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Summary

In recent mutation studies, analyses based on protein domain positions are gaining popularity over 

gene-centric approaches since the latter have limitations in considering the functional context that 

the position of the mutation provides. This presents a large-scale simultaneous inference problem, 

with hundreds of hypothesis tests to consider at the same time. This paper aims to select 

significant mutation counts while controlling a given level of Type I error via False Discovery Rate 

(FDR) procedures. One main assumption is that the mutation counts follow a zero-inflated model 

in order to account for the true zeros in the count model and the excess zeros. The class of models 

considered is the Zero-inflated Generalized Poisson (ZIGP) distribution. Furthermore, we assumed 

that there exists a cut-off value such that smaller counts than this value are generated from the null 

distribution. We present several data-dependent methods to determine the cut-off value. We also 

consider a two-stage procedure based on screening process so that the number of mutations 

exceeding a certain value should be considered as significant mutations. Simulated and protein 

domain data sets are used to illustrate this procedure in estimation of the empirical null using a 

mixture of discrete distributions. Overall, while maintaining control of the FDR, the proposed two-

stage testing procedure has superior empirical power.
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1. Introduction

Interest towards multiple testing procedures has been growing rapidly in the advent of the 

so-called genomic age. With the breakthrough in large-scale methods to purify, identify and 

characterize DNA, RNA, proteins and other molecules, researchers are becoming 

increasingly reliant on statistical methods for determining the significance of biological 

findings (Pollard et al., 2005). Gene-based analyses of cancer data are classic examples of 

studies which present thousands of genes for simultaneous hypothesis testing. However, 

Nehrt et al. (2012) reported that gene-centric cancer studies are limited since the functional 

context that the position of the mutation provides is not considered. In lieu of this, Nehrt et 

al. (2012) have shown that protein domain level analyses of cancer somatic variants can 

identify functionally relevant somatic mutations where traditional gene-centric methods fail 

by focusing on protein domain regions within genes, leveraging the modularity and 

polyfunctionality of genes.

In protein domain-centric studies, somatic mutations from sequenced tumor samples are 

mapped from their genomic positions to positions within protein domains, enabling the 

comparison of distant genomic regions that share similar structure and amino acid 

composition (Peterson et al., 2013). In the analysis of sequenced tumor samples, it is 

assumed that the mutational distribution will consist of many “passenger” mutations, which 

are non-functional randomly distributed background mutations, in addition to rare functional 

“driver” mutations that reoccur at specific sites within the domain and contribute to the 

initiation or progression of cancer (Parmigiani et al., 2007). The major interest is in a single 

domain, how to identify the highly mutated positions compared to the background where the 

number of positions in a domain can be as large as several hundreds.

Motivated by the aforementioned domain-level analyses, we propose a methodology for 

identifying significant mutation counts while controlling the rate of false rejections. Dudoit 

et al. (2003) reported that much of the statistics microarray literature is focused on 

controlling the probability of a Type I error, a “false discovery”. A traditional approach is to 

control the family-wise error rate (FWER), the probability of making at least one false 

discovery. However, with the collection of simultaneous hypothesis tests in the hundreds or 

thousands, trying to limit the probability of even a single false discovery leads to lack of 

power. Alternatively, in a seminal paper, Benjamini and Hochberg (1995) introduced a 

multiple hypothesis testing error measure called False Discovery Rate (FDR). This quantity 

is the expected proportion of false positive findings among all the rejected hypotheses. 

Among the FDR-controlling test methods, Efron et al. (2001) developed an empirical Bayes 

approach where they established a close connection between the estimated posterior 

probabilities and a local version of the FDR.

A key step in controlling the local false discoveries is to estimate the null distribution of the 

test statistics. Efron (2004) stated that the test statistics in large-scale testing may not 

accurately follow the theoretical null distribution. Instead, the density of the null distribution 

is estimated from the large number of genes. In these microarray experiments, Efron (2005) 

employed a normal mixture model and proposed maximum likelihood and mode matching to 

estimate the empirical null distribution. Park et al. (2011) proposed a local FDR estimation 
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procedure based on modeling the null distribution with a mixture of normal distributions. 

However, these existing methods are based on the assumption that the null is a mixture of 

continuous distributions. In the case of domain-level analyses, the data is characterized as 

mutation counts among N positions in the domain. This indicates that the available methods 

in the estimation of the empirical null should be extended to a mixture of discrete 

distributions.

The rest of the paper is organized as follows. In Section 2, we discuss the problem in detail 

and review two existing multiple testing procedures, namely Efron’s Local FDR procedure 

and Storey’s procedure. In Section 3, we introduce the estimation procedure for f0, f and π0, 

where the null distribution is assumed to be a zero-inflated model. Also, a novel two-stage 

multiple testing procedure is presented in this section. In Section 4, the performance of the 

new procedure is studied via simulations and the results for real data sets are presented. 

Some concluding remarks will be presented in Section 5.

2. Multiple Testing Procedures controlling FDR

In this section, we briefly discuss the motivating example and review the existing procedures 

for analysis. The collection of the original dataset is a = (a1, a2, …, aN)′, where ai is the 

number of mutations in the ith position of the specific domain with N positions. We define 

 as the set of the unique values of a, K = max(a), and L is the cardinality of  where L ≤ 

K + 1. Some relevant features of a follow. A large proportion of positions do not have any 

mutation, ai = 0. Also, L is relatively small compared to N, which means that the number of 

mutations in many positions are tied. Since our goal is to identify the positions with extra 

disease mutation counts, it is only reasonable to have the same conclusion for positions 

wherein the number of mutations are tied. Therefore, we transform the data into the 

observed “histograph” of positions over “mutation counts”. We define nj =| {i : ai = j} |, as 

the number of positions with j mutations, j ∈ , where  ≡ {j : j ≥ 0, nj > 0} and 

∑ j ≤ K n j = N. The ordered data xN can be represented as a partition of the unique values of 

a, that is,

xN′ = (x0′ , x1′ , …, xK′ ) = (0, 0, …, 0
x0′

, 1, 1, …, 1
x1′

…, K, K, …, K)
xK′

where xj is the column vector containing nj of js.

For any single domain of interest, a total of L mutation counts can be decomposed into two 

groups, 0 and 1, where 0 is the collection of small number of mutation counts which 

is considered to be non-significant and 1 is the set of large number of mutation counts 

which consists of significantly mutated positions. Let the prior probabilities of the two 

groups be π0 or π1 = 1 − π0, and assume corresponding densities, f0 or f1. Define f0 to be 

the null distribution and f1 to be the alternative distribution. Therefore, we consider the 

problem of testing L null hypotheses simultaneously, H0j is true for j ∈ , | | = L, where 

H0j is stated as the number of mutations j is generated from f0.
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For a given position, the number of mutations follow one of the two distributions f0 or f1, so 

the probability density function of the mixture distribution can be represented as

f (ai) = π0 f 0(ai) + (1 − π0) f 1(ai) (1)

and our goal is to identify the positions which have significantly different patterns from the 

null. For continuous data, Efron (2005) introduced the idea of “zero assumption” where 

observations around the central peak of the distribution consists mainly of null cases. Using 

this assumption, f0 is estimated using Gaussian quadrature which is based on derivative at 

the mode. However, such a procedure is not applicable to discrete data. In our problem on 

discrete data, we introduce the following assumption on the null distribution which plays a 

key role throughout this paper.

Assumption on f0:

f (ai) = π0 f 0(ai)   for  ai ≤ C   for some integer C (2)

From the assumption, ai ≤ C are guaranteed to be from f0 and ai > C are generated from the 

mixture of f0 and f1. We will discuss more details about how to choose the value of C in the 

next section. We do not have the issue of identifiability in the mixture model (1) since f1 has 

a different support from that of f0 from the assumption (2), so any parametric model for f0 

considered in our paper is uniquely identified.

Benjamini and Hochberg (1995) employed a sequential p-value method to determine r that 

tells us to reject p(1), p(2), …, p(r), where p(1), p(2), …, p(K) are the ordered observed p-

values. Storey (2002) improved the Benjamini-Hochberg (BH) procedure with the inclusion 

of the estimator of the null proportion, π̂
0, which indicates that we reject p(1), p(2), …, p(ℓ) 

such that

ℓ = max  i: p(i) ≤
α∑ j ≥ in j

Nπ0

The BH procedure and Storey’s procedure are equivalent, that is r = ℓ, if we take π̂
0 = 1. The 

details about the estimation of π0 is provided in the next section. Moreover, following Efron 

(2007), we define the local FDR at any mutation count, say t, as

fdr(t) =
π0 f 0(t)

f (t) (3)

which indicates that fdr(t) is the posterior probability of a true null hypothesis at t. The 

interpretation of the local FDR value is analogous to the frequentist’s p-value wherein local 

FDR values less than a specified level of significance provide stronger evidence against the 

null hypothesis.
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3. Methodology

3.1 Model Specification

Depending on the application, we assume that the mutation counts follow a zero-inflated 

model in order to account for the true zeros in the count model and the excess zeros. For 

example, the zero-inflation observed in protein domain data is due to the negative selection 

of mutations that can not occur in either a healthy cell or a cancer cell. Biologically, zero-

inflation is expected due to of the many protein positions that are crucial for proper function, 

often leading to a cell that can not perform the functions necessary for life. The class of 

models considered is the Generalized Poisson (GP) distribution introduced by Consul and 

Jain (1970), with an additional zero-inflation parameter. Let T be a nonnegative integer-

valued random variable where relative to Poisson model, it is overdispersed with variance to 

mean ratio exceeding 1. If T ~ GP(λ, θ), then the probability mass function can be written 

as

P(T = t) = g(t) = λ(λ + θt)t − 1

t! e−λ − θt (4)

where 0 ≤ θ < 1 and λ > 0. If zero is observed with a significantly higher frequency, we can 

include a zero-inflation parameter in (4) to characterize the distribution. Then X ~ ZIGP(η, 
λ, θ) and the probability that X = j, denoted by f0(j), is

f 0( j) = ηI{0}( j) + (1 − η)g( j)I{0, 1, 2, …}( j)

where j is a nonnegative integer, 0 ≤ η < 1, 0 ≤ θ < 1 and λ > 0. The indicator function I (j) 
is equal to 1 if j ∈  and 0 otherwise. Recently, ZIGP models have been found useful for the 

analysis of heavy-tailed count data with a large proportion of zeros (Famoye and Singh 

(2006)). The ZIGP model reduces to Zero-Inflated Poisson (ZIP) distribution when θ = 0, 

Generalized Poisson distribution (GP) when η = 0 and Poisson distribution when η = 0 and 

θ = 0. The ZIP model, first introduced by Lambert (1992), is applied when the count data 

possess the equality of mean and variance property while taking into consideration the 

structural zeros and zeros which exist by chance. Meanwhile, the Zero-Inflated Negative 

Binomial (ZINB) model is widely used for handling data with population heterogeneity 

which may be caused by the occurrence of excess zeros and the overdispersion due to 

unobserved heterogeneity (Phang and Loh, 2013). The rationale for choosing ZIGP as a 

model for f0 was provided by Joe and Zhu (2005). They showed that ZIGP provides a better 

fit than ZINB when there is a large fraction of zeros and the data is heavily right-skewed. 

They compared the probabilistic properties of the zero-inflated variations of NB and GP 

distributions, such as probability mass and skewness, while keeping the first two moments 

fixed. Using this result, it is worthwhile to consider ZIGP rather than ZINB given that the 

mutation count data exhibited both features.
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3.2 Estimation of f0, f and π0

From (3), the local FDR formulation consists of unknown quantities f0, f, and π0 which 

must be estimated accordingly. We follow the idea of “zero assumption” in Efron (2005) 

where f0 is assumed to be normally distributed and Park et al. (2011) which modeled f0 as a 

mixture of normal distributions.

However, since f0 is unknown in practice, four count models will be compared in order to 

come up with estimates for the parameters of the null distribution. These models belong to 

the class of ZIGP distribution, namely, (i) ZIGP (ii) ZIP (iii) Generalized Poisson and (iv) 

Poisson distribution. If the true f0 is ZIGP and the model used to estimate f0 is ZIGP then we 

expect superior results compared to the other three distributions. Moreover, if the true null 

distribution is ZIP, then we expect better results for ZIP and ZIGP distribution compared to 

GP and Poisson distribution. This suggests that since ZIGP can characterize overdispersion, 

even if there is none such as the case of ZIP, it should still be able to capture the behavior of 

f0 accurately.

To estimate the parameters of f0 for any of these four count models, the EM Algorithm 

proposed by McLachlan and Jones (1988) will be utilized. For truncated data sets described 

in (2), fitting the model using EM algorithm is not straightforward as when all data points 

are available. The details of the EM Algorithm are provided in Web Appendix A.

Moreover, it is straightforward to estimate f(j) by using relative frequency given by f̂(j) = 

nj/N. Using the assumption on f0, for j ≤ C, f(j) from (1) reduces to π0f0(j). Hence, 

∑ j ≤ C π0 f 0( j) = ∑ j ≤ C f ( j). Finally, the estimate of π0 is min(1, π̂
0) where π0̂ can be 

computed as

π0 =
∑ j ≤ C f ( j)

∑ j ≤ C f 0( j)

using f̂(j) = nj/N and the estimate of f0 after plugging in Θ̂ resulting from the EM algorithm.

3.3 Choice of the Cut-off C

In our model, we assume that we can identify a cut-off C, wherein positions with number of 

mutations greater than C contain more mutations than what would be expected in the null 

model. The choice of the cut-off C is of paramount importance since the estimation of f0 and 

π0 depend on C. It is more realistic to assume that C is unknown, so such a predetermined C 
may affect the result of local FDR procedure seriously. In particular, if C is predetermined 

and is chosen to be larger than the true value, the null distribution is estimated based on 

observations from alternative hypothesis as well as null hypothesis, so the estimated null 

distribution is contaminated by the alternative distribution. This will cause insensitivity of 

local FDR procedure in detecting the alternative hypothesis. On the other hand, if C is 

chosen to be smaller, then the null distribution is estimated only based on small values, so 

the estimation of the null distribution especially at the tail part is less reliable. Empirically, 

the FDR procedure yields liberal results in that there are too many rejections resulting in 

failure in controlling a given level of FDR.
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The estimation of the cut-off C has been formulated using the likelihood function. Define the 

index sets  = {j : j ≥ 0, nj > 0}, (C) = {j : 0 ≤ j ≤ C, nj > 0, f1(j) = 0}. Note that (C1) ⊂ 
(C2) for C1 < C2 and f(j) = π0f0(j) when j ∈ (C). The likelihood function of (0, n0), …, 

(K, nK) for a given (ν) is

L(Θ∗, f ) = ∏
j ≤ K

f ( j)
n j = ∏

j ≤ ν
(π0 f 0( j))

n j ∏
j ≥ ν + 1

f ( j)
n j

where π0f0 depends on Θ* = (π0, η, θ, λ) = {π0} ∪ Θ. The log likelihood is also

log L(Θ∗, f ) = ℓν(Θ∗, f ) ≡ ∑
j ≤ ν

n j log(π0 f 0( j)) + ∑
j ≥ ν + 1

n j log  f ( j)

since f(j) = π0f0(j) for j ∈ (ν). This leads to

ℓν(Θ∗, f ) ≡ ∑
j ≤ ν

n j log
π0 f 0( j)

f ( j) + ∑
j ≤ K

n j log  f ( j)

ℓ0

We adopt the idea of sequential testing to detect the change point in which the observations 

are generated from the mixture distribution f. More specifically, suppose we observed (0, 

n0), (1, n2), …, (K, nK) sequentially from f0(0), f0(1), …, f0(C), f(C + 1), …, f(K) where 

distribution is changed from f0 to f at C + 1. Our goal is to detect the change point C based 

on assuming that we observe 0, 1, 2, …, K sequentially. For a given ν, we define Sν(Θ, f) as

Sν(Θ, f ) = ∑
j ≤ ν

n j log  f 0( j) + ∑
j ≥ ν + 1

n j log  f ( j) = ∑
j ≤ ν

n j log
f 0( j)
f ( j) + ∑

j ≤ K
n j log  f ( j) .

Maximizing Sν(Θ, f) is equivalent to the CUSUM(cumulative sum) ∑ j ≤ νn j log
f 0( j)
f ( j) . Since 

the parameters Θ is estimated from EM algorithm and f ( j) =
n j
N , our procedure is

C = arg max
ν = 1, 2, …, K

Sν(Θν)

where Θ̂ν is the estimator from the EM algorithm with the value of C set to ν. One may 

consider the full likelihood of all observations and find out some connection between Sν and 

the full likelihood presented as follows:

Sν(Θ∗, f ) = ℓν(Θ∗, f ) − Nν log π0 = ∑
j ≤ ν

n j(lr j(Θ
∗, f ) − log π0) + ℓ0

where Nν = ∑ j ≤ νn j and lr j(Θ
∗, f ) = log

π0 f 0( j)
f ( j) .
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Sheetlin et al. (2011) offer an objective-change point method that can replace the subjective 

approaches performed by eye-balling the data. Their proposed method resembles the 

change-point regression and robust regression but it is tailored to estimate the change point 

from a transient to an asymptotic regime. Given a tuning parameter c and a criterion function 

ρ, depending on β, the estimator for the change point k* is defined as

k∗ = arg  min
k = 0, 1, …, n

min
β

∑
i = k + 1

n
(ρ(ei) − c) (5)

where ρ(ei) is the estimated least-squares normalized residual. In (5), there is a tuning 

parameter c which should be given ahead. The value of c plays the role of penalty for adding 

terms ρ(ei) in (5), so the predetermined value of c affects k* arbitrarily. We see that our 

proposed estimation of C is related to the form (5). We estimate C via

C1 = arg min
ν = 1, 2, …, K

− Sν(Θν
∗, f ) = arg min

ν = 1, 2, …, K
∑

j ∈ 𝒜(C)
n j ρ j(Θν

∗, f ) − cν) (6)

where Θν
∗ = (π0, ν, ην, θν, λν) is obtained from the EM algorithm discussed in the previous 

section, f ( j) = n j/N, ρ j(Θν
∗, f ) = − lr j(Θν

∗, f ) and ĉν = −log π̂
0,ν. In (5), c is a predetermined 

value, however we don’t need to predetermine any parameter in (6). The proposed criterion 

(6) is related to the penalized model selection such as AIC and BIC. When we use the 

information that n = ∑ j ≤ C n j observed values are generated from f 0, − ∑ j ≤ νn jlr j(Θ
∗, f ) is 

increasing in ν, there is a compromise term c = −log π0 for each observation to compensate 

adding additional terms. There is a total of Nν positions, so when we use the assumption ν = 

C, we consider Nν log π0 penalty to the log likelihood function ℓν. Most of well known 

model selection criteria have similar forms where the penalty terms are related to penalize 

the complexity of models. In our context, the term −log π0 gives penalty to using the 

information that j for j ≤ ν are generated from f0. For a small value of π0, the corresponding 

penalty (−log π0) is large since a large penalty should be given to a low chance of f0. On the 

other hand, if π0 is close to 1, there becomes small risk from assuming observations are 

from the null hypothesis.

For the second method, we consider the extension of the methodology proposed by Efron 

(2007) which explicitly uses the zero assumption. This stipulates that the non-null density f1 

is supported outside some set {0, 1, …, C}. The likelihood function for xn = (x0, …, xC) is 

defined as

L(Θν
∗ |xn) = ξn(1 − ξ)N − n ∏

j ≤ ν
( f 0( j))

n j

where ξ = π0∑ j ≤ C f 0( j). The cut-off can be computed as

Gauran et al. Page 8

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C2 = arg min
ν = 1, 2, …, K

− log L(Θν
∗ |xn) (7)

3.4 Modification of local FDR by truncation

In practice, if a given domain position has a large number of mutations, then these mutations 

are expected to be significant. In many cases, there are relatively few positions in a protein 

domain where large values of mutations can be observed. This indicates that for large values 

of j, estimation of f based on relative frequency is not accurate due to the sparse data in the 

tail part. Consequently, the estimated local FDR is not reliable since it depends on the 

estimator of f. Rather than testing significance based on inaccurate local FDRs from large 

mutation counts, we consider a screening process so that the number of mutations exceeding 

a certain value should be considered as significant mutations. Such a critical value will be 

decided depending on the estimated null distribution. When we have observations ai for 1 ≤ i 
≤ N generated from the null distribution, we are interested in figuring out DN such that

PH0
max

1 ≤ i ≤ N
ai < DN 1 (8)

as N → ∞. Once a sequence DN is identified, ai(≥ DN) is hardly observed under the null 

hypothesis, so the corresponding null hypothesis is rejected directly rather than making 

decision based on local FDR procedure. There are many choices of DN, but a smaller 

sequence of DN satisfying (8) is of our interest since any sequence BN satisfying BN > DN 

also satisfies the property. The details of the calculation of DN are provided in Web 

Appendix B.

The calculation of DN when f0 is modeled using ZIGP or Generalized Poisson is similar 

since the derivation will eventually yield leading terms which does not involve η. Likewise, 

the calculation of DN when f0 is modeled using either ZIP or Poisson is the same. On the 

other hand, since the true values of the parameters λ and θ are unknown, we calculate DN 

using the estimates λ̂ and θ̂. Hence, DN can be calculated as

DN = max (𝒟1, 𝒟2) (9)

where ⌈x⌉ is the smallest integer greater than or equal to x(x > 0). 1 and 2 are presented 

in Web Supplementary Materials (Web Appendix B) where 1 is a function of λ̂ and θ̂ and 

2 is a function of θ̂ when f0 is modeled using ZIGP or Generalized Poisson distribution. 

When f0 is modeled using ZIP or Poisson distribution, 1 is a function of λ̂ only while 2 

does not depend on any parameter estimate. Finally, the proposed Two-Stage procedure can 

be summarized into two stages:
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Two-Stage Procedure

1. Stage 1(Screening Step): Based on Ĉ (either Ĉ1 in (6) or Ĉ2 in (7), estimate Θ
C
∗

and compute D̂
N in (9). To incorporate this condition in the formulation of DN, 

we have

DN(C) = max  DN, C + 1 . (10)

We reject the H0j if j ≥ DN (Ĉ) and do not reject if j ≤ Ĉ.

2. Stage 2 (Testing step): For Ĉ + 1 ≤ j < DN (Ĉ), we calculate the local FDR given 

by

fdr( j) =
π0, C

f 0( j; Θ
C

)

f ( j)
. (11)

We reject the H0j if fdr( j) ≤ α.

Note that D̂
N (Ĉ) in (10) shows Ĉ + 1 ≤ DN (Ĉ). In particular, the Stage 2 of testing step is 

not necessary when DN (Ĉ) = Ĉ + 1.

4. Numerical Studies

4.1 Simulation Studies

To gain insights regarding the robustness of the proposed procedures in the presence of 

model misspecification, we perform some simulation studies. The comparison is based on 

four simulation boundaries: (i) model for the estimation of f0; (ii) method used in the choice 

of the cut-off C; (iii) true null distribution; and (iv) non-null distribution used in data 

generation. There are four models compared for the estimation of f0 as discussed in Section 

3.2. Also, there are two methods presented in Section 3.3 for the choice of cut-off C. The 

true null distributions considered are Zero-Inflated Poisson (ZIP) and Zero-Inflated 

Generalized Poisson (ZIGP) distribution. Both distributions account for the excessive 

number of zeros which is a characteristic of the mutation count data. Following the key 

assumption on f0, the support of f1 does not contain values in [0, C]. Hence, f1 can be 

expressed as f1 = C + 1 + W where W follows another count model. For the model 

specification of W, Geometric(p = 0.08) and Binomial(n = 250, p = 0.20) distribution are 

utilized. They exhibit the pattern of the mutation count observed in the real data set.

Using these model specifications in terms of the true f0 and f1, there are 15 mixture models 

considered for data generation as presented in Web Table 1. For each of the specification of 

f0, Ĉ is calculated and the corresponding set of parameter estimates Θ
C
∗ = (η

C
, λ

C
, θ

C
, π0, C

)

from EM Algorithm are obtained. Results show that regardless of the true null distribution, 

if f0 is modeled using the ZIGP distribution, then Ĉ produces the most accurate estimate for 

C in terms of the bias and standard error. This validates the robustness of ZIGP as a model 
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for f0, that is, even if the true null distribution is ZIP, the most accurate estimate of Ĉ can 

still be observed when f0 is modeled using ZIGP. The bias of the parameter estimates for 

each of these specifications are presented in Web Tables 2 – 5 in the Supplementary 

Materials.

A total of L hypotheses tests were performed for independent random variables nj over 1000 

replications. For each replication, the proportion of nj from the null distribution is set to be 

π0 and the total number of positions N is specified to be 1000. To calculate the False 

Discovery Rate, FDR, for the kth generated data, k = 1, 2, …, 1000, we compute the False 

Discovery Proportion (FDP) which is defined by

FDPk =
Vk
Rk

I(Rk > 0)

where Vk and Rk are the number of falsely rejected hypotheses (false discoveries) and the 

total number of rejected hypotheses in the kth generated data, respectively. FDR is the 

expected value of the false discovery proportion and can be computed empirically as

FDR = 1
1000 ∑

k = 1

1000 Vk
Rk

I(Rk > 0)

In our simulations, the decision rule is to reject the null H0j if fdr( j) = π0 f 0( j)/ f ( j) ≤ α. 

Throughout the simulations, we consider the level of significance α = 0.05. The True 

Positive Rate, TPR is computed empirically as

TPR = 1
1000 ∑

k = 1

1000 Sk
Sk + Tk

where Sk and Tk are the number of correctly rejected hypotheses (true discoveries) and the 

number of falsely accepted hypotheses (false non-discoveries) in the kth generated data, 

respectively. Three procedures are compared in terms of controlling FDR and the value of 

TPR, namely the one-stage local FDR procedure, the proposed two-stage procedure and 

Storey’s procedure. The results which yields the superior TPR while controlling FDR are 

highlighted using bold face quantities.

As displayed in Figure 1 (a)–(c), the non-null distribution is Geometric, the proportion of 

null cases is 0.80 and the fraction of zeros is 0.80. The degree to which the null model is 

mixed with the non-null model is described using the three cases. ZIP1 represents the well-

separated case, ZIGP1 is the moderately mixed case while ZIGP2 can be described as the 

heavily mixed case. The corresponding numerical comparison is shown in Table 1.

Based upon the results of Table 1, since null and non-null distribution is moderately mixed 

for ZIGP1, the resulting TPR for all three procedures is substantially higher than the TPR for 

ZIGP2, regardless of the model used for the estimation of f0. Given that FDR is controlled in 
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all procedures, if the model for f0 is ZIGP, then the Two-Stage procedure yields the highest 

TPR.

This suggests that the proposed procedure is better than the other existing procedures. 

Meanwhile, due to the “well-separation” if the true null is ZIP1, then the TPR for ZIP1 is 

slightly higher than the TPR for ZIGP1. Moreover, the FDR for all three procedures for ZIP1 

are noticeably lower than the FDR for ZIGP1. This means that the number of rejections for 

ZIGP1 and ZIP1 are almost the same but there are more erroneous rejections for ZIGP1. This 

result can be explained by the presence of overdispersion in ZIGP1, thereby suggesting that 

the presence of overdispersion in the data could lead to erroneous rejections. Overall, there 

are more rejections using Ĉ1 as a cut-off compared to Ĉ2. Also, even if Ĉ1 yields more 

rejections, it still controls the value of FDR demonstrating the superiority of Ĉ1 as a cut-off 

method.

Figure 1 (d) – (f) also presents the histograms when the non-null distribution is Binomial, 

the proportion of null cases is 0.35 and the fraction of zeros is 0.40. Unlike the 

parametrization of the Geometric non-null distribution which appears to be skewed to the 

right, this f1 exhibits near symmetry. In terms of the mixing of the null and non-null 

distribution, ZIP2 represents the well-separated case, ZIGP3 is the moderately mixed case 

while ZIGP4 can be described as the heavily mixed case. The numerical comparison is 

shown in Table 2.

According to Table 2, when f0 is modeled using ZIGP, using Ĉ1 as a cut-off yielded many 

more rejections, regardless of the procedure used. This suggests that the extension of Efron’s 

method is conservative and would miss significant positions. The difference between Ĉ1 and 

Ĉ2 is further highlighted for ZIGP4, where the true null distribution is heavily mixed with 

the non-null distribution and overdispersion is present. For scenarios where FDR is 

controlled for ZIP2 and ZIGP3, using Two-Stage procedure leads to the highest TPR. 

However, for ZIGP4 where overdispersion is evident and f0 is heavily mixed with f1, the 

value of TPR is substantially higher using Storey’s procedure, while keeping the FDR
controlled.

Another scenario considered is when the true non-null distribution is Geometric, the 

proportion of null cases is 0.85 but the fraction of zeros is 0.40. Unlike the scenario 

presented in Table 1 and Figure 1, the specified proportion of zeros is reduced to half. The 

interest is to determine whether there would be a change in pattern should there be a 

significant decrease in the number of positions without a mutation. The histograms and the 

corresponding numerical comparison are presented in Web Figure 1 and Web Table 6 in the 

Supplementary section. It can be noted that regardless of the magnitude of the fraction of 

zeros, a similar pattern can be observed in terms of the superiority of Ĉ1 as a method for 

choosing C. Among the procedures, the TPR is consistently highest for the Two-Stage 

procedure, given that the FDR is controlled. Also, even if the true model is ZIP, using ZIGP 

to model f0 produced better results in terms of TPR, while keeping FDR controlled.

Finally, the last scenario considered is when the non-null distribution is Binomial, the 

fraction of zeros is still 0.40 but the proportion of null cases is increased to 0.80. When the 
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true f0 exhibits near symmetry, the goal is to determine whether there would be a change in 

pattern should there be a significant increase in the number of positions without a mutation. 

The histograms and the corresponding numerical comparison are presented in Web Figure 2 

and Web Table 7 in the Supplementary section. Results revealed that the difference between 

Ĉ1 and Ĉ2 is apparent when there is overdispersion and f0 is heavily mixed with f1. If ZIGP 

is the model used for the estimation of f0, the value of TPR is substantially higher using Ĉ1, 

while keeping the FDR controlled. Moreover, the resulting TPR for the moderately mixed 

case is substantially higher than the TPR for the heavily mixed case, regardless of the model 

used for the estimation of f0 and the procedure employed. However, given that FDR is 

controlled by specifying either of the two models, using ZIGP leads to a higher TPR than 

when the true model ZIP is specified. This result implies using ZIGP would yield 

satisfactory results even under model misspecification.

Taking everything into account, for the well-separated and moderately mixed case, if the null 

model is correctly specified and FDR is controlled, using the Two-Stage procedure yields 

FDR closest to the nominal level α. Consequently, the Two-Stage procedure is superior in 

terms TPR in most cases. If the true null model is ZIGP and the null model is correctly 

specified, FDR is controlled in all procedures. However, the Two-Stage procedure is better 

than the local FDR procedure and Storey’s procedure in terms of TPR. It can also be noted 

that if the true model is ZIP and ZIGP is used to model the null distribution, then the Two-

Stage Procedure still yields the closest FDR to α and leads to higher TPR as compared to the 

other procedures. This implies using the Two-Stage Procedure when the null model is 

misspecified would still produce satisfactory results. Moreover, regardless of the shape of 

the non-null distribution, the Two-Stage Procedure yields better results than the other 

procedures.

Additionally, the condition (2) can be weakened so that mutation counts belonging in [0, C] 

can be contaminated by f1 with probability close to zero. In fact, if there are alternative 

observations below C, then the true C is changed to be a smaller value (say C′) where all 

observations below C′ are actually from f0. Intuitively, we can posit that this may affect the 

estimates of null parameters and the TPR. To address this concern, we perform additional 

simulation studies using C = 1 which represents that small values of data can be observed 

from the alternative. The bias and standard error of the parameter estimates are provided in 

Web Tables 8 to 11. Results show that the estimates of null parameters tend to have large 

biases and standard errors compared to those for C = 5 in Web Tables 2 to 7. Furthermore, 

the corresponding numerical comparisons of FDR and TPR were also provided in Web 

Tables 12 to 15. When there are alternative observations for a small value of C, the situations 

become more heavily mixed case, so this results in lower TPR while FDRs are still 

controlled.

4.2 Application to Protein Domain Data

In the study of cancer at the molecular level, it is important to understand which somatic 

mutations contribute to tumor initiation or progression in order to develop new treatments or 

to identify patients for which a given treatment will be effective. In this field, some 

researchers focus on the patterns of somatic variants on protein domains due to the well-
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defined function and structure of these units, which can lead to a better understanding of 

how these functions are disrupted in cancer (Nehrt et al., 2012; Peterson et al., 2010). Here, 

one interesting issue is identifying “protein domain hotspots”, or positions within domains 

that are found to be mutated frequently (Peterson et al., 2012). It is among a fixed number of 

positions in a single domain, which ones are significantly different from the majority.

In application to cancer, Peterson et al. (2012) discovered that known cancer variants tended 

to cluster at specific positions more than variants involved with unrelated diseases, 

suggesting that protein domain hotspots could be useful in understanding the molecular 

mechanisms involved with cancer. It is a novel solution for the application of protein domain 

hotspots to somatic variants in sequenced tumor samples, which has the potential to 

distinguish between driver variants that contribute to cancer and passenger variants that do 

not contribute and are assumed to be distributed randomly.

As an example, we analyze the mutation data obtained from the tumors of 5,848 patients 

from The Cancer Genome Atlas (TCGA) data portal (http://tcga-data.nci.nih.gov/tcga/, 

Collins and Barker, 2007). These were mapped to specific positions within protein domain 

models to identify clusters. TCGA MAF files were obtained for 20 cancer types.

Among several hundreds of domains, we focus on six functionally well-known domains to 

identify the hotspots of somatic variants in TCGA sequenced tumor samples. We start with 

the hotspots on growth factors (cd00031), which are known to harbor reoccurring somatic 

mutations involved with clonal expansion, invasion across tissue barriers, and colonization 

of distant niches (Jeanes et al., 2008). Furthermore, protein kinases (cd00180) and RAS-

Like GTPase family of genes (cd00882) are well-known for their role in regulating pathways 

important to cancer (Tsatsanis and Spandidos, 2000). Genes with kinases or RAS-like 

GTPases are expected to harbor driver mutations that reoccur at specific sites since they are 

classic examples of proto-oncogenes that mutate into oncogenes, contributing to cancer 

(Anderson et al., 1992). Additionally, we identify hotspots on ankyrin domains (cd00204), 

which play a role in mediating protein-protein interactions important in cancer (Imaoka et 

al., 2014). Also, we find hotspots on transmembrane domains of proteins that are known to 

be involved with signal transduction, which is relevant in controlling processes involved 

with cancer (Sever and Brugge, 2015) and experimental evidence confirms the important 

regulatory role played by membrane proteins in cancer Neuhaus et al., 2009).

Since the mutation counts are discrete, we apply our proposed method based on various 

discrete models, such as ZIGP, ZIP, Generalized Poisson and Poisson distribution for f0. The 

estimated parameters based on those models are reported in Web Table 16 in the 

Supplementary Section. Figure 2 shows the distribution of each protein domain and its total 

number of positions. In order to assess the general goodness-of-fit using these different 

parametric models, we estimate the probabilities for ai ≤ Ĉ and compared these estimated 

values with relative frequencies. The results are presented in Web Figures 7 to 12 in the Web 

Supplementary Materials.

The identified number of positions which are mutated differently from expected are in Table 

3. For example, when assume that f0 follows ZIGP, the results show that the identified 

Gauran et al. Page 14

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tcga-data.nci.nih.gov/tcga/


hotspots on growth factor domain (cd00031) based on One-stage and Two-stage procedures 

are 143 positions among a total of 366 positions, using Ĉ2. On the other hand, the local FDR 

with Ĉ1 identifies more hotspots for Two-stage procedure (201) than One-stage (191) and 

Storey’s procedure (200). The rest of the domains can be analyzed in the similar manner.

Results from Table 3 revealed that using Ĉ1 yields more rejections. This suggests that the 

data analysis for the real data shows the same pattern as the simulation results presented 

previously. Moreover, two domains can be highlighted in terms of the difference in the 

number of rejections, namely, cd00180 and pfam00001. The number of rejections using Ĉ1 

is almost four times higher if the model used for f0 is ZIGP and the procedure employed is 

either local FDR or Two-stage method. For both of these data sets, the number of rejections 

using Ĉ1 is almost twice compared to Ĉ2 given that the model for f0 is ZIGP and using 

Storey’s FDR. Overall, the results for the real data analysis is consistent with the simulation 

studies.

These results recapitulate much of what is known about how protein domain families 

contribute to the initiation or progression of cancer and are useful to biologists studying the 

molecular mechanisms underlying cancer. For instance, hotspots identified on the calcium-

binding domain of epidermal growth factors (cd00054) are mapped to the 1EMN structure in 

Figure 3. Here, all three residues known to bind to calcium are also identified as hotspots, 

confirming the known importance of this binding pocket in cancer. In addition, we identify 

42 other residues on the domain as hotspots that do not bind with calcium but tend to occur 

around the binding pocket and are present in many patients, suggesting their importance in 

cancer.

5. Conclusion

In this paper, our primary interest is to select significant mutation counts for a specific 

protein domain, while controlling a given level of Type I error via False Discovery Rate 

(FDR) procedures. For the ith position, the number of mutations ai follow one of the two 

distributions f0 or f1, namely, the null or alternative distribution, respectively. With π0 and 1 

− π0 representing the prior probabilities of the two groups, the probability density function 

of the mixture distribution can be represented as f(ai) = π0f0(ai) + (1 − π0)f1(ai). We assume 

that if the number of mutations ai ≤ C, then ai is guaranteed to be from the null model, for 

some positive integer C, i = 1, 2, …, N. We propose a method for identify a cut-off C and 

show that this is superior to the cut-off developed by extending Efron’s proposal. In 

addition, after the selection of this cut-off, we consider a screening process so that the 

number of mutations exceeding a certain value DN (Ĉ) (Ĉ + 1 ≤ DN (Ĉ)) should be 

considered as significant mutations.

The proposed two-stage procedure in the selection of C and DN yielded a testing procedure 

which is superior in terms TPR in most cases. For the well-separated and moderately mixed 

case, if the null model is correctly specified, then using the Two-Stage procedure yields FDR

closest to the nominal level α and the highest TPR. It can be noted that if the true model is 

ZIP and ZIGP is used to model f0, then the Two-Stage Procedure still yields the closest FDR

to α and leads to highest TPR. This means that even when the null model is misspecified, the 
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Two-Stage procedure would still produce satisfactory results. Also, regardless of the shape 

of the alternative distribution, the Two-Stage Procedure yields better results than the other 

procedures. Furthermore, results from six chosen protein domain data sets revealed that 

using the proposed cut-off for C yielded more rejections. In general, the results for the real 

data analysis is consistent with the simulation studies. These results sum up how protein 

domain families contribute to the initiation or progression of cancer and are useful to 

biologists studying the molecular mechanisms underlying cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histogram of different scenarios for comparison when C = 5. (a) The first panel in the first 

row: f0 is ZIP1(η = 0.80, λ = 1.5) which represents the well-separated case, f1 is shifted 

Geometric(p = 0.08), π0 = 0.80 (b) The second panel in the first row: f0 is ZIGP1(η = 0.80, 

λ = 1.5, θ = 0.3) which represents the moderately mixed case, f1 is shifted Geometric(p = 

0.08), π0 = 0.80 (c) The first panel in the third row: f0 is ZIGP2(η = 0.80, λ = 3, θ = 0.3) 

which represents the heavily mixed case, f1 is shifted Geometric(p = 0.08), π0 = 0.80 (d) 

The second panel in the second row: f0 is ZIP2(η = 0.40, λ = 1.5) which represents the well-

separated case, f1 is shifted Binomial(n = 250, p = 0.20), π0 = 0.35 (e) The first panel in the 
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third row: f0 is ZIGP3(η = 0.40, λ = 1, θ = 0.20) which represents the moderately mixed 

case, f1 is shifted Binomial(n = 250, p = 0.20), π0 = 0.35 (f) The second panel in the third 

row: f0 is ZIGP4(η = 0.40, λ = 3, θ = 0.20) which represents the heavily mixed case, f1 is 

shifted Binomial(n = 250, p = 0.20), π0 = 0.35.
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Figure 2. 
Histogram of Protein Domain Data
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Figure 3. 
Patterns of Protein Domain Hotspots on the Calcium-Binding Domain of Epidermal Growth 

Factors (cd00054). This figure appears in color in the electronic version of this article.
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