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Abstract
Combination immunotherapies utilizing complementary modalities that target distinct tumor attributes or immunosuppres-
sive mechanisms, or engage different arms of the antitumor immune response, can elicit greater therapeutic efficacy than the 
component monotherapies. Increasing the number of agents included in a therapeutic cocktail can further increase efficacy, 
however, this approach poses numerous challenges for clinical translation. Here, a novel platform to simplify combination 
immunotherapy by covalently linking immunotherapeutic agonists to the costimulatory receptors CD134 and CD137 into 
a single heterodimeric drug, “OrthomAb”, is shown. This reagent not only retains costimulatory T cell activity, but also 
elicits unique T cell functions that are not programmed by either individual agonist, and preferentially expands effector T 
cells over Tregs. Finally, in an aggressive melanoma model OrthomAb elicits better therapeutic efficacy compared to the 
unlinked agonists. This demonstration that two drugs can be combined into one provides a framework for distilling complex 
combination drug cocktails into simpler delivery platforms.
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Abbreviations
Eomes  Eomesodermin
GzmB  Granzyme B
MTz  Methyltetrazine-PEG5-NHS ester
TCO  Trans-cyclooctene-PEG4-NHS ester

Introduction

Biologics that target tumor cell surface proteins are effective 
in treating certain cancers. For instance, the anti-CD20 mAb 
(rituximab) elicits ~ 50% response rates in non-Hodgkin’s 
B cell lymphoma patients who previously failed chemo-
therapy [1, 2]. Nevertheless, relapse can occur due to out-
growth of resistant tumors [3], and many cancers are not 
amenable to treatment with these types of mAbs that target 
antigens expressed on both tumors and the healthy tissues 
from which they arise. Alternatively, immunomodulatory 
mAbs can target tumors indirectly by activating antitumor 
immune responses. Thus, although tumors express mutated 
proteins that give rise to neoepitopes that can be recognized 
by CTL [4, 5], they employ a variety of immunosuppressive 
mechanisms to evade T cell-mediated elimination [6–8]. For 
example, T cell function can be dampened through engage-
ment of checkpoint receptors by ligands expressed on APC 
[9], tumor cells or tumor-infiltrating myeloid cells [10]. So 
far, mAb antagonists to the checkpoint molecules CTLA-4 
and PD-1/PD-L1 have been approved to treat patients with 
melanoma and other advanced cancers [11–14], and antago-
nists to other checkpoint molecules such as LAG-3, VISTA, 
Tim-3 and TIGIT are under development [15, 16]. Another 
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mechanism that contributes to ineffectual antitumor T cell 
responses is presentation of tumor epitopes by APC express-
ing low levels of costimulatory ligands [17, 18]. To coun-
ter this, agonist mAbs to costimulatory TNFR superfamily 
members such as CD134 (OX40), CD137 (4-1BB), GITR 
and CD27 [19–22] have been developed that are therapeutic 
in pre-clinical mouse models and currently undergoing test-
ing in human cancer clinical trials.

Combining immunomodulatory mAbs within the same 
class can augment therapeutic outcomes. For example, since 
anti-CTLA-4 and -PD-1/PD-L1 are generally thought to act 
during distinct early and late stages of the antitumor response, 
respectively [10, 23, 24], it is perhaps not surprising that 
combining the two checkpoint inhibitors boosts therapeutic 
response compared to either alone [25]. We found over a 
decade ago that combining anti-CD134 plus -CD137 elicits 
robust CD8 CTL responses and tumor immunity [26, 27], a 
result confirmed by others and in multiple systems [28, 29]. 
Importantly, this CD134 CD137 “dual costimulation” also 
programs CD4 T cells to develop cytotoxic tumor cell killing 
potential [30], as well as deliver potent therapeutic help [31]. 
Thus, dual costimulation induces key antitumor responses.

While cancer immunotherapy is clearly moving towards 
the implementation of combination therapies, there are regu-
latory complexities involved in approval for multi-agent clin-
ical testing [32], as well as increased potential for adverse 
events [25, 32]. Although 2-drug combination therapies are 
being tested clinically (e.g., [25]), and CD134 CD137 dual 
costimulation is in Phase 1 (NCT02315066), combinations 
involving three or more agents may have even greater effi-
cacy [28, 33, 34]. Thus, a major limitation is the lack of 
novel approaches to combination therapy that avoid complex 
mixtures of reagents. Here, we have addressed this scientific 
gap by covalently linking CD134 and CD137 agonists into a 
single drug platform, termed “OrthomAb”, which not only 
retains the costimulatory activity of the unlinked agonists, 
but additionally programs unique T cell functions and pref-
erentially expands effector T cells over Tregs. Importantly, 
OrthomAb also elicits therapeutic tumor immunity in an 
aggressive melanoma model. This approach provides a blue-
print for distilling complex combination immunotherapies 
into more clinically-feasible delivery approaches.

Materials and methods

Animals

Six- to 8-week-old male or female C57BL/6 (B6) mice 
(Jackson Laboratory) and OVA (257SIINFEKL264)-specific 
OT-I TCR transgenic  Rag1−/− B6 mice (bred in-house) were 
used as splenocyte sources for in vitro cultures. 6- to 8-week-
old female B6 mice were used for B16–F10 tumor therapy 

experiments, that were performed as previously described 
[31]. All mice were maintained in the UConn Health Animal 
Facility in accordance with National Institutes of Health and 
UConn Health Institutional Animal Care and Use Commit-
tee (IACUC) guidelines.

OrthomAb synthesis

The heterobifunctional chemical linkers trans-cyclooctene-
PEG4-NHS ester (TCO) and methyltetrazine-PEG5-NHS 
ester (MTz) (both from KeraFast) were coupled to the mAbs 
anti-CD137 (clone 3H3, rat IgG2a) and -CD134 (clone 
OX86, rat IgG1) (10 mg each, both from BioXCell) in 4 ml 
PBS at a linker:mAb molar ratio of 7:1 at room temperature 
for 1 h. Coupled mAbs were desalted using Amicon Ultra-4 
Centrifugal Filter Units with Ultracel-10 membranes, con-
centrated to a volume of 1 ml each, and then clicked together 
by mixing followed by 1 h incubation at room temperature. 
The resulting heteroconjugate (OrthomAb) was then isolated 
from the heterogeneous mixture of reaction products (that 
also included unlinked monomers and higher-order multim-
ers) using a BioLogic DuoFlow QuadTec 10 medium-pres-
sure liquid chromatography system (BioRad) to perform 3 
successive rounds of size-exclusion chromatography with a 
HiPrep 16/60 Sephacryl S-300 HR column (GE Healthcare 
Life Sciences). Chromatographic tracings of A280 versus 
time and SDS–PAGE were used to visualize species pre-
sent in each fraction, and appropriate fractions were pooled 
for subsequent purifications. Purity of the final isolated 
OrthomAb heterodimer was determined using ImageJ den-
sitometry software (NIH), and concentration was determined 
by Pierce BCA Protein Assay (Thermo Fisher Scientific). An 
isotype control heteroconjugate was generated using similar 
methodology and anti-HRP (clone HRPN, IgG1) and anti-
TNP (clone 2A3, rat IgG2a) (both from BioXCell).

In vitro costimulation assays

B6 or OT-I splenocytes (1 × 105 cells in 200 µl RPMI plus 
10% FBS per well in a 96-well plate) were stimulated for 
the indicated times with the indicated amounts of anti-CD3 
mAb (clone 145-2C11, BD Biosciences) or SIINFEKL pep-
tide (NE BioLabs), respectively, plus OrthomAb, unlinked 
costimulators or control polyclonal rat IgG. Secreted 
cytokines in culture supernatants were measured using 
ELISA kits from BD Biosciences (for IFN-γ, IL-2 and 
IL-6) and R&D Systems (for IL-17) as per the manufactur-
ers’ instructions. Cytokine concentrations were calculated 
using MARS Data Analysis Software from absorbance 
values measured using a CLARIOstar microplate reader 
(BMG LABTECH). Flow cytometry was used to measure 
cell proliferation (dilution of CellTrace Violet, Thermo 
Fisher Scientific), and induction of CD134 (OX86), CD137 
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(1AH2) and CD25 (PC61.5) surface expression on conven-
tional  (Foxp3neg)  CD4+ and  CD8+ T cells and  Foxp3+CD4+ 
T cells. Intracellular staining for Foxp3 (FJK-16 s), GzmB 
(NGBZ) and Eomes (Dan11mag) was performed following 
fixation and permeabilization using Foxp3 staining buffer 
(Tonbo Biosciences). Antibodies were purchased from BD 
Biosciences, eBioscience, or Tonbo Biosciences, and data 
were acquired using an LSR II (BD Biosciences) or MAC-
SQuant Analyzer 10 (Miltenyi Biotec), and analyzed using 
FlowJo software (FlowJo, LLC).

Tumor immunotherapy

B16-F10 melanoma cells (1 × 105, American Type Culture 
Collection) that were passaged less than 1 month were intra-
dermally injected into the back of B6 mice. Costimulation 
therapy was administered as indicated when tumors became 
visible (day 2 or 3, when tumors were at least 1 mm x 1 mm 
surface area), and tumor growth monitored every 1–2 days 

at the indicated times. Surface area  (mm2) was calculated by 
multiplying the longest diameter and the diameter perpen-
dicular to it. Area under the curve (AUC) analysis [40] was 
performed as previously described [31].

Statistics

Graphs were generated and statistical analyses performed 
using GraphPad Prism (GraphPad Software, Inc.). Compari-
sons between two groups were performed using unpaired, 
two-tailed, t tests plus Welch’s correction. Comparisons 
between three or more groups were performed using one-
way ANOVA plus Tukey’s multiple comparison test. 
Comparisons between titration curves or time courses of 
two groups were performed using two-way ANOVA plus 
Sidak’s multiple comparison test. Comparisons between 
titration curves or time courses of three of more groups were 
performed using two-way ANOVA plus Tukey’s multiple 
comparison test. Quantitative data are expressed as mean 
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value ± SEM or SD for datasets with n ≥ 3 or n = 2, respec-
tively. Tumor survival curve comparisons were performed 
using the log-rank (Mantel-Cox) test.

Results

OrthomAb was synthesized by conjugating anti-CD134 with 
anti-CD137 using MTz and TCO couplers that were attached 
to the mAbs at an optimized 7:1 ratio (depicted in Fig. 1a) 
via click chemistry [35]. SDS–PAGE indicated that the 
conjugation reaction contained heterodimers (~ 300 kDa), 
higher-order multimers and residual monomers (Fig. 1b). 
The heterodimers were enriched by three successive rounds 
of FPLC size-exclusion chromatography using Sephacryl 
300 (Fig. 1c–e) to yield a final OrthomAb product that was 
> 90% dimer (Fig. 1f).

To test if OrthomAb costimulates T cells, C57BL/6 (B6) 
splenocytes were stimulated in vitro with a very low con-
centration of soluble anti-CD3 mAb (50 ng/ml) that only 
partially induced CD25 (Fig. 2a). Importantly, addition 
of OrthomAb to the cultures (1.25 µg/ml) substantially 

increased CD25 expression on both CD4 and CD8 T cells 
(Fig. 2a), and also increased proliferation (CellTrace Vio-
let dilution) of conventional CD4 and CD8 T cells in a 
dose-dependent manner (Fig. 2b, upper and middle pan-
els). Strikingly, however, Treg proliferation appeared to 
be inhibited by OrthomAb (Fig. 2b, lower panels), which 
prompted further analysis of the effect of OrthomAb and 
unlinked costimulators on the different T cell subsets. In 
contrast to conventional T cells that express CD134 and 
CD137 following TCR stimulation,  Foxp3+ Tregs consti-
tutively express CD134 and CD137, and agonists to both 
can impact Treg expansion and function [36–39]. Unlinked 
CD134 and CD137 agonists individually, as well as in com-
bination, augmented the expansion of anti-CD3-stimulated 
 Foxp3+ Tregs, whereas at the doses used only anti-CD137 
and the unlinked combination boosted  Foxp3neg (conven-
tional) CD4 and CD8 T cell expansion (Fig. 2c, gray ver-
sus black bars). Notably, although OrthomAb boosted the 
expansion of conventional CD4 T cells beyond that elicited 
by unlinked CD137 agonist and the unlinked combination, 
it actually elicted weaker Treg expansion in comparison to 
the unlinked combination (Fig. 2c, bottom panel). CellTrace 
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proliferation analysis revealed that OrthomAb, but not 
unlinked single and dual costimulators, actually inhibited 
anti-CD3-induced Treg cell division (Fig. 2d, e). The net 
outcome of this effect of OrthomAb on the different T cell 
subsets was an increased ratio of  Foxp3neg effector T cells to 
 Foxp3+ Tregs with OrthomAb compared to unlinked single 
and dual agonists (Fig. 2f).

A key clinical consideration is the capacity of 
OrthomAb to impact the amount and type of cytokine 
secreted by stimulated T cells. This was first tested 

using  Rag−/− OT-I TCR transgenic CD8 T cells stimu-
lated in vitro with cognate SIINFEKL peptide (Fig. 3). 
OrthomAb addition to the SIINFEKL-stimulated cell cul-
tures elicited significantly greater secretion of IL-2 and 
IFN-γ compared to isotype control IgG, a control con-
jugate of irrelevant specificity, or media alone (Fig. 3a). 
Second, in a titratable manner, OrthomAb augmented 
secretion of IL-2, IFN-γ and, unexpectedly, IL-6 (Fig. 3b). 
Further, we tested the individual costimulators against 
OrthomAb for cytokine production (Fig. 4a, b) and CD25 
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expression (Fig. 4c), and the data show that OrthomAb 
induced responses far beyond anti-CD134 or -CD137. 
Similarly, OrthomAb elicited much higher levels of IFN-
γ, IL-6 and IL-17 secretion from soluble anti-CD3-stim-
ulated B6 splenocytes compared to unlinked anti-CD134 
and -CD137 (Fig. 5a), and curiously, only OrthomAb elic-
ited IL-6 secretion in the absence of anti-CD3 (Fig. 5b, 
bottom panel). Finally, OrthomAb elicited much greater 
secretion of IFN-γ, IL-6 and IL-17 from soluble anti-CD3-
stimulated B6 splenocytes compared to the unlinked anti-
CD134 plus anti-CD137 combination (Fig.  5c). Thus, 
these data suggest that OrthomAb has a unique capacity 
to influence not only proliferation but also the amount and 
type of cytokine produced, which may prove efficacious 
during a biological response.

Next, the aggressive B16-F10 (B16) melanoma model 
was used to examine if OrthomAb could costimulate T 
cells in vivo and elicit antitumor immunity. In the first 
study, mice harboring established B16 tumors were treated 
with OrthomAb (150 µg) or control conjugate on day 3 
(after tumors became visible) and then again on day 6. 
OrthomAb reduced tumor size relative to the control, with 

statistically significant differences on days 4–6, 9 and 10, 
and reduced overall tumor burden (area under the curve 
[40]), through day 13 (supplementary Fig. 1a). Analysis 
of TIL on day 18 revealed that the percentages of  CD8+ 
and  CD4+ TIL that were double-positive for the cytol-
ytic granule protein granzyme B (GzmB) and the T-box 
transcription factor Eomesodermin (Eomes) that programs 
CTL function [41] were ~ twofold higher (p < 0.001) with 
OrthomAb compared to control-treated tumors (sup-
plementary Fig. 1b). In a second experiment, mice with 
established B16 tumors were treated with OrthomAb, 
anti-CD134, anti-CD137 or control IgG on days 2 (after 
the tumors became visible), 5 and 8. At the doses used, 
monotherapy with the individual costimulators elicited, 
at best, only modest reductions in tumor growth (Fig. 6a) 
as quantified by either tumor size at day 14 (Fig. 6b) or 
area under the curve through day 14 (Fig. 6c). In contrast, 
OrthomAb significantly reduced tumor burden ~ twofold 
(Fig. 6a–c) and extended survival compared to control IgG 
(Fig. 6d).
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Discussion

Combination immunotherapies can more effectively treat 
cancer compared to monotherapies [25], and increasing the 
number of agents included in these therapeutic cocktails 
can further boost efficacy [28, 33, 34]. Nevertheless, this 
approach, while feasible in mouse models, poses various 
challenges for human clinical translation, including regu-
latory complexities involved in approval for multi-agent 
clinical testing [32]. The OrthomAb approach provides a 
means to streamline combination immunotherapy by cova-
lently joining two separate agents, CD134 and CD137 ago-
nists, into a single drug platform. Ultimately, this approach 
could be replicated by conjugating other agents that, when 
administered with OrthomAb, would in essence distill a 
4-drug combination therapy into a simpler 2-drug com-
bination. This would be advantageous in several ways, 
including reducing the number of clinical trial arms.

In contrast to other well-established dual-specific 
immunotherapeutics, such as bispecific antibodies that 
bind a tumor surface antigen (CD20, EpCAM, HER2, or 
others) as well as CD3 to enable tumor cell killing by teth-
ering CTL to tumor cells [42], OrthomAb is a tetravalent 
heteroconjugate that comprised mAb agonists to two sepa-
rate costimulatory receptors that are each expressed on T 
cells. This might co-cluster CD134 and CD137 within the 

same synapse, initiating a unique or “hybrid” downstream 
signal that programs unexpected, but potentially useful, T 
cell functions. This possibility is consistent with our cur-
rent findings that OrthomAb elicits greater secretion of 
the T cell effector cytokines IFN-γ and IL-17 compared 
to unlinked CD134 and CD137 single and dual mAb ago-
nists. Alternatively, simply multimerizing individual ago-
nists may be sufficient to augment costimulatory activity. 
Nevertheless, OrthomAb was unique in its ability to elicit 
IL-6 secretion, even in the absence of TCR stimulation. 
Given that IL-6 is known to inhibit Treg stability and func-
tion [43–46], this result might also help to explain another 
unexpected property of OrthomAb, which is its ability to 
favor the expansion of effector T cells over Tregs (in com-
parison to unlinked dual agonists). This effect appears 
fortuitous given that a major issue in developing T cell-
based immunotherapies is the potential of modalities to 
promote the expansion of effector T cells while minimiz-
ing that of Tregs, particularly given that both use IL-2 as 
a growth factor, and thus likely contributes to the ability 
of OrthomAb to elicit better antitumor efficacy compared 
to the individual unlinked agonists. Ultimately, the mecha-
nisms underlying these responses elicited by OrthomAb 
may be highly complex given that multiple T cell and 
non-T cell populations express CD134 and CD137, and 
hence the responses of certain cell types may be the 
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consequence of either direct effects by OrthomAb or indi-
rect effects mediated by other responding cells.

In sum, fusing two anti-cancer biologics into a single 
drug platform provides a novel blueprint for distilling com-
plex combination therapies into a smaller number of thera-
peutic agents, thus simplifying clinical translation.
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