiple brain regions, which are expressed through different pre-or 

postsynaptic loci [32, 33]. The most well characterized forms of mGluR-LTD that is 

mediated postsynaptically at excitatory synapses, occurs through removal of postsynaptic 

AMPARs in cerebellar Purkinje (Pkj) neurons and hippocampal CA1 neurons and requires 

Arc [33–35]. Arc is also necessary for an activity-dependent elimination of inputs onto both 

Pkj and CA1 neurons, which are mGluR1 or mGluR5 dependent, respectively, suggesting 

that LTD mechanisms contribute to synapse elimination [36] and these are conserved roles 

for Arc across distinct brain regions.

In CA1 neurons, brief activation of mGluR1/5 with either the selective agonist, DHPG, or 

synaptic stimulation (paired-pulse low-frequency (1 Hz) stimulation) induces LTD that 

requires new protein synthesis from pre-existing mRNA and is mediated by postsynaptic 

endocytosis and decreases in surface AMPAR subunits GluA1 and GluA2 (reviewed [33, 

34]). While de novo protein synthesis is not required to trigger endocytosis, and decreases in 

surface of AMPARs, it is required to maintain decreases in surface AMPARs and the 

persistent increases in endocytosis rates that accompany LTD [14, 37]. mGluR-LTD is 

deficient in area CA1 of acute hippocampal slices from Arc KO mice and postsynaptic 

inhibition of new Arc translation with antisense oligonucleotides blocks LTD, as well as 

DHPG-induced decreases in surface AMPARs and persistent increases in AMPAR 

endocytosis rates [13, 14]. These results suggest that Arc levels are rate limiting for AMPAR 

endocytosis and mGluR-induced increases in local Arc concentration enhance endocytosis 

rates which maintain decreased surface AMPARs and synaptic depression [14]. In contrast 

to this view, recent data demonstrated that DHPG induced a rapid synthesis of Arc, which is 

then followed by ubiquitination and degradation of Arc by the proteasome, resulting in a 

long-term decrease in Arc protein levels (> 1hr) [38]. This result suggested that increases in 

Arc levels trigger LTD, but do not maintain it. Of note, in cultured forebrain or hippocampal 

neurons, Arc levels are induced and remain elevated for an hour after DHPG suggesting that 

there is little Arc degradation in cultured neurons after DHPG [13, 31] where persistent 

increases in AMPAR endocytosis rates are observed to accompany LTD. Remarkably, if 

proteasomal degradation is blocked with proteasome inhibitor, mGluR-LTD no longer 

requires new protein synthesis [38]. Although these manipulations are not specific for Arc, it 

supports the view that new Arc synthesis is not absolutely required for mGluR-LTD and 

mGluRs trigger posttranslational modifications of Arc, or proteins in complex with Arc to 

cause LTD. Such mechanisms may include tyrosine dephosphorylation of GluA2, which is 

implicated in mGluR-LTD [39] and phosphorylation of Arc by ERK [40], a protein kinase 

required for mGluR-LTD [41].

In cultured cerebellar Purkinje (Pkj) neurons, Arc is necessary mGluR-LTD of granule cell 

inputs but is specifically required for a transcription-dependent “late-phase” of mGluR-LTD, 

occurring >1 hr after induction [35]. The late-phase of mGluR-LTD also requires the 

transcription factor, Serum Response Factor (SRF), and its binding to the Arc promoter [35]. 
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mGluR-LTD inducing stimulation (e.g. DHPG) can induce both transcription and translation 

of Arc in cultured hippocampal or cortical neurons [13, 42], the former of which likely 

occurs through regulation of SRF [43]. In contrast to Pkj neurons, mGluR-LTD in area CA1 

of acute hippocampal slices is independent of transcription and relies on rapid translation of 

Arc, within 20–30 minutes, from preexisting mRNA [14, 44]. New Arc transcription may be 

required for mGluR-LTD in cultured Pkj cells because Arc levels are very low in this culture 

preparation, whereas, as discussed below, CA1 neurons in acute hippocampal slices express 

Arc transcripts induced in vivo [20]. An interesting possibility is that mGluR-LTD in acutely 

prepared cerebellar slices may depend on rapid Arc translation from preexisting mRNA, as 

observed in CA1. In support of this idea, protein synthesis inhibitors rapidly block mGluR-

LTD in Pkj neurons in acute slices [45].

Novelty-induced Arc primes CA1 neurons for mGluR-LTD

The requirement for Arc in an acute form of synaptic plasticity like mGluR-LTD, suggested 

that experience-induced Arc induction causes or facilitates mGluR-LTD onto activated 

neurons and may be a mechanism by which Arc causes plasticity of select circuits activated 

by salient experience. To determine if Arc induction in vivo results in LTD, we used two 

different Arc-GFP transcriptional reporter mice (ArcGFP knockin or BAC-ArcGFP), which 

express destabilized GFP when the Arc gene is induced [9, 46], and allowed visualization 

and targeting of live neurons with recent Arc induction for measurements of synaptic 

strength and plasticity [20]. Exposing ArcGFP reporter mice briefly (5 min) to a novel 

environment, induced GFP expression in a subpopulation (~40%) of CA1 pyramidal 

neurons, consistent with measurements of endogenous Arc mRNA [20, 47]. Recording from 

ArcGFP(+) CA1 neurons in acute hippocampal slices of novelty exposed mice did not detect 

differences in baseline excitatory synaptic function in comparison to neighboring GFP(−) 

neurons. However, activation of mGluR1/5 onto ArcGFP(+) neurons induced a robust 

mGluR-LTD, whereas, surprisingly, GFP(−) neurons had little or no mGluR-LTD. 

Therefore, Arc induction by brief exposure to novelty does not induce LTD, but facilitates or 

“primes” neurons for subsequent LTD in response to mGluR1/5 activation. Results indicated 

that mGluR-LTD priming occurs in ArcGFP(+) neurons because they express more dendritic 

Arc mRNA and display robust mGluR-induced dendritic synthesis of Arc protein in 

comparison to their GFP(−) neighbors. A model based on this data proposes that Arc mRNA 

is induced by novelty and transported to dendrites, but may be translationally suppressed 

(Fig. 1). Subsequent activation of mGluR1/5 derepresses translation of dendritic Arc mRNA, 

increases dendritic Arc levels and induces mGluR-LTD. In support of this model, Arc and 

other mRNAs in dendrites are likely translationally suppressed [31, 48–50] and glutamate 

induces Arc translation in dendrites within seconds [16]. Priming of mGluR-LTD by 

novelty-induced Arc provides a cellular mechanism for the known facilitation of LTD by 

exploration of novel objects or environments [20, 51–59]. If novel environment exposure is 

required to observe robust mGluR-LTD, then why is mGluR-LTD observed in many slice 

studies without first exposing animals to novelty? Indeed, the standard procedures of mouse 

handling prior to acute slice preparation, which include removing an unanesthetized mouse 

from its home cage and transporting to the lab, are sufficient to induce Arc and observe 

robust mGluR-LTD. Anesthesia of mice in their home cage prevented Arc induction during 
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transportation to the lab and resulted in a small magnitude mGluR-LTD in population field 

potential recordings in slices [20]. Thus, “standard handling” protocols of mice for slice 

physiology experiments may constitute a novel, or stressful, experience for the mouse since 

stress, like novelty, can induce Arc in CA1 [60] and enhance mGluR-LTD [61].

Arc and activity-dependent, developmental synapse elimination

In addition to Arc’s role in rapid and transient weakening of excitatory synaptic 

transmission, such as LTD, Arc is also necessary for activity-dependent and developmental 

pruning or elimination of excitatory synapses onto cerebellar Pkj and hippocampal CA1 

neurons [21, 22]. Activity-dependent synapse elimination is a process by which experience 

and learning remove redundant, or inappropriate connections to form and refine circuit 

connections for optimal mature function. A well-established model of developmental 

synapse elimination is the climbing fiber (CF) to Pkj neuron synapse in the cerebellum [62, 

63]. At birth, multiple CF axons innervate Pkj neurons, and during the first few postnatal 

weeks, one CF input becomes progressively strengthened, whereas other CF inputs are 

weakened and ultimately eliminated by the 3rd postnatal week, as measured by evoked CF 

EPSCs [64]. Activity of Pkj neurons and/or their inputs, specifically mGluR1, NMDARs or 

P/Q type voltage-dependent Ca2+ channels (VDCCs) are necessary for CF input elimination 

and their blockade results in multiply CF innervated Pkj neurons [62, 63, 65, 66]. 

Conversely, optogenetically increasing firing rates of Pkj neurons in organotypic cultures 

accelerates CF input elimination by activating of P/Q VDCCs and inducing Arc transcription 

[21]. Knockdown of P/Q VDCCs or Arc in Pkj neurons prevents activity-accelerated CF 

input elimination in cultures and developmental CF elimination in vivo [21, 65]. 

Overexpression of Arc itself is insufficient to eliminate CF inputs in the absence of activity, 

indicating that other activity-dependent processes function together with Arc to confer CF 

input elimination [21].

Like its role in Pkj neurons, Arc is required for synapse elimination in CA1 hippocampal 

neurons [22]. Although synapse elimination in hippocampal CA1 neurons has been less well 

characterized in comparison to climbing fibers, insight into this process was made when it 

was discovered that expression of the activity-dependent transcription factor Myocyte-

Enhancer Factor 2 (MEF2) induced a rapid (<24 hr) elimination of excitatory synapses onto 

hippocampal neurons [67, 68]. Four MEF2 proteins (MEF2A-D) belong to the MEF2/

MADS box family of transcription factors [69, 70] and MEF2A and MEF2D are expressed 

in CA1 neurons. In response to neuronal depolarization and Ca2+ influx, MEF2 activates 

transcription of target genes, including Arc [67, 71]. A consensus binding sequence for 

MEF2 is present in an upstream enhancer of the Arc gene, that confers robust activity-

dependent transcription and thus is termed the synaptic activity response element (SARE) 

[72]. MEF2A/D bind to the Arc SARE and this binding is necessary for activity-dependent 

induction of the Arc gene. CREB and SRF also have binding sites in the SARE that are 

required for activity-induced Arc revealing a combinatorial interaction of 3 transcription 

factors that are necessary for full induction of Arc [72]. Overexpression of a constitutively 

active form of MEF2 (MEF2VP16) in organotypic hippocampal slice cultures causes a rapid, 

within 12–16 hr, and robust (30–50%) elimination of dendritic spines, synaptic markers and 

depresses evoked EPSC amplitudes as well as the frequency of spontaneous, miniature (m) 
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EPSCs [67, 68] which is consistent with a functional synapse elimination. MEF2VP16 

induces transcription of Arc and fails to eliminate functional synapses or spines in CA1 

neurons of Arc KO mice [22].

To determine the physiological activity patterns that regulate MEF2 transcriptional induction 

of Arc in neurons and whether such patterns eliminate synapses through MEF2 and Arc, 

recent work demonstrated, similar to Pkj neurons [21], that optogenetically driving 

individual CA1 neurons to fire in bursts at 3 Hz, resulted in a MEF2A/D-dependent 

induction of Arc and an Arc-dependent functional and structural synapse elimination [73, 

74]. Interestingly, the duration of postsynaptic bursting (1 vs. 24 hr) induced distinct forms 

of synaptic depression that both required Arc. Relatively brief periods of postsynaptic 

bursting (1 hr) selectively depressed AMPA receptor (R) synaptic transmission, or silenced 

excitatory synapses, whereas more prolonged (24 hr) firing depressed both AMPAR and 

NMDAR EPSCs and eliminated spines, indicative of a synapse elimination. Both synapse 

silencing and elimination required de novo transcription and Arc, but only synapse silencing 

in response to brief activity bursts required MEF2A/D [74]. This surprising finding indicates 

that activity and MEF2A/D-induced Arc silence synapses without eliminating them and 

identifies, perhaps an Arc-dependent intermediate stage of synapse elimination. 

Furthermore, longer durations of postsynaptic activity likely engage other transcription 

factors, besides MEF2A/D, to induce Arc and eliminate synapses. Acute, exogenous re-

expression of Arc, postsynaptically and cell autonomously, in Arc KO CA1 neurons rescues 

activity or MEF2VP16-induced synapse silencing or elimination of spines and functional 

synapses, respectively [22, 74]. However, overexpression of Arc alone is insufficient to 

silence or eliminate synapses suggesting that other MEF2-induced genes are required [22]. 

One candidate is Protocadherin 10 (Pcdh10), a MEF2 target gene that functions in synapse 

elimination to degrade the synaptic scaffold, PSD-95 [75]. Degradation of PSD-95 is 

necessary for AMPAR endocytosis during LTD [76], thus Pcdh10-dependent degradation of 

PSD-95 may be necessary for Arc to trigger AMPAR endocytosis and synapse elimination in 

response to MEF2 activation.

Like novelty-induced priming of mGluR-LTD, MEF2-induced synapse elimination requires 

a coordinated transcriptional and dendritic translational control of Arc. Pharmacological 

block or genetic deletion of mGluR5 prevents MEF2-induced elimination of spines and 

functional synapses [22]. One role of mGluR5 in MEF2 triggered synapse elimination is to 

stimulate synthesis of Arc protein in dendrites. mGluR5 antagonists do not interfere with 

MEF2-induced transcription of Arc or increases in dendritic Arc mRNA, but block MEF2-

induced increases in dendritic Arc protein. Culturing hippocampal neurons in microfluidic 

chambers allowed selective blockade of mGluR5 on dendrites, but not the soma, which was 

sufficient to block MEF2-induced increases in dendritic Arc protein and synapse elimination 

[22]. Therefore, this data suggests that that two forms of neural “activity” are required to 

induce synapse elimination, one in the form of action potentials to trigger Ca2+ influx in the 

cell soma and transcription of Arc via MEF2, and perhaps other transcription factors. 

Synaptic stimulation of mGluR5 is then required to translate dendritic Arc mRNA into 

protein for synapse elimination. As in LTD, mGluR5 may also regulate posttranslational 

modifications of AMPARs [39] that may function together with Arc to stimulate 

endocytosis. Roles for mGluR5 in synapse elimination in forebrain are suggested by 
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findings of increased frequency of spontaneous excitatory synaptic events (mEPSCs) and/or 

dendritic spines in CA1 neurons [22] as well as layer 2/3 and 4 neocortical neurons; with 

cell autonomous deletion of mGluR5 [77, 78] or decreased spines in Nucleus Accumbens 

with mGluR5 positive allosteric modulators [79]. Whether Arc also functions in synapse 

elimination in these brain regions is yet to be determined. Similarly, in Pkj neurons, mGluR1 

is necessary for CF input elimination [66], although a role for mGluR1 in regulation of Arc 

synthesis in Pkj neurons is unknown. The common roles of mGluR1/5 and Arc in mGluR-

LTD and synapse elimination in Pkj and CA1 neurons suggest that mGluR-LTD 

mechanisms, such as AMPAR endocytosis, may be an initial trigger for long-term synapse 

elimination as at other synapses [36, 80]. In support of this idea, structural synapse 

elimination is a consequence of repeated episodes of LTD induction by mGluR or NMDAR 

activation [81–83].

Molecular Mechanisms of Arc regulation of AMPAR endocytosis

As stated, an important mechanism underlying LTD is the removal of AMPARs from the 

post-synaptic surface, effected primarily by increasing the rate of endocytosis. A potential 

mechanism to explain Arc’s role in AMPAR endocytosis was provided by Chowdhury et al. 

[18], who showed that Arc binds directly to two elements of the endocytic machinery, 

dynamin and endophilin, and by the more recent finding of DaSilva et al. [84] that Arc also 

interacts with the clathrin adaptor protein, AP-2 (reviewed in [85]). Dynamins are ~100 kDa 

GTPases that self-assemble around the necks of invaginating vesicles and promote 

membrane scission in a GTPase-dependent manner [86, 87]. Mammals express three forms 

of dynamin: dynamin 2 is ubiquitously expressed; dynamins 1 and 3 are particularly 

abundant in neurons. All three forms of dynamin share a common domain structure, 

including an N-terminal GTPase domain, a central phosphoinositide-binding pleckstrin 

homology (PH) domain flanked by two “stalk” domains, and a C-terminal proline-rich 

domain (PRD). In the three-dimensional structure, the two stalk domains fold back and 

interact with each other to form a four-stranded helix involved in dimerization, 

tetramerization, and higher-order dynamin oligomerization. Dynamin self-assembly, either 

on biological membranes or, in vitro on the surface of liposomes, stimulates its GTPase 

activity from a basal rate of approximately 1–10 min−1 for unassembled (tetrameric) 

dynamin to maximal rates greater than 200 min−1 for polymers. We confirmed, using pure 

proteins, that Arc interacts with dynamins 2 and 3 [88]. We further showed that Arc 

increases the rate and extent of dynamin self-assembly, and promotes assembly-dependent 

GTPase activation of dynamins 2 and 3 to levels of approximately 90 min−1 and 120 min−1, 

respectively. Interestingly, binding of Arc to dynamin 1, which is largely pre-synaptic and 

functions in synaptic vesicle recycling [87], was nearly undetectable and Arc had no effect 

on the enzymatic or assembly properties of this isoform. Dynamins 2 and 3 are found in both 

pre- and postsynaptic nerve terminals.

By analyzing a series of truncation and deletion mutants, Chowdhury et al. [18] identified a 

segment comprising amino acids 195–214 of Arc as a critical dynamin-binding determinant. 

We observed that deletion of this segment weakened, but did not completely abolish, the 

Arc-dynamin interaction [88], suggesting that additional dynamin-binding sites in Arc 

remain to be identified. Chowdhury et al. [18] also identified the PH domain as the most 
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likely Arc-interacting determinant in dynamins. Structural studies revealed that dynamins 

can exist in “closed” and “open” conformations [89–91]. In the closed conformation, the PH 

domain is folded back onto the stalk, thereby acting as an intra-molecular suppressor of 

dynamin self-assembly and activation. In the open conformation, the PH domain is extended 

away from the stalk and is now free to associate with phosphoinositides and to polymerize 

on the membrane surface. By interacting with the PH domain, Arc may disrupt the 

autoinhibitory stalk-PH domain interface. It is important to note that the stalk-binding and 

phosphoinositide-binding residues are on opposite surfaces of the PH domain. Thus, 

dynamin binding to Arc and to membranes are not mutually exclusive.

Endophilins comprise a family of five (endophilins A1–3 and B1–2) ~40 kDa proteins 

(endophilins A1–3 and B1–2) that contain N-terminal BAR (Bin/amphiphysin/Rvs) domains 

and C-terminal SH3 domains connected by variable linker regions. Dimerization of their 

BAR domains create crescent-shaped structures that induce and/or stabilize membrane 

curvature [92]. Endophilins interact with dynamin PRDs via their Src homology 3 (SH3) 

domains, and these interactions promote dynamin oligomerization in vitro and in cells [93]. 

Arc interacts via residues 89–100 with the BAR domains of endophilins A2 and A3 (Fig. 2), 

which are abundant in post-synaptic compartments, but it does not interact with endophilin 

A1, which is predominantly localized to pre-synaptic nerve terminals. Importantly, surface 

expression of GluR1 was significantly reduced in neurons upon overexpression of full-

length Arc but not Arc-Δ91–100 (defective endophilin binding) or Arc-Δ195–214 (defective 

dynamin binding) [18].

A deeper understanding of the physical properties of Arc in live neurons is likely to provide 

valuable insights into its role in synaptic plasticity. For example, it will be important to know 

whether Arc self-assembles in neurons, as it does in vitro [88, 94]. If so, Arc may function 

as a scaffold to recruit and/or stabilize endocytic proteins, including dynamin and 

endophilin, on clathrin-coated pits. The mechanism and function of Arc’s interaction with 

the actin cytoskeleton also remains to be elucidated. In this context, we note that dynamin 

has an endocytosis-independent role in the regulation of actin polymerization [95] and that 

endophilin A2 controls a newly discovered form of clathrin-independent but actin- and 

dynamin-dependent endocytosis termed fast endophilin-mediated endocytosis (FEME) [96, 

97]. Perhaps also relevant is the finding that direct binding of endophilins A2 and A3 (but 

not A1) to oligophrenin 1, a BAR domain-containing Rho GAP (GTPase activating protein), 

promotes mGluR-induced LTD and the reduction of surface AMPARs [98]. Arc and 

oligophrenin 1 bind to distinct sites on endophilins, potentially allowing for simultaneous 

interactions.

Arc-dependent synaptic weakening may contribute to the formation of 

sparse neural representations of learned experience

As discussed, Arc is rapidly and robustly induced in select neuronal populations during 

salient experience, such as novelty or context-dependent fear and in response to learning [3, 

4]. Using the Arc gene regulatory elements to optogenetically silence Arc-induced 

hippocampal neuron populations during learning inhibits memory formation [6]. These 
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results suggest that these Arc-induced neuronal ensembles mediate learned behavior. If or 

how Arc-dependent synaptic weakening (LTD or synapse elimination) contribute to 

plasticity of these neuronal populations during learning is unclear. Arc-dependent synaptic 

weakening may mediate formation of a sparse neural representation of an experience that 

develops during learning. For example, during exploration of a novel environment a subset 

(~40%) of hippocampal CA1 neurons fire with some spatial specificity and induce Arc [1, 

99, 100]. Re-exposure to the same environment re-induces Arc in the same overlapping 

population of CA1 suggesting that these Arc+ neurons are activated by and encoding the 

new environment [1] (Fig. 1). As the environment becomes familiar with repeated exposures 

over days, the average population firing rate of CA1 neurons declines, as well as the number 

of CA1 neurons that are active [99] and induce Arc [47]. Interestingly, CA1 neurons that are 

less spatially-tuned and with lower firing rates (<12 Hz) show reduced activity upon 

repeated exposures, whereas more active neurons (>12 Hz firing rate) develop increased 

firing rates. Therefore, during familiarity or habituation to a novel environment, an initially 

diffuse ensemble of activated CA1 neurons is sculpted into a sparse, precise network of 

highly spatially-tuned CA1 place cells that form the neural representation for that 

environment [99]. Arc induction may tag and bind together CA1 neurons that were active in 

response to a specific environment. The CA1 neurons in the network are then primed for 

plasticity of their synaptic inputs by virtue of the fact that they have Arc mRNA in their 

dendrites. With repeated exposure to the same environment, neurons that are less spatially 

tuned and fire at lower rates (<10Hz); rates that promote LTD [101], would be expected to 

have weakening of active synaptic inputs carrying sensory information about that 

environment. The Arc-dependent LTD priming may contribute to the reduced excitation of 

those neurons with subsequent environment exposure and generation of a sparse CA1 

representation of that environment. In a test of this model, ArcGFP reporter mice were first 

exposed to a novel environment to mark novelty-induced CA1 neuron ensembles and then 

repeatedly exposed to the same environment over next few hours and acute brain slices 

prepared to determine if LTD occurred with repeated experience or learning of a new 

environment [20]. ArcGFP(+) CA1 neurons in “repeat environment exposure mice” had 

depressed excitatory synaptic transmission, in comparison to GFP(−) neighbors and mGluR-

LTD was occluded or blocked. This result contrasts with the enhanced mGluR-LTD on 

ArcGFP+ neurons in mice exposed once to a novel environment [20] and suggest that 

repeated environment exposure depresses synaptic transmission onto CA1 neurons through a 

mechanism shared with mGluR-LTD. Such a depression of synaptic transmission with 

repeated environment exposure may contribution to habituation or familiarity of a novel 

environment. In support of this idea, mGluR5, Arc and LTD mechanisms such as AMPAR 

endocytosis are required for behavioral habituation to novel environments [8, 56, 102, 103].

More direct support for a role of Arc in the formation of sparse or consolidated neural 

representations of learned experience, comes from recent work by Wang and colleagues in 

the motor cortex [5]. Using Arc-GFP knockin transcriptional reporter mice, they imaged Arc 
induction in ensembles of higher order motor cortical neurons (M2) in vivo during 

acquisition of a motor learning task (e.g. walking on a rotating rod; rotarod). The first day of 

rotarod training increased the number and fluorescence intensity of Arc-GFP(+) M2 neurons 

in comparison to home caged mice. Repeated, daily rotarod training for the next 2 days, re-
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induced ArcGFP in a similar, overlapping population of M2 neurons suggesting that motor 

learning induces Arc in a specific motor cortical neuron ensemble [5]. Like CA1 neuron 

ensembles during novelty learning, motor learning causes ArcGFP(+) M2 cortical neuron 

ensembles to consolidate into a sparse network of highly active ArcGFP(+) neurons that 

mediate the learned skill. Specifically, of the ArcGFP(+) neurons induced on the first rotarod 

training day, some were either “dismissed”, or not re-activated, on subsequent training days 

and others were “retained” or consistently activated on repeated training days (Fig. 3). 

Whether a ArcGFP(+) neuron was dismissed or retained was related to the level of ArcGFP 

induction on Day 1 of rotarod training. Neurons strongly activated or with elevated levels of 

ArcGFP on Day 1 were more likely to be retained upon subsequent rotarod training days, 

whereas neurons with lower levels of ArcGFP on Day 1 were more likely to be dismissed 

(Fig. 3). Repeating experiments in the homozygous ArcGFP transcriptional reporter knockin 

mouse (which does not express Arc protein), revealed that Arc itself is necessary for 

consolidation of the neural ensemble and for motor learning [5]. As observed in CA1 

neurons with repeated novelty, low levels of ArcGFP induction in M2 neurons may prime 

these neurons for Arc-dependent LTD of active inputs the during rotarod training and 

contribute to their “dismissal” from the ensemble during subsequent training sessions (Fig. 

3). In summary, Arc induction occurs in a neuron population with varying levels of activity 

in response to a learning experience and facilitates formation or consolidation of a sparse, 

highly active neural ensemble that mediates learning of a new motor task. Evidence that an 

Arc specific neural ensemble mediates learning comes from experiments that utilized the 

Arc SARE to inactivate synapses onto Arc-induced neurons in the frontal cortex which 

erased an acquired rotarod learning skill [7].

If or how Arc contributes to the maintenance of the synaptic connectivity onto strongly 

activated neurons that remain active during repeated environment exposure or repeated 

motor training is unclear. Recent work demonstrated that Arc is necessary for an mGluR1/5, 

protein synthesis-dependent LTP in CA1 neurons, which requires extremely high 

frequencies of presynaptic stimulation (~200 Hz) [104]. These results suggest that the 

highest frequencies of synaptic activation or firing and strong Arc induction may prime 

neurons for LTP, or are necessary to promote Arc dependent strengthening and may 

contribute to retaining highly active neurons in an ArcGFP+ motor cortical neuron 

ensembles with repeated motor learning.

Roles for Arc-dependent synaptic weakening in neurodevelopmental 

disorders

Due to the strong links of Arc with learning and memory in healthy animals, perhaps is it 

not surprising that alterations in Arc and Arc-dependent synaptic plasticity are associated 

neuropsychiatric diseases, especially those accompanied by cognitive dysfunction. Although 

mutations in Arc itself are not prevalent in these diseases, dysregulation of Arc mRNA, 

protein levels or mutations in regulators or interacting proteins of Arc are linked with 

intellectual disability, autism [13, 29, 31, 104–108], Alzheimer’s disease [109–111], 

depression [60] and schizophrenia [112–117]. As discussed below, alterations in mGluR-

LTD and synapse elimination are associated with these diseases, and some evidence suggests 
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this is mediated by dysregulation of Arc. The earliest example comes from rodent models of 

Fragile X Syndrome, Fmr1 knockout (KO), the most common inherited form of intellectual 

disability and leading genetic cause of autism [27, 118] where mGluR-LTD levels in CA1 

are enhanced and independent of new protein synthesis [34, 119–123]. Although mGluR-

LTD is independent of new protein synthesis in Fmr1 KO mice, it requires Arc, suggesting 

that mGluR-LTD in Fmr1 KO is mediated by preexisting Arc protein [13]. FXS is caused by 

loss of function mutations in the FMR1 gene which encodes an RNA binding protein Fragile 

X Mental Retardation Protein (FMRP) [27, 118]. FMRP binds Arc mRNA and is 

colocalized with Arc mRNA and translation in dendrites [16, 29, 124]. FMRP suppresses 

translation of other mRNA targets and likely Arc [27, 31]. Consequently, in the FXS mouse 

model, Fmr1 KO, Arc protein levels are elevated in dendrites and unresponsive to mGluR 

stimulation [15, 31]. Results from rescue experiments with FMRP and phosphorylation site 

mutants of FMRP suggested that a Ser500 phosphorylated FMRP functions to suppress Arc 

translation in dendrites [31]. In response to mGluR1/5 stimulation, FMRP is 

dephosphorylated by PP2A [125–127] which derepresses dendritic Arc translation and 

promotes LTD [31]. Therefore, mGluR-LTD in the Fmr1 KO mouse may be independent of 

new Arc protein synthesis because Arc levels are elevated to a level to support LTD [31]. 

This idea is supported by data that inhibition of Arc protein degradation, with proteasome 

inhibitors, leads to elevated Arc protein levels and mGluR-LTD that is independent of new 

protein synthesis [38]. Because of the similar effects of proteasome inhibitors and Fmr1 
deletion on mGluR-LTD, an interesting possibility is that Arc degradation, in addition to its 

regulated translation, may be deficient in Fmr1 KO neurons. Remarkably, like mGluR-LTD, 

mGluR1/5 and Arc-dependent LTP is independent of new protein synthesis in Fmr1 KO 

CA1 neurons, implying that elevated dendritic Arc levels can support LTP or LTD without 

the need for de novo synthesis [104]. This result proposes that posttranslational 

modifications of synaptic proteins caused by LTP or LTD inducing stimulation determine the 

direction of synaptic strength changes in response to local Arc synthesis. The findings of 

altered mGluR-LTD in FXS may be relevant clinically because genetic or pharmacological 

reduction of mGluR5 is able to rescue phenotypes in FXS animal models, including 

behavioral phenotypes (reviewed in [128–131]). Whether mGluR5 antagonism will be useful 

as a therapeutic in humans has yet to be demonstrated [132, 133].

A striking commonality among distinct mouse models of autism and intellectual disability is 

the protein synthesis-independence of mGluR-LTD; first shown in Fmr1 KO mice, but 

recently demonstrated to occur in mouse models of Rett Syndrome [134, 135], 16p11.2 

microdeletion [136] and Syngap haploinsufficiency [137]. Since mGluR-LTD levels are 

normal in Rett and 16p11.2 mouse models, it is the uncoupling of LTD from synaptically-

regulated synthesis of new proteins in dendrites, including Arc, that correlates with 

pathology. Based on the model of the role of dendritic Arc synthesis in experience-

dependent priming of mGluR-LTD (Fig. 1), and its role in consolidation of neural ensembles 

during learning (Figs. 3), one may predict that in these forms of autism and ID, that there 

may be an abnormal consolidation of Arc+ neural ensembles during learning which may 

lead to cognitive deficits.

Like too much Arc may give rise to enhanced mGluR-LTD in FXS, reduced mGluR-LTD, 

too little Arc or dysregulation of Arc is associated with other genetic causes of autism and 
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ID, such as Tuberous Sclerosis Complex Syndrome (TSC). TSC results from loss of function 

mutations in either TSC1 or TSC2 which form a complex and regulates signaling to 

mTORC1 [138]. Tsc2+/− mice have reduced mGluR-LTD, reduced levels and protein 

synthesis rates of Arc in hippocampal area CA1 [139]. Similarly, cell autonomous deletion 

of Tsc1 or a dominant negative mutant of TSC2 result in reduced mGluR-LTD [140, 141] 

Remarkably, enhancing mGluR5 activity, using a positive-allosteric modulator, rescues 

behavioral phenotypes in in Tsc2+/− mice [139]. These results, together with the successful 

rescue of FXS phenotypes with mGluR5 antagonism, suggest that optimal levels of mGluR5 

activity, and perhaps mGluR-LTD, are critical for normal cognitive function. Whether 

mGluR5 therapeutic strategies restore normal Arc levels in TSC or FXS, has not been 

reported. The cellular mechanisms by which Tsc1/2 regulate Arc levels is unclear. Tsc2+/− 

neurons have overall reduced protein synthesis rates [139], which may lead to reduced Arc 

protein. Conversely, cultured Tsc1 KO neurons are hyperexcitable which leads to enhanced 

steady state levels of Arc mRNA and protein, but reduced activity-induced Arc transcription 

[142, 143]. In vivo, one would expect this to lead to blunted experience-induced Arc in 

relevant neurons which may contribute to the reduced mGluR-LTD observed with Tsc1 
deletion in hippocampal slices ex vivo.

Arc is also dysregulated in a mouse model of Angelman Syndrome, a neurodevelopmental 

disorder with symptoms of autism and intellectual disability caused by lack of expression of 

the maternal copy of UBE3A, a E3 ubiquitin ligase [144]. In AS mice, Ube3A KO, synaptic 

Arc levels are elevated which results in decreased synaptic AMPAR expression and reduced 

synaptic transmission in cultured neurons [105]. Ube3a regulates ubiquitination of Arc and 

promotes its degradation [105]. Although Ube3A may not directly ubiquitinate Arc, it also 

inhibits transcription of Arc [107, 145]. In either mechanism, Ube3A inhibits Arc levels. 

Although elevated levels of Arc are found in both FXS and AS, mGluR-LTD is deficient in 

AS mice [146], in contrast to FXS where mGluR-LTD levels are elevated. The deficient 

mGluR-LTD in AS mice may be because synaptic transmission is depressed and mGluR-

LTD mechanisms are saturated or “occluded”. Alternatively, or in addition, a deficit in 

mGluR5 signaling and association with scaffolding proteins is observed in AS mice which 

may prevent normal mGluR5 signaling to LTD mechanisms [146, 147]. The findings in 

FXS, TSC and AS indicate that mGluR-LTD phenotypes are not always predicted from 

steady state Arc levels, but abnormal levels of Arc and mGluR-LTD are associated with 

cognitive disorders.

Arc, mGluR5 and LTD in age-related cognitive ability and Alzheimer’s 

disease

In addition to neurodevelopmental disorders, dysregulation of Arc and Arc-dependent 

mGluR-LTD is implicated in age related-cognitive function and Alzheimer’s disease (AD) 

[148]. mGluR-LTD is enhanced in areas CA1 and CA3 in aged (2-year-old) rats that have 

maintained cognitive performance in comparison to their counterparts experiencing age-

related memory impairment [149, 150]. Although the correlation of Arc expression with 

successful cognitive aging in individual animals is unknown, experience-dependent 

induction of Arc in CA1 and other hippocampal areas declines with age [151, 152]. While 
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maintaining the ability to express normal levels of mGluR-LTD promotes cognition in aging, 

excessive or unregulated LTD is associated with dementia and Alzheimer’s disease (AD). 

Accumulating evidence indicates that AD is a disease of synapse loss or failure which may 

be caused in part by unregulated or excess LTD or synapse elimination mechanisms [153–

159]. The pathogenic, soluble amyloid β (Aβ) peptides inhibit LTP, as well as promote 

LTD-like decreases in postsynaptic AMPA and NMDARs and eventually lead to synapse 

loss [157–159]. Aβ -induced synaptic depression requires activation of mGluR5, and 

NMDARs in some cases, and prevents or occludes subsequent mGluR-LTD suggesting that 

Aβ is activating an mGluR-LTD mechanism to cause synaptic pathology [153, 157–159]. 

Furthermore, Aβ peptides bind to mGluR5 and stimulate signaling [160] and mGluR5 

antagonists reverse AD-related brain pathology and cognitive impairment in mouse models 

[161–163]. Surprisingly, whether Arc is necessary for amyloid β -induced synaptic 

depression or loss has not been reported. There are also alterations in basal and activity-

induced Arc expression in AD animal models and humans, likely reflecting altered circuit 

function in these models (reviewed in [148]). The combination of excess synaptic 

depression, due to Aβ accumulation, together with abnormal experience-regulated induction 

of Arc+ neural ensembles likely contribute to the devastating cognitive deficits associated 

with AD.

Although the role of Arc in AD-associated synaptic weakening is unclear in AD, Arc may 

contribute directly to AD pathogenesis by facilitating the activity-dependent generation of 

Amyloid β (Aβ). Sequential cleavage of APP by β-secretase (BACE1) and γ-secretase 

yields Aβ peptides that assemble and accumulate in AD. Arc binds directly to presenilin 1 

(PS1), the catalytic subunit of the γ-secretase complex, and disruption of the Arc-PS1 

interaction prevents activity-dependent increase in Aβ [109]. Arc had previously been 

shown to play a similar role in generating the transcriptional regulator, NICD (Notch 

intracellular domain), by γ-secretase cleavage of Notch [164]. Interestingly, Arc does not 

affect the rate of internalization of APP, BACE-1, or γ-secretase from the plasma membrane. 

Thus, Arc’s role in APP processing may not involve its interactions with either dynamin or 

AP-2, which function primarily in endocytic budding from the plasma membrane. Instead, 

Arc and PS1 co-localize in dendritic puncta that contain endocytic markers, including EEA1 

(early endosomes) and Rab11 (recycling endosomes) [109]. APP itself colocalizes with Arc 

and endophilin 3 in early (Rab5-positive), late (Rab7-positive), and especially recycling 

(Rab11-positive) endosomes. Importantly, the extent of colocalization of APP and γ-

secretase in the same endocytic structures was significantly reduced in neurons from Arc 

knockout mice. These results suggest a model wherein Arc assists in the sorting of γ-

secretase to APP-containing endosomes [109]. The finding that Arc induction can generate 

Aβ, together with studies showing that Aβ contributes to Arc induction raises the possibility 

of an Arc-mediated positive feedback mechanism in amyloidogenesis [109, 148].

Concluding Remarks

Arc is a fascinating gene and has captured the interest of neuroscientists for decades due to 

its links to learning and memory. The precise experience-dependent induction of Arc in 

select neural ensembles combined with the transport of Arc mRNA to dendrites provides 

mechanisms to control plasticity of specific synaptic inputs onto these neural ensembles 
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during learning. Recent work has surprisingly revealed roles of Arc in synaptic weakening 

mechanisms such as LTD and synapse elimination suggesting important roles for these 

forms of plasticity in learning and memory. The accumulating evidence of alterations in 

mGluR-LTD and Arc with diseases of cognition further support their key roles. Challenges 

for the future include linking what we know about Arc-dependent synaptic plasticity 

mechanisms to the plasticity of experience-induced, Arc+, neural ensembles and how this 

mediates learning, as well as understanding the cellular and molecular mechanisms by which 

Arc is necessary for so many diverse forms of synaptic plasticity. Such basic understanding 

of these processes will be necessary to know how mGluR-LTD and Arc dysregulation 

contribute to cognitive disease.
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Highlights

• mGluR1/5-induced dendritic synthesis of Arc causes LTD and synapse 

elimination

• Arc stimulates endocytosis of postsynaptic AMPA receptors and dynamin 

assembly

• Experience-induced Arc primes CA1 neurons for mGluR-induced LTD

• Dysregulation of mGluR-LTD and Arc synthesis are linked with 

neuropsychiatric disease
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Figure 1. Proposed model of mGluR-LTD priming by novelty-induced Arc in hippocampal CA1 
neurons based on data from [20]
A novel experience induces transcription of Arc mRNA in a select population of CA1 

neurons (ArcGFP+). After induction, Arc mRNAs are transported to dendrites where 

evidence suggests it is translationally suppressed [31, 48, 50]. Ex vivo activation of group 1 

mGluRs (in slices) activates Arc translation in dendrites, of those neurons with recent Arc 
mRNA induction (ArcGFP+), but not neighboring ArcGFP(−) neurons [13, 14]. Arc protein 

increases the endocytosis rate of AMPA receptors, causing long-term synaptic depression 

only in ArcGFP+ neurons. Repeated experience of the same environment reactivates 

synapses on the same neurons initially activated when the environment was novel and Arc 
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mRNA was induced (ArcGFP+) [1] which is proposed to suppress synaptic transmission 

onto these neurons in vivo through a similar mechanism as LTD. Modified from [20].
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Figure 2. Scheme showing the interaction sites of Arc with Endophilin 3 and Dynamin 2
Based on secondary structure predictions, Arc is divided into two domains connected by an 

extended intrinsically disordered region. The N-terminal half contains two stretches 

predicted to fold into α-helices, the first (~residues 30–60) with coiled-coil (CC) forming 

potential, the second (~residues 85–130; designated “H” in the figure) containing potential 

amphipathic segments. The C-terminal half of Arc contains a segment (residues 217–362) 

that is structurally similar to the retroviral Gag capsid [165]. The domains of dynamin and 

endophilin are described in the text.
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Figure 3. Potential role of experience and Arc dependent priming of LTD in refinement of neural 
ensembles with repeated experience or training
Cao et al, [5] demonstrated that repeated training on a motor task resulted in a sparse neural 

ensemble of highly active neurons. Motor cortical neurons in M2 induce Arc on day 1 of 

training (“1”), as imaged with a GFP transcriptional reporter in vivo which may prime these 

neurons for synaptic plasticity during repeated training days. Neurons with initially weak 

levels of Arc promoter activity may be primed for LTD which may cause them to be inactive 

“0” or “dismissed” on subsequent days of training. Neurons with stronger levels of Arc 

promotor activity on Day 1 may be more likely to undergo LTP and to “retain” their strong 

neuronal activity during subsequent days of training. (Figure is modified from [5]).
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