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Abstract Inference using significance testing and Bayes fac-
tors is compared and contrasted in five case studies based on
real research. The first study illustrates that the methods will
often agree, both in motivating researchers to conclude that
H1 is supported better than HO, and the other way round, that
HO is better supported than H1. The next four, however, show
that the methods will also often disagree. In these cases, the
aim of the paper will be to motivate the sensible evidential
conclusion, and then see which approach matches those intu-
itions. Specifically, it is shown that a high-powered non-sig-
nificant result is consistent with no evidence for HO over H1
worth mentioning, which a Bayes factor can show, and, con-
versely, that a low-powered non-significant result is consistent
with substantial evidence for HO over H1, again indicated by
Bayesian analyses. The fourth study illustrates that a high-
powered significant result may not amount to any evidence
for H1 over HO, matching the Bayesian conclusion. Finally,
the fifth study illustrates that different theories can be eviden-
tially supported to different degrees by the same data; a fact
that P-values cannot reflect but Bayes factors can. It is argued
that appropriate conclusions match the Bayesian inferences,
but not those based on significance testing, where they
disagree.
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Introduction

This paper will present case studies from real research that
illustrate how significance testing and Bayesian statistics can
lead researchers to draw different conclusions. The question
will be, which conclusions are most sensible? First, we will
discuss the nature of hypothesis testing, then the anatomy of a
Bayes factor, focusing on how one models the theory. Finally,
the heart of the paper will be a set of five case studies taken
from a recent special replication issue of the journal Social
Psychology.

The nature of hypothesis testing

In using inferential statistics to test a theory of scientific inter-
est, the world is typically first divided into HO (the null hy-
pothesis) and H1 (the alternative hypothesis), where one of
those hypotheses is a consequence of the theory. Data are then
collected in order to evaluate HO and H1. In evaluating wheth-
er the theory survived the test, it would often be useful to say
whether the data provided good enough evidence for HO;
good enough evidence for H1; or else failed to discriminate
the hypotheses. That is, one might like to make a three-way
distinction, as indicated in Fig. 1a. How could that distinction
be made? According to a key intuition, and one that can be
readily formalized, evidence is strongest for the theory that
most strongly predicted it (Good, 1983; Morey, Romeijn, &
Rouder, 2016). Thus, to make the distinction between the
three evidential states of affairs, one needs to know what each
hypothesis predicts. Explicitly specifying predictions can be
described as a ‘model’.

In significance testing, one models HO and not H1. A typ-
ical model for HO is, for example, the model that there is no
population difference in means. Assuming in addition a model
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Fig. 1 a States of evidence. b What P values provide. ¢ What Bayes factors provide

of the data (e.g. that the data are normally distributed), the
probability of the data given HO can be calculated.
Unfortunately, modelling HO but not H1 does not allow one
to make a three-way distinction. How can one know by which
hypothesis the data are better predicted, if one only knows
how well the data are predicted by one of the hypotheses?
Thus, significance testing only allows a weak form of infer-
ence; it tells us something but not all that we want. As shown

! A significant effect indicates that there is evidence for at least one particular
population parameter and against HO; but it may not be evidence for a specific
theory that allows a range of population values, and so it may not be evidence
for one’s actual theory. This point may not be clear yet; but the examples that
follow will illustrate (case study 4 in the text). The equivocation in whether a
P-value can even indicate evidence against HO and for H1 (i.e. whether it can
even make the two-way distinction claimed in the text) arises because only one
model is used (only that of HO and not of H1).
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in Fig. 1b, P-values only allow one to distinguish evidence
against HO from the other two evidential states of affairs (to
the extent that P-values allow an evidential distinction at all").
The P-value, no matter how large it is, in no way distinguishes
good evidence for HO from not much evidence at all. (A large
P-value may result from a large standard error—a large stan-
dard error means the data do not have the sensitivity to dis-
criminate competing hypotheses.)

To remedy the problem, it might seem obvious that one needs
a model of H1 (Dienes, 2016; Rouder, Morey, Verhagen,
Province et al., 2016). The hypothesis testing of Neyman and
Pearson (as opposed to the significance testing of Fisher) tries
to model H1 in a weak way (Dienes, 2008). Hypothesis testing
uses power calculations. Typically, when researchers use power
they indicate what effect size they expect given their theory,
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perhaps based on the estimate provided by a past relevant study.
Giving apoint estimate of the effect size is one way of quantifying
H1. But whatis the model of H1? In most contexts, the researcher
does not believe that that precise effect size is the only possible
one. Nor do they typically believe that it is the minimal one
allowed by the theory. Classic hypothesis testing scarcely models
arelevant H1 at all.

In fact, to know how well the hypothesis predicts the data, one
needs to know the probability of each effect size given the theory
(Rouderetal.,2016). This is the inferential step taken in Bayesian
statistics but not in classic hypothesis testing. Because classic
hypothesis testing does not take this step, it cannot evaluate evi-
dence for H1 versus HO, and it cannot make the three-way dis-
tinction in Fig. 1. The case studies below will illustrate.

The anatomy of a Bayes factor

A model, as the term is used here, is a probability distribution of
different effects; for example, a distribution of different possible
population mean differences. To determine the evidence for H1
versus HO, one needs a model of HO and a model of H1. And, of
course, one needs a model of the data (in the context of a statistical
model, this is called the likelihood). Figure 2 illustrates the three
models needed to calculate a Bayes factor: the model of HO, the
model of H1, and the model of the data. In this paper, we will
assume that HO can be modelled as no difference (it might be a
chance value, or a particular difference; conceptually such values
can all be translated to “no difference”). The model of H1 depends
on the theory put to test; it is a model of the predictions of that
theory. Finally, the model of the data, the likelihood, specifies how
probable the data are given different possible population effects.
The Dienes (2008) online calculator assumes a normal likelihood
(and in that way is similar to many tests that users of significance
tests are familiar with where it is assumed that the participants’ data
are roughly normally distributed). The first and last models are
typically relatively unproblematic in terms of the decisions differ-
ent researchers might come to (though see e.g. Morey & Rouder,
2011; Wilcox, 2005). In any case, the first and last models involve
decisions of a similar nature in both significance testing and
Bayesian statistics: shall I test against a null hypothesis of no dif-
ference; and shall I assume that the process generating the data
produces normal distributions? In the Appendix, we explore an-
other likelihood distribution one might assume in the same situa-
tion. But now we focus on the model of Hl—a key feature
distinguishing Bayesian from orthodox thinking.

The model of H1

Generally, in science, predictions are made from a theory via
auxiliary assumptions (e.g. Popper, 1963). For example, in
testing a theory about extraversion, one needs to accept the
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Fig. 2 a Model of HO. b Model of H1. ¢ Likelihood: model of the data

hypothesis that the scale used measures extraversion. In ap-
plying conditioning theory to learning a language, one needs
hypotheses about what constitutes the conditioned stimuli.
And so on. In general, these auxiliary assumptions should be
(1) simple, and (2) informed by scientific evidence where
relevant. Hopefully, the latter claim strikes the reader as self-
evident. In just the same way, specifying H1 is the process of
making predictions from a theory via auxiliary assumptions.
In general, these assumptions need to be (1) simple and (2)
informed. Hopefully, this claim strikes the reader as equally
banal. Science proceeds by deriving predictions from theories
in simple and informed ways; indeed in transparent ways open
to critical discussion. Of course, different theories and as-
sumptions will lead to different predictions. That is not a
problem with science; that is how it works. Just so, Bayes
factors test particular theories linked to predictions by
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particular assumptions (cf. Vanpaemel & Lee, 2012). A ratio-
nal test could not be otherwise.

Specifying H1 makes the predictions of a scientific theory
explicit. Thus, the relation of H1 to the substantial theory can
be evaluated according to whether H1 is simple and scientifically
informed (Dienes, 2014; Vanpaemel, 2010, 2011). One way H1
can be scientifically informed is by being based on the sort of
effect size the literature claims the type of manipulation in ques-
tion can produce. This is especially straightforward when the
purpose of a second study is to replicate a first study (e.g.
Verhagen & Wagenmakers, 2014). In that case, we expect rough-
ly the same order of magnitude of effect as obtained in the first
study. But the true population effect in the second study could be
larger or smaller than the sample mean difference obtained in the
first (due not only to sampling variability but also to unknown
changes in conditions, moderating variables, etc.) without much
changing the meaning of the first result. How much larger might
the effect be? To answer this question, consider the sorts of effect
sizes researchers typically investigate. On the one hand, re-
searchers often seem interested in effects sizes with a Cohen’s d
around 0.5 (the modal effect size in a review of studies in many
disciplines within psychology; Kiihberger, Fritz, & Scherndl,
2014).2 On the other hand, d values greater than about 1 are
unlikely for effects that are not trivially true (Simmons, Nelson,
& Simonsohn, 2013). Thatis, twice the expected effect mightbea
reasonable maximum to consider in a given scientific context. A
suggested simple defeasible (i.e. over-turnable) default is: if pre-
vious work suggests a raw effect of about E, then regard effects
between 0 and twice E plausible. For example, if a past study
found a mean difference between conditions of 5 s, then for a
further study (that is similar to the original), a population mean
difference between 0 and 10 s may be plausible. (By default, we
will work with raw effect sizes, e.g. seconds, because their esti-
mates are less sensitive than standardized effect sizes, e.g.
Cohen’s d, to theoretically irrelevant factors like number of trials,
or other factors affecting error variance alone; Baguley, 2009).

We will add one more simplifying assumption about H1.
Studies that get published (and perhaps also as yet unpub-
lished studies that catch the eye) in general over-estimate ef-
fect sizes (Ioannides, 2008; Open Science Collaboration,
2015). Thus, a defeasible default assumption is: smaller effect
sizes are more plausible than larger ones.

Putting these assumptions together, one way of representing H1
when a relevant similar effect size E (ideally in raw units) is available
is illustrated in Fig. 2, as the model for H1. We will consider a case
(as in a replication) where a directional prediction is made, i.e. one

2 Cohen’s d is the raw effect size (i.e. mean difference) divided by the within-
group standard deviation (Cohen, 1988). Cohen’s d is useful as a signal-to-
noise measure, i.e. it indicates the detectability of an effect. But it should not be
misinterpreted as a measure of how big an effect is (or how useful). For
example, a slimming pill may have a “large” effect size as measured by
Cohen’s d (e.g. d = 1.0), but if the raw change in weight is 0.2 kg over 3
months, then the slimming pill may not be useful (Ziliak & McCloskey, 2008).
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condition is postulated to be greater than another. By convention we
will take the difference between groups in the population to be only
positive. We model the plausibility of different effects by a half-
normal distribution (i.e. what was a normal distribution centred on
zero, with the bottom half removed; so that only positive mean
differences are predicted). The standard deviation of the half-
normal is set to E. The consequences are that an effective maximum
plausible effect size is about twice E, and smaller effect sizes are
more likely than larger ones. Thus, the general considerations we
mentioned are implemented in a simple way. Further, H1 is scien-
tifically informed by being scaled by E. All examples that follow
will use this procedure. (See Dienes, 2014, for other ways of setting
up H1.) All examples below can be worked out by the reader using
the Dienes (2008) online Bayes factor calculator (see Dienes, 2014,
foratutorial; or the website cited in Dienes 2008 for 5-min YouTube
tutorials).

Having constructed an H1, for example by the method just
described, there is a crucial final step: the judgment that the
model is acceptable for the scientific problem (Good 1983;
Lindley, 2004). While a relatively default procedure is useful
for constructing a possible model of H1, in the end H1 has to
be a good representation of the predictions of the scientific
theory. (In the examples that follow, we judged the model of
HI1 generated in this way as consistent with scientific intui-
tions. Other researchers are free to disagree. Then we will have
a scientific debate about what our theories predict and why.)
The theory directly tested in each case below is that the second
experiment replicated the regularity found by the first
(Verhagen & Wagenmakers, 2014). As Popper (1959) pointed
out, a ‘result’ obtained in one experiment is actually a low-
level hypothesis concerning the existence of a regularity.
Before we can accept that regularity (as counting for or against
the substantive theory it was designed to test) we need suffi-
cient evidence for it—as might be provided by direct replica-
tions. So the replication tests the low-level hypothesis that
defines the ‘result’ of the first experiment. (In doing so it helps
test the more general theory the results of the first experiment
were regarded as bearing on, of course.) In using the effect
size, E, found in the first experiment we are testing the regu-
larity according to the explicit claims in the first paper of what
the regularity is (the stated finding, where the Methods define
the hypothesis concerning conditions under which the regu-
larity obtains),.3 4

3 For biological and psychological systems, regularities will be context-sensi-
tive. But that in no way undermines the fact that the stated Methods of a paper
are a claim about the conditions under which a regularity obtains, which can be
shown by the authors treating their finding as unproblematically counting for
or against different theories.

4 One can test different questions. Another relevant question is the extent to
which both studies together, the original and the replication, constitute evi-
dence for the low-level regularity. To answer this question, a Bayes factor can
be performed on the meta-analytic combination of the two raw effects (cf. van
Elk, Matzke, Gronau, Guan, et al., 2015, for Bayesian meta-analyses more
generally).
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As a Bayes factor is relative to the model of H1, we will use
a subscript to specify the model of HI (a notational
convention used in Dienes 2014, 2015). Specifically By, s)
means the Bayes factor obtained when a Half-normal distri-
bution (hence ‘H’) is used to model H1 with a mode of 0
(which we will always use for a half-normal) and a standard
deviation of S. (Or, for example, when a Uniform distribution
is used to model H1 going from a minimum of L and a max-
imum of M, the notation is By, my)-

In order to illustrate both the flexibility and robustness of
Bayes, the Appendix describes a different set of principles for
specifying the likelihood and H1 that we will use in the exam-
ples that follow (where it is appropriate; see Appendix also for
notation). This differently specified Bayes factor will be report-
ed in footnotes. Because the scientific intuitions that it instanti-
ates are, in the cases discussed, similar to the simpler procedure
justdescribed, the conclusions that follow from each model turn
out to agree fairly closely in the examples that follow. A key
difference between the models is that the t-distribution pre-
sumes the original study provides a good estimate of the effect
and its uncertainty, even when transposed to a different labora-
tory; the half-normal presumes that the original study likely
over-estimated the effect size for replication purposes.

Putting it together: the meaning of a Bayes factor

The Bayes factor provides a continuous measure of evidence for
H1 over HO. When the Bayes factor is 1, the data is equally well
predicted by both models, and the evidence does not favour
either model over the other. As the Bayes factor increases above
1 (towards infinity) the evidence favours H1 over HO (in the
convention used in this paper). As the Bayes factor decreases
below 1 (towards 0) the evidence favours HO over H1. There are
no sharp boundaries or necessary thresholds (unlike the fixed
significance levels of the Neyman Pearson approach), just a
continuous degree of evidence. Nonetheless, rough guidelines
can be provided, in much the same way as Cohen (1988) sug-
gested guidelines for thinking about standardised effect sizes
(researchers donottakeaCohen’s d of 0.5 as asharp cut off from
small to medium effect size). Jeffreys (1939) suggested that a
Bayes factor of about 3 often matches the amount of evidence
obtained when P < .05 (contrast Wetzels, Matzke, Lee, Rouder
etal.,2011). Dienes (2014) also argued that when the raw mean
difference matches that used to model H1 (a crucial condition,
as we will see below), then indeed a Bayes factor of about 3
occurs when aresult is just significant. That is, a Bayes factor of
3 corresponds to the amount of evidence we as a scientific com-
munity have been used to treating just worth taking note of
(when the obtained effect size roughly matches that expected).
Whether the scientific community understand what this means
as a strength of evidence is a separate empirical question.
Jeffreys suggests the label “substantial” for B > 3. By

symmetry, we automatically geta criterion evidence for HO over
H1: when B < 1/3, there is substantial evidence for HO over H1.
We will follow this convention in reporting results below.
“Substantial” means just starting to have some substance;
“worth exploring further” might be a better gloss in many con-
texts. Another discussion worth having is whether this is good
enough level of evidence; would it better to default to 6 (Cf.
Schonbrodt, Wagenmakers, Zehetleitner, & Perugini, 2015) or
maybe 10 (Cf. Etz & Vandekerckhove, 2016)? Etz and
Vandekerckhove recommend calibrating the interpretation of
the Bayes factor by studying by how much different degrees
of prior belief are swayed by the evidence. This point may help
calibrate the scientific community to aid understanding what
the evidence actually means. The question of the amount of
evidence we should aim for is taken up further in the discussion.

We will illustrate the difference between Bayesian infer-
ence and significance testing by taking as case studies papers
published in issue 3 of volume 45 of the journal Social
Psychology (Nosek, & Lakens, 2014). These papers were
Registered Reports accepted in advance of the results. Thus,
the results obtained have not been through a publication filter
and allow a range of patterns as may be regularly obtained in
research. By the same token, by restricting ourselves to one
journal issue, we show the patterns we use are not so hard to
find in real research. (Nonetheless, to make a point, we will
sometimes show what happens when the patterns are changed
in instructive ways.)

Case studies
Often significance testing will provide adequate answers

When a significant result is obtained along with an effect size
matching that expected in theory, there will be evidence for
H1 over HO. Shih, Pittinsky, and Ambady (1999) argued that
American Asian women primed with an Asian identity will
perform better on a maths test than those primed with a female
identity. There was an 11% difference in means, #(29) = 2.02,
P = .053. Gibson, Losee, and Vitiello (2014) replicated the
procedure with 83 subjects in the two groups (who were aware
of the nature of the race and gender stereotypes); for these
selected participants, the difference was 12%, #81) = 2.40, P
= .02. So there is a significant effect with a raw effect size
almost identical to that in the original study. Correspondingly,
By, 11y = 4.50. That is, there is substantial evidence for H1
over HO in the replication.’

Similarly, when a non-significant result is obtained with
large N, it will often be evidence for HO. Williams and
Bargh (2008; study 2) asked 53 people to feel a hot or a cold

> We can also model H1 using the t-distribution method; By11, 5.4, 20), L = 112, 5.
s1) = 11.12, also indicating substantial evidence for the relevant H1 over HO.
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therapeutic pack and then choose between a treat for them-
selves or for a friend. Seventy-five percent of participants who
were exposed to physical cold selected a treat for themselves,
but only 46% of the participants who were exposed to warmth
did so. The strength of this relation can be expressed as an
odds ratio (OR) = (75%%54%)/(46%*25%) = 3.52. The log of
the OR is roughly normally distributed; taking natural logs
this gives a measure of effect size, that is, In OR = 1.26.
Lynott, Corker, Wortman, Connell et al. (2014) attempted a
replication with total N = 861 people, a sample size a factor of
10 higher than the original study. The results went somewhat
in the opposite direction, OR = 0.77, so In OR =—0.26, with a
standard error of 0.14.° So z = 0.26/0.14 = 1.86, P = .062,
which is non-significant. Correspondingly, By, 1.26) = 0.04,
indicating substantial evidence for the null hypothesis over the
hypothesis defined by the effect obtained in the original study.

In sum, we considered a case where a significant result
corresponded with the convention for substantial evidence
for H1 over HO; and a case where a non-significant result
corresponded to the convention for substantial evidence for
HO over H1. Correspondingly, Jeffreys (1939, pp 323-325)
discusses how in the research problems he has investigated,
Fisher’s methods (i.e. significance testing) and his (using
Bayes factors) generally agreed (and hence indicating that
the respective conventions were roughly aligned). It is in fact
reassuring that the methods will often agree; when different
methods with clear rationales converge they support each oth-
er. Jeffreys puts the agreement down to Fisher’s insight
allowing him to patch together solutions that happen to often
give the right answer. Jeffreys argues that the advantage of the
Bayesian system, on the other hand, is that it is one coherent
system that can be derived from first principles. It explains
why significance testing is right in those cases where it gives
the right answer. But it also tells us why significance testing is
wrong when it gives the wrong answer—or no clear answer at
all. We now consider actual cases where Bayesian analyses
give a different answer than the conventional analyses. Our
aim is to provide the reason why the conventional answer is
flawed, so it can be seen why the Bayesian answer is prefer-
able in these cases.

A high powered non-significant result is not necessarily
sensitive

Banerjee, Chatterjee, & Sinha (2012, study 2) found that peo-
ple asked to recall a time that they behaved unethically rather
than ethically estimated the room to be darker by 13.30 W,
#((72) = 2.70, P = .01. Brandt, IJzerman, and Blanken (2014,

6 Lynott et al. (2014) provide a confidence interval for the OR: 95% CI =[.58,
1.02]. Taking natural logs, these limits are [-0.54, 0.02]. Notice these limits are
symmetric around the In OR (-0.26), spanning 0.28 either side. Because In OR
is normally distributed, the standard error is thus 0.28/1.96 = 0.14.
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laboratory replication) tried to replicate the procedure as close-
ly as possible, using N = 121 participants, sufficient for a
power (to pick up the original effect) greater than 0.9.

Brandt et al. (2014) obtained a difference of 5.5 W, #(119) =
0.17, P=0.87. That is, it was a high-powered non-significant
result. By the canons of classic hypothesis testing one should
accept the null hypothesis. Yet Brandt et al. sensibly conclud-
ed “... we are hesitant to proclaim the effect a false positive
based on our null findings, ... Instead we think that scholars
interested in how morality is grounded should be hesitant to
incorporate the studies reported by BCS into their theories
until the effect is further replicated. (p. 251)” Why is this
conclusion sensible if the non-significant outcome was high
powered? Because a study having high power does not neces-
sitate it has much evidential weight, and researchers should be
concerned with evidence (e.g. Dienes, 2016; Wagenmakers,
Verhagen, Ly, Bakker et al., 2015). The obtained mean differ-
ence by Brandt et al. (5.5 W) was almost exactly half-way
between the population value based on HO (0 W) and the
value obtained in the original study (13 W, which may there-
fore be the most likely value expected on H1). An outcome
half-way between the predictions of two models cannot evi-
dentially favour either model. As a high-powered study can
produce a sample mean half between HO and the value highly
predicted by H1, it follows that, as a matter of general princi-
ple, high power does not in itself mean sensitive evidence.

Of course, H1 does not really predict just one value. Using
our standard representation of plausible effect sizes, a half-
normal scaled by the original effect size (i.e. allowing effect
sizes between very small and twice the original effect), we get
By, 133) = 0.97. That is, the data do not discriminate in any
way between HO and H1, despite the fact the study was high
powered. Power can be very useful as a meta-scientific con-
cept (e.g. Button, Ioannidis, Mokrysz, Nosek, et al. 2013;
Ioannides, 2005), but not for evaluating the evidential value
of individual studies.

A low-powered non-significant result is not necessarily
insensitive

Now we consider a converse case. Shih, Pittinsky, and
Ambady (1999) argued that American Asian women primed
with an Asian identity will perform better on a maths test than
unprimed women; indeed, in the sample means, priming
showed an advantage of 5% more questions answered correct-
ly.®* Moon and Roeder (2014) replicated the study, with about
50 subjects in each group; power based on the original d =
0.25 effect is 24%. Given the low power, perhaps it is not

7 We can also model H1 using the t-distribution method; B33, 4903, 72). L =
(547, 32.2, 119) = 0.97, giving exactly the same answer as the Bayes factor in the
text.

8 This difference was not tested by inferential statistics.
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surprising that the replication yielded a non-significant effect,
#(99) = 1.15, P = 0.25. However, it would be wrong to con-
clude that the data were not evidential. The mean difference
was 4% in the wrong direction according to the theory. When
the data go in the wrong direction (by a sufficient amount
relative to the standard error), they should carry some eviden-
tial weight against the theory. Testing the directional theory by
modelling H1 as a half-normal with a standard deviation of
5%, By, 5y = 0.31, substantial evidence for the null relative to
the H1.

Note that a sample difference going in the wrong direction
is not necessarily good evidence against the theory (Dienes,
2015). If the standard error is large enough, the sample mean
could easily go in the wrong direction by chance even if the
population mean is in the theoretically right direction.”

A high-powered significant result is not necessarily
evidence for a theory

Imagine two theories about earthquakes, theory A and theory
B, being used to predict whether an earthquake will happen in
downtown Tokyo on a certain week. Theory A predicts an
earthquake only on Tuesday between 2 pm and 4 pm of a
magnitude between 5 and 6. Theory B predicts earthquakes
any time between Monday and Saturday of a magnitude any-
where between 1 (non-existent) to 7 (intense). Theory A
makes a precise prediction; theory B is vague and allows just
about anything. An earthquake of magnitude 5.1 in fact hap-
pens on Tuesday around 2:30 pm. These data are in the pre-
dicted range of both theories. Nonetheless, does this observa-
tion count as stronger evidence for one theory rather than the
other? Would you rely on one of those theories for future
predictions more than the other in the light of these data?

It should be harder to obtain evidence for a vague theory
than a precise theory, even when predictions are confirmed.
That is, a theory should be punished for being vague. If a
theory allows many outcomes, obtaining one of those out-
comes should count for less than if the theory allows only
some outcomes (Popper, 1959). Thus, a just significant result
cannot provide a constant amount of evidence for an H1 over

9 As before, the effect can also be tested modelling H1 as a t-distribution with a
mean equal to the original mean difference (5%) and SE equal to the original
SE of that difference (estimated as 14%). By:s, 14, 30), L = (4, 3.48, 99) = 0.38. The
value is close to the Bayes factor based on the half-normal provided in the text.
If the original effect had actually been just significant (so setting its SE to 2.5,
and keeping everything else the same), then Bys_ 2.5, 30, L = 14, 3.48, 99) = 0.18,
sensitive evidence in discriminating HO from HI1.

1% Imagine Moon and Roeder (2014) obtained the same mean difference, 4%,
but the standard error of this difference was twice as large. (Thus, t would be
half the size, i.e. we would have t(99) = 0.58, P = .57 for the replication.) Now
we have By, 5= 0.63, with not enough evidence to be worth mentioning one
way or the other. Using the t-distribution method, By 14, 30). L = t4. 6.96, 99) =
0.44. The value is close to the Bayes factor based on the half-normal. A mean
difference going in the wrong direction does not necessarily count against a
theory.

HO; the relative strength of evidence must depend on the H1.
For example, a just significant result in the predicted range
should count for less for an H1 modelled as a normal distri-
bution with a very large rather than small standard deviation.
A significant result with a small sample effect size might not
be evidence at all for a theory that allows a wide range of
effect sizes (see Lindley, 1957; Wagenmakers, Lee, Rouder,
& Morey, 2014).

The issue can be illustrated using Lynott et al.’s (2014)
replication of Williams and Bargh (2008; study 2). As we
described above, Williams and Bargh asked 53 people to feel
a hot or a cold therapeutic pack and then choose between a
treat for themselves or for a friend. Seventy-five percent of
participants exposed to the physical cold selected a treat for
themselves, whereas only 46% of participants exposed to the
physical warmth did so, with In OR = 1.26 (just significant, P
< .05). Lynott et al. (2014) obtained non-significant results
with a larger sample. Imagine that Lynott et al. found that
53.5% of people exposed to cold chose the personal reward,
while only 46.5% of those exposed to warmth did so resulting
in an In OR of 0.28, which, given the same standard error as
Lynott et al. actually obtained (0.14), gives P < .05. However
now By, 126 = 1.56, indicating the data are insensitive in
discriminating H1 from HO.

How can a significant result not count in favour of a theory
that predicted a difference? It depends on the theory being
tested. The original finding was that 75% of people exposed
to cold selected a personal treat (and only 46% exposed to
warmth did so); if one could expect an effect size from very
small to even larger than this, then a small effect size is not
especially probable in itself.'" The theory is vague in allowing
a wide range of effect sizes. So, while 53% compared to 46%
choosing a personal reward may be somewhat unlikely on HO,
it turned out to be just as unlikely on H1 (cf. Lindley, 1993).
Vague theories are rightly punished by Bayesian analyses; by
contrast, the P-value is indifferent to the inferentially relevant
feature of a theory being vague. So call this model of H1 the
vague model.

Let us say in the original study, 55% of people exposed to
cold chose the personal reward whereas 45% of people ex-
posed to warmth did so, and this was significant P = .049.
Now OR = (55%/45%) = 1.49, and In OR = 0.40. These data
render a In OR greater than about twice 0.40 as quite unlikely
(in that they fall outside a 95% credibility interval). The theory
is more precise (than when effects up to about twice 1.26 were
allowed). Call the model of H1 based on these counterfactual
results the precise model. Finding a replication In OR of 0.28
(with a standard error of 0.14 as before), falls within the range
of predictions of this rather precise theory, just as it fell within

! Because in the original study by Williams and Bargh (2008), the effect of In
OR = 1.26 was just significant, P < .05, so the credibility/confidence interval
on the In OR would indeed extend from close to 0 to twice 1.26.
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the range of predictions of the vague theory. Now By, 9.40) =
3.81, support for the precise H1 over HO (the B was 1.56 for
the vague H1 over HO). Bayes factors are sensitive to how
vague or precise the theory is; P-values are not. But, norma-
tively, precise theories should be favoured over vague ones
when data appear within the predicted range.

Finally, notice that the replication study had less power to
distinguish the In OR of 0.40 (the value used for deriving the
precise model) from HO than it had to distinguish the In OR of
1.26 (the value used for deriving the vague model) from HO.
In this case, the high powered significant result was less good
evidence for the theory than the low powered significant re-
sult. A high-powered significant result is not necessarily evi-
dence for a theory. How strong the evidence is for a theory all
depends on how well the theory predicted the data.

The answer to the question should depend on the question

Jeffreys (1939, p vi) wrote that “It is sometimes considered a
paradox that the answer depends not only on the observations,
but also on the question; it should be a platitude.” The point
was illustrated in the last case study. The same data provide
less evidence for a vague theory than a precise theory when
the data fall in the predicted range. Same data, different an-
swers—because the questions are different. Yet, although the
questions were different, significance testing was only capable
of giving one answer. For other examples, Bayes factors can
test H1 against interval or other non-point null hypotheses
(Dienes, 2014; Morey & Rouder, 2011) or one substantial
H1 against another, instead of against HO (for example, the
theories that differences are positive versus negative; or in
general theories that allow a different range of effects).

The issue often comes up as a criticism of Bayes factors
(e.g. Kruschke, 2013; Kruschke and Liddell 2017): the
answer provided by the Bayes factor is sensitive to the spec-
ification of H1, so why should we trust the answer from a
Bayes factor? We will illustrate with the following example.
Schnall, Benton, and Harvey (2008) found that people make
less severe judgments on a 1 (perfectly OK) to 7 (extremely
wrong) scale when they wash their hands after experiencing
disgust (Exp. 2). Of the different problems they investigated,
taken individually, the wallet problem was significant, with a
mean difference of 1.11, #(41) = 2.57, P = .014. Johnson,
Cheung, and Donnellan (2014; study 2) replicated with an N
of 126, giving a power of greater than 99% to pick up the
original effect. The obtained mean difference was 0.15,
#(124) = 0.63, P = 0.53. Thus, there is a high-powered non-
significant result. But, as is now clear, that still leaves open the
question of how much evidence there is, if any, for HO rather
than HI.

One could argue that the 1-7 scale used in the replication
allows differences between groups between a minimum of 0
and a maximum of 6 (the maximum population mean that one
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group could have is 7, and the minimum for the other group is
1, giving a maximum difference of 6). The predictions of H1
could be represented as a uniform distribution from 0 to 6.
That claim has the advantage of simplicity, as it can be posited
without reference to data. These considerations give By, 6] =
0.09. That is, there is substantial evidence for HO over this H1.

We also have our half-normal model for representing H1.
The original raw effect size was 1.11 rating units; and, By,
L= 0.37.'2 That is, the data do not very sensitively distin-
guish HO from this HI.

So we have one Bayes factor of 0.09 and another of 0.37.
Both Bayes factors have a reasonable rationale. Yet they are
sufficiently different that they may lead to different conclu-
sions in a Discussion section, and different interpretations of
what the replication meant. This situation might seem to be a
damning criticism of Bayes factors. In fact, it shows that
Bayes factors behave as a measure of evidence should.

Each Bayes factor is an indication of the evidence for the
HI represented as opposed to HO. The Hls are different, and
each Bayes factor appropriately answers a different question.
Which Bayes factor answers the question we have been asking
in this paper for each case study, namely, the extent to which
the replication provided evidence for the regularity claimed by
the first study? The first Bayes factor is not good at answering
this question, because it is not informed by the first study. The
second Bayes factor is informed (and is otherwise simply
specified). Therefore, the second Bayes factor is the one that
should be used to address this question, and thus guide the
corresponding discussion and conclusions in the paper.

The first Bayes factor in effect refers to a different theory,
and thus a poses a different question of the data. That theory
predicted all differences as equally plausible. It is a vague
theory and thus was not supported as well as the more precise
theory defined by the effect found in the original study. But
theories, or models of data, need not differ just in being vague
versus precise. Two models could be just as precise but predict
different size effects. The half-normal model we have been
using does not allow this (as predictions are changed only
by changing the SD of the distribution, and hence its vague-
ness); but the #-distribution described in the Appendix does.

12 Using the t-distribution model, Bt(l.ll‘ 043, 41), L = 1(0.15, 0.24, 124) = 0.09. The
value is lower than the Bayes factor of 0.37 based on the half-normal provided
in the text and close to the one based on the uniform. Note it is typical for the -
distribution rather than the half-normal model to give more evidence for HO
when the sample mean is close to 0, because the half-normal distribution loads
plausibility around 0, typically making the models harder to distinguish than
with the #~model. They implement different scientific intuitions, namely the
half-normal presumes the true effect size is likely less than the one estimated.
In this case, the expectation is particularly acute because for analysis we
selected from a set of relevantly similar items specifically the one with a large
effect in the original study. If we took into account the information provided by
the other items, by using the effect size based on all items to model H1, the
estimate of the true effect based on the original decreases. Thus, the discrep-
ancy between the t-distribution and half-normal reduces: By, 9.70) = 0.56, and
Bi0.70, 0.25, 41), L = 10.15, 0.24, 124) = 0.24.
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One alternative hypothesis, H1, might predict an effect around
E1 and another alternative, H2, an effect just as tightly around
E2. If the data were close to E2 and far from E1, H2 would be
supported better than H1—but the P-value testing against HO
would be the same.

A Bayes factor is a method for comparing two models.
Thus there is not one Bayes factor that reflects what the data
mean. In comparing H1 to HO, the answer depends on what
H1 and HO are. That’s not a problem, any more than in com-
paring two scientific theories, the answer depends on what the
theories are. Further, the use of Bayes factors in no way pre-
cludes estimating parameters, or deriving credibility intervals,
in order to understand the data. Both model comparison (hy-
pothesis testing) and parameter estimation are important and
complementary aspects of the scientific process (Jeffreys,
1939).

Discussion

The aim of the paper was to illustrate how significance testing
and Bayesian inference may lead researchers to draw different
conclusions in certain cases, and to show why the Bayesian
conclusion is the preferred one. Specifically, we considered
four types of scenarios. First, researchers may believe that a
high-powered non-significant result necessarily means one
has good evidence for HO. We showed that, in actual situa-
tions, high power does not guarantee sensitive evidence for
HO rather than H1. Conversely, it might be thought that
“power just is not demanding enough; but that means a low-
powered non-significant result guarantees the evidence for HO
is weak.” But this second intuition turns out to be false as well.
A low-powered result may be substantial evidence for HO
rather than H1. Thus nothing about the evidential value of a
non-significant result follows from the mere fact that study
was low or high powered. Thus, classic hypothesis testing
does not allow one to distinguish three evidential states of
affairs, namely evidence for HO rather than H1, evidence for
H1 rather than HO, or not much evidence either way. By con-
trast, Bayes factors do allow this three-way distinction.

The researcher might conclude that she always suspected
that non-significant results were problematic anyway. But, she
might feel, with significant results we are on firmer ground.
However, in the third contradiction, we found that a high-
powered significant result may not actually be good evidence
for H1 rather than HO. If H1 is sufficiently vague, the signif-
icant result may be unlikely under the theory. And, in the
fourth scenario, we found that, in general, the strength of
evidence for H1 rather than HO depends on what the H1 is, a
sensible state of affairs that a p-value cannot reflect.

While in the examples we have used B >3 (or< 1/3) as a
criterion for sufficient evidence to draw a conclusion, we have
done so merely because that roughly matches the standard of

evidence the psychology community has been using up to
now. However, our aim has been to advocate using a genuine
measure of evidence, which is different from advocating a
particular degree of evidence as sufficient. A conjecture is that
the current standard of evidence has arisen for psychological
reasons, namely it is a point where researchers typically judge
that evidence is just enough to be worth taking notice of.
(Compare the equivalent two-sigma, i.e. ¢ = 2, criterion in
the particle physics community, a criterion which means
“maybe there is something there”, see e.g. Gibney, 2016.
Five-sigma in that community is taken as warranting a con-
clusion that would be closer to B = 5 x 10*.) Because B = 3 is
typically around the borderline of what is worth taking note of,
analytic flexibility could push conclusions around when B =3
isused as a threshold (see e.g. Dienes, 2016). Schonbrodt et al.
(2015) recommend using B = 6 as a conventional threshold;
Morey (2015) recommends negotiating the threshold for each
particular case. However, a threshold of evidence for reaching
a decision by a journal or scientists is chosen, it is important
that the threshold is seen as only a useful convention, while
bearing in mind that what the Bayes factor actually shows is a
continuous degree of evidence.

In this paper we have focused on examples that involve
direct replications. The same principles apply for calculating
Bayes factors in other situations; Dienes (2014, 2015) gives
examples of specifying the model of HI in ANOVA, regres-
sion and contingency table cases.

The role of Bayes factors in addressing problems with how
research is conducted goes beyond the issues discussed here.
For example, the role of Bayes factors in experiments with
optional stopping is discussed by Rouder (2014) and
Schonbrodt et al. (2015); the role of Bayes factors in address-
ing these and other issues involved in the “credibility crisis” in
psychology (e.g. Open Science Collaboration, 2015), and oth-
er sciences, is discussed by Dienes (2016), and the reproduc-
ibility project in particular by Etz and Vandekerckhove
(2016): Guan and Vandekerckhove (2016) introduce a
Bayesian method for mitigating publication bias; and Lee
and Wagenmakers (2013) and Vanpaemel and Lee (2012) de-
scribe Bayesian methods for incorporating more theory into
models in testable ways.

What is the way forward? We suggest a community learn-
ing process in which orthodox statistics are reported, but along
with the orthodox statistics such as F values, and the P values
and B values are reported as well (see, e.g. Ziori & Dienes,
2015, for a paper illustrating this policy). Interpretation can be
done with respect to the B values—and in many cases a P-
aficionado may agree with the conclusion (e.g. as in Ziori &
Dienes). On the one hand, distinctions would be drawn that
are not available to the P-aficionado, and more informed de-
cisions taken. On the other hand, a significant P-value at the
5% level indicates there is some way of specifying H1 such
that B > 3 (Royall, 1997), which may be worth considering. In
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the process of implementing “a B for every P,” we, as a com-
munity, would learn to see the relationship between signifi-
cance testing and Bayes factors—and, crucially, come to de-
bate the optimal Bayesian ways of addressing different re-
search questions.

Acknowledgements Many thanks to Stefan Wiens and Joachim
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Appendix

We discuss a Bayes factor (introduced in Dienes, 2016) that uses
a t-distribution to model both H1 and the likelihood, and can use
raw effect sizes. First, consider H1. We may have an estimate of
the effect size we are trying to pick up based on a previous study.
Verhagen and Wagenmakers (2014) suggest using the posterior
distribution of the standardized effect size from the original ex-
periment as the model of H1. In the half-normal method
discussed in the text, an effect size E is used to inform H1, but
no use is made of any knowledge of the uncertainty in estimat-
ing E. This makes the procedure widely applicable as a default,
precisely because no knowledge is needed of the estimate of E.
On the other hand, there will be situations where it makes sense
to make use of knowledge of the uncertainty in estimating E.

A common situation is where E has been derived from
observations coming from roughly normal distributions but
where the variance is unknown and only estimated. Given
only vague information about the possible variance, the
resulting posterior distribution of the effect is #-distributed
(Jeffreys, 1939). Thus, H1 can be modelled as a z-distribution
having a mean the same as the mean difference, an SD equal
to the standard error of that difference and with degrees of
freedom equal to those in the original study. We can notate
the B in this way: Bt(mean difference, SE, df).

The Dienes (2008) calculator, used for the half-normal
method in this paper, assumed a normal likelihood.
However, once again, if the variance of the data is only esti-
mated, the likelihood is best treated not as normal but as ¢-
distributed. Adapting a procedure introduced by Berry (1996),

Dienes recommended adjusting the standard error according
to the degrees of freedom, because the likelihood then approx-
imates the #-distribution. But it would be better to use the #-
distribution in this situation. So here the likelihood is #-distrib-
uted, and so the full notation for B is: Bymean difference. SE. df), L =
(mean difference. SE df). 111 the first brackets are the parameters of
the theory, i.e. of H1 ; thus for a replication, they refer to the
first study, and in the code below they are notated
meanoftheory (i.e. the raw mean difference for study 1),
sdtheory (i.e. the SE of that difference from study 1) and
dftheory (i.e. the degrees of freedom from study 1). The
brackets after the L refer to the replication study, and in the
code below are notated obtained (i.e. the mean difference in
the replication study), sd (the standard error of that difference)
and dfdata (the degrees of freedom of the replication study).
So, we have Bt(meanoftheory, sdtheory, dftheory), L = (obtained, sd dfdata).
The R code is based on that originally provided by
Baguley and Kaye (2010) and for the Dienes (2008)
calculator.

The case studies reported in the main text were analysed
both by modelling H1 with half-normal distributions, and,
where standard deviations were estimated from data, by a t-
distribution for modelling H1, as shown in Table 1. As it
happened, the two types of Bayes factor produced similar
degrees of evidence for their Hls versus HO. However, they
do have different properties, discussed throughout the text,
which we summarize here. First, it is typical for the t-
method rather than the half-normal method, to give more ev-
idence for HO when the sample mean is close to 0—because
the half-normal method loads plausibility around 0, typically
making the models harder to distinguish than with the t-
method (see footnote 12). Second, the larger the estimated
effect, the more vague is the theory modelled by the half-
normal method. This may be reasonable when effects are just
significant. However, for the t-method size of effect and
vagueness of theory can be represented independently. This
is useful when a large effect has been estimated with high
precision, and we believe small effects are unlikely. Finally,
the t-method involves taking the posterior distribution of the
effect seriously for predicting the effect in a new study. This

Table 1  The case studies with Bayes factors based on either the half-normal or the t-distribution
Study Significance test Model of half-normal ~ HI t-distribution
distribution

Gibson et al. (2014), raw effect = 12% t(81) = 240, P=.02 BH(O, )= 4.50 Bt(ll, 54,29), L =112, 5,81)= 7.84
Brandt et al. (2014), raw effect = 5.5 W t(l 19) = 017, P=0.387. BH(O, 133) = 0.97 Bt(l3.3, 4.93, 72), L = (5.47, 32.2, 119) = 0.97
Moon and Roeder (2014), raw effect = 4% t(g()) = 115, P=0.25 BH(O, 5 = 0.31 Bt(S, 14, 30), L = (-4, 3.48, 99) = 0.38
Moon and Roeder (2014), Counterfactually t(g()) = 058, P=.57 BH(O, 5= 0.63 Bt(5, 14, 30), L = (-4, 6.96, 99) = 0.44

SE twice as large
Johnson et al. (2014), raw effect = 0.15 scale pOiIltS t(124) = 063, P=053 BH(O, 1.1y = 0.37 Bt(Lll, 0.43, 41), L = 1(0.15, 0.24, 124) = 0.09

(scale 1-7)
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approach is most plausible for direct replications. In many
other cases, the uncertainty in the estimate as an estimate for
anew study would be broader than that given by the posterior
distribution for the original study. The half-normal provides a
simple default for such situations.

Bf<-function(sd, obtained, dfdata,
meanoftheory, sdtheory, dftheory, tail =2)

{

area<-0

normarea <- 0

theta <-meanoftheory - 10 * sdtheory

incr <- sdtheory/200

for (Ain -2000:2000)({

theta <- theta + incr

dist theta <- dt((theta-meanoftheory) /
sdtheory, df=dftheory)

if (identical (tail, 1)){

1f (theta<=0){

dist theta<-0

} else({

dist theta<-dist theta* 2

}

}

height <- dist theta * dt ((obtained-the-
ta) /sd, df =dfdata)

area<-area + height * incr

normarea <- normarea + dist theta*incr

}

LikelihoodTheory <- area/normarea

Likelihoodnull <- dt (obtained/sd, df =
dfdata)

BayesFactor <- LikelihoodTheory/
Likelihoodnull

BayesFactor

}
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