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Abstract

Most statistical developments in the joint modelling area have focused on the shared random-effect 

models that include characteristics of the longitudinal marker as predictors in the model for the 

time-to-event. A less well-known approach is the joint latent class model which consists in 

assuming that a latent class structure entirely captures the correlation between the longitudinal 

marker trajectory and the risk of the event. Owing to its flexibility in modelling the dependency 

between the longitudinal marker and the event time, as well as its ability to include covariates, the 

joint latent class model may be particularly suited for prediction problems. This article aims at 

giving an overview of joint latent class modelling, especially in the prediction context. The authors 

introduce the model, discuss estimation and goodness-of-fit, and compare it with the shared 

random-effect model. Then, dynamic predictive tools derived from joint latent class models, as 

well as measures to evaluate their dynamic predictive accuracy, are presented. A detailed 

illustration of the methods is given in the context of the prediction of prostate cancer recurrence 

after radiation therapy based on repeated measures of Prostate Specific Antigen.
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1 Introduction

It is frequent in longitudinal studies to collect both repeated measures of a longitudinal 

marker and the time to an event of interest. Common examples include trajectory of CD4 

counts and time to AIDS in HIV studies1 or trajectory of Prostate Specific Antigen (PSA) 

and risk of prostate cancer recurrence.2,3 In these examples, both quantities are linked so that 

their joint analysis is required for addressing different objectives. First, the interest can be on 

the prognostic value of the longitudinal marker, as in prostate cancer with the prognostic 
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value of PSA trajectory on the risk of recurrence. Joint modelling of the two quantities 

corrects for biases induced by the random measurement errors and the intermittent 

measurement of the marker.4 In other applications, the interest is on the marker trajectory 

during the course of a disease, and the joint model corrects for bias induced by the 

occurrence of the event. Finally, joint models are required when the interest is specifically in 

understanding how the repeated marker data and the risk of event are linked. For example, 

investigating what is the link between the PSA trajectory and the subsequent risk of prostate 

cancer recurrence is of importance to understand the dynamics of the disease and provide 

powerful dynamic prognostic tools.5

The joint modelling approach consists in defining: (1) a model for the time-to-event, usually 

a proportional hazard model, (2) a model for the marker trajectory, usually a mixed model, 

and (3) linking both models using a shared latent structure.6 In this context, most 

developments have focused on the shared random-effect model (SREM), also called a 

selection model in missing data problems, in which a characteristic of the longitudinal 

process defined as a function of the random-effects is included as a covariate in the survival 

model.1 This function can be any function capturing the dynamics of the marker trajectory, 

such as the individual deviation from the mean trajectory or the expected individual current 

level of the marker. The latter extends directly the standard survival model with time-

dependent covariate. This model has been used to evaluate the association between a marker 

trajectory and a time-to-event,5 to make dynamic predictions,7 and was extended in different 

ways: for example to multiple time-to-events,8 to multiple longitudinal markers,9 and to 

include a cured fraction.3

An alternative approach for joint modelling a marker trajectory and the time to an event is 

inspired by finite mixture (also called mixture-of-experts) modelling.10 This method, called 

a joint latent class model (JLCM), considers the population of subjects as heterogeneous, 

and assumes that it consists of homogeneous latent subgroups of subjects that share the same 

marker trajectory and the same risk of the event.2,11,12 This assumption of heterogeneity is 

frequently relevant in medical research where several differing profiles of patients are 

expected. For example, in prostate cancer progression after treatment, different profiles of 

PSA are observed. Compared to the shared random-effect model, the joint latent class model 

has received less attention with only a few applications, for the description of disease 

progression,11–13 for sensitivity analyses in missing data problems,14,15 and recently for 

dynamic prediction.2 Yet, the JLCM offers a computationally attractive alternative to the 

SREM and it is based on different assumptions regarding the link between the longitudinal 

and event time components of the model. The link between the two components needs to be 

more precisely defined (through functions of the marker trajectory) in the SREM than in the 

JLCM. As a consequence, while the JLCM may not be suited to evaluate specific 

assumptions regarding the characteristics of the marker trajectory that are the most 

influential on the event risk, it may be of interest when: (1) developing predictive joint 

models or (2) investigating the link between the longitudinal marker and the time-to-event 

without specific assumptions, especially in a heterogeneous population.

Other special joint models can be found in the literature that we do not describe further in 

the present work, such as joint models based on pattern-mixture modelling16 or ‘simple 
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transformation models’ assuming for example a multivariate Gaussian distribution for the 

longitudinal data and the logarithm of the time-to-event.17

The aim of this article is to introduce the joint latent class model and review methods to 

evaluate its goodness-of-fit and its predictive accuracy in the context of dynamic predictive 

tool development. Specific aspects of the JLCM as well as differences with the SREM are 

illustrated through an application in prostate cancer where the objective was to validate a 

dynamic prognostic tool of prostate cancer recurrence based on the post-treatment PSA 

trajectory. Section 2 focuses on the joint model specification. Section 3 is dedicated to 

goodness-of-fit techniques while Section 4 describes dynamic predictive tools development 

and their predictive accuracy assessment both for the JLCM and the SREM. Section 5 

illustrates the different methods through the prostate cancer example. Some concluding 

remarks are given in Section 6.

2 Joint latent class model

2.1 Latent class membership probability

Assume a population of N subjects that can be divided into a finite number G of latent 

homogeneous subgroups. The latent class membership for each subject i (i=1, … ,N) is 

defined using a categorical latent variable ci, which equals g if subject i belongs to latent 

class g (g=1, … ,G). An individual has a probability πig of belonging to latent class g, which 

is modelled using a multinomial logistic regression according to covariates Xpi:

(1)

where ξ0g is the intercept for class g and ξ1g is the vector of class-specific parameters 

associated with the vector of time-independent covariates Xpi. For identifiability, ξ0G=0 and 

ξ1G=0.

Each latent class is characterised by a class-specific marker trajectory and a class-specific 

risk of the event, and the marker and the time-to-event are assumed to be conditionally 

independent given these latent classes. This conditional independence is a central 

assumption of the JLCM.

2.2 Class-specific marker trajectory

Given the latent class g, the vector of repeated measures of the longitudinal marker 

Yi=(Yi(ti1), … ,Yi(tij), … ,Yi(tini)) is described at the different times of measurement tij (j=1, 

… , ni) by a standard linear mixed model18:

(2)
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where the p-vector of class-specific random-effects uig=ui |ci=g~  (μg, Bg) or equivalently, 

the vector of random-effects  with πig defined in equation (1). The 

ni-vector of measurement errors εi=(εi(ti1), … , εi(tini))
T ~  (0, Σi). The variance–

covariance matrix Bg can be common over classes or class-specific. However, when 

considered as class-specific, usually  with B unstructured and ωG=1 to limit the 

number of parameters and identifiability concerns. The variance–covariance matrix Σi is 

usually restricted to the diagonal matrix σ2 Ini for homoscedastic independent errors but εi 

can also include a correlation process such as a Brownian motion or an auto-regressive 

process. The p-vector of time-dependent covariates Zi(tij), that may include any function of 

time, is associated with the p-vector of random-effects uig. The q-vector of possibly time-

dependent covariates Xli(tij) is associated with the possibly class-specific q-vector of fixed 

parameters βg. No overlap between Zi(tij) and Xli(tij) is assumed for identifiability.

2.3 Class-specific risk of event

Let  denote the time-to-event of interest, Ci the censoring time, and 

. Given the latent class g, the risk of event can be described using any survival 

model. For simplicity we consider here a proportional hazard model:

(3)

where Xei(t) is the r-vector of (possibly time-dependent) covariates associated with the r-
vector of parameters δg. The class-specific baseline hazard is λ0g(t; ζg). Either a baseline 

hazard stratified on the latent class structure or baseline hazards proportional in each latent 

class (λ0g(t)= λ0(t)eζ
g
 with ζG=0) can be considered. To remain in the likelihood 

framework, only parametric hazard functions (λ0g(t) or λ0(t)) are considered here, such as 

Weibull, piecewise constant or M-splines.12

2.4 Maximum likelihood estimation

For a fixed number of latent classes G, the log-likelihood L(θG) of the observed data can be 

decomposed using the conditional independence assumption so that:

(4)

where θG is the entire vector of parameters for a JLCM with G classes; the class-

membership probability πig is defined in (1); the instantaneous risk λi(Ti | ci=g; θG) is 

defined in (3) and Si(Ti | ci=g; θG) is the corresponding class-specific survival function. The 

density f(Yi | ci=g; θG) of the longitudinal marker in class g is multivariate normal with 

mean Ziμg+Xliβg and covariance matrix ; Zi and Xli being respectively the 

ni×p and ni×q matrices of jth row vectors Zi(tij)T and Xli(tij)T.
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The JLCM estimation is implemented in the Jointlcmm function of the lcmm R package 

(http://cran.r-project.org/web/packages/lcmm). The log-likelihood (4) is maximised using a 

Marquardt algorithm19 with stringent convergence criteria. In addition to parameter stability 

and log-likelihood stability, convergence is reached only when dT H−1d<ε, where d is the 

gradient vector and H the Hessian matrix (by default ε=10−4). The inverse of the Hessian 

matrix also provides estimates of the parameter variances.

Several difficulties arise in mixture model estimation. First, a permutation of the latent 

classes parameters in θG gives the same likelihood. Although this phenomenon, called ‘label 

switching’, may pose problems in Bayesian estimation,20 it is not a concern for maximum 

likelihood estimation.21 Second, the likelihood in mixture problems may have multiple local 

maxima, so that it is highly recommended to run the algorithm starting from several sets of 

initial values to ensure convergence to the global maximum.22,23 Third, in some contexts, a 

lack of information in the data may result in difficulties fitting a latent class model. This is 

not the case with joint latent class model in which the latent class structure is based on a 

large amount of information with both continuous repeated data and a time-to-event. Finally, 

the likelihood maximisation is performed for a fixed number of latent classes, and the 

optimal number of latent classes is most often determined using the Bayesian Information 

Criterion (BIC) which is the preferred criterion in mixture models24: BIC(G)=−2L(θG)+nθ 
log(N) with nθ the number of estimated parameters. Other criteria are discussed in Han et al.
25

We note that identifiability of finite mixture models was extensively discussed in Redner and 

Homer21 and that the estimation procedure for JLCM was specifically validated in a 

simulation study.12

2.5 Differences between joint latent class and shared random-effect models

Before comparing the two types of models, we first give a brief description of the SREM 

following closely the formulation in Wulfsohn and Tsiatis1 and Rizopoulos.26 In a SREM, 

the repeated measures of the longitudinal marker Yi(tij) at time tij (for j=1, … , ni) are 

described by a standard linear mixed model18:

(5)

where Zi(tij), εi(tij) and Xli(tij) are defined above, and ui ~  (μ, B) is the p-vector of 

random-effects. We assume a proportional hazard model for the risk of the event:

(6)

where λ0(t; ζ) and Xei(t) are defined as above and f(ui, β, Zi(t), Xli(t)) represents a univariate 

or multivariate function of the subject-specific random-effects, such as the subject-specific 

current mean marker level or/and slope, as implemented in JM R package.26
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The JLCM and the SREM have several differences. First, though both methods account for 

variability of the longitudinal profiles through the random-effects, the JLCM further 

accounts for heterogeneity of the population: through the latent classes, it assumes a 

heterogeneous population of subjects with each population having a different average profile 

of the marker and different risk of the event. In contrast, the SREM assumes a homogeneous 

population with a single average trajectory of the marker equation (5) and a continuous 

relationship between the marker and the risk of the event in equation (6).

Second, in the SREM, the same random-effects ui influence both the correlation between 

repeated measures of the marker and the dependency between the marker and the time-to-

event. In contrast, these two dependence structures are separated in the JLCM where the 

random-effects in (2) only account for the correlation between repeated measures while the 

latent classes account for the dependency between the marker and the event.

Third, in the SREM, the characteristics of the marker trajectory that influence the risk of 

event are chosen a priori through the function f(ui, β, Zi(t), Xli(t)) included in the survival 

model. Comparing models with different functions f(ui, β, Zi(t), Xli(t)) is of interest when 

evaluating specific assumptions regarding the dependency between the two processes but 

this constraint can turn out to be too limited when the focus is on finding the best prediction 

model for the event. In contrast, the JLCM makes less precise assumptions on the link 

between the marker trajectory and the time-to-event, and a stratification over the latent 

classes allows the baseline risk of the event to vary flexibly according to the marker when 

the number of classes becomes large. However, this is achieved at the cost of a potentially 

large increase of the number of parameters, and sometimes a more difficult interpretation of 

the latent classes and the parameters within each class. Moreover, due to the conditional 

independence assumption, the JLCM assumes that inside a latent class and conditional on 

covariates, the risk of event is independent of the marker level. All of this taken into 

consideration, the JLCM is designed to describe the observations without specific a priori 

assumptions, and thus is potentially well suited for the purposes of prediction.

Lastly, regarding the estimation process, the log-likelihood computation for SREM requires 

a numerical integration over the random-effect distribution.1,26 In contrast, this integration is 

replaced in the JLCM by a sum over the latent classes, which is considerably easier 

computationally. However, the JLCM estimation needs to be repeated several times to ensure 

convergence to the global maximum and to choose the number of latent classes.

3 Goodness-of-fit evaluation

There has been limited study of goodness-of-fit of joint models in the literature. For the 

shared random-effect model, a few papers explored residual techniques.26,27 There has been 

more research for the joint latent class model with different aspects explored including: 

longitudinal and survival predictions,12,13 posterior classification of the subjects2,14 and the 

conditional independence assumption.28,29 In the JLCM framework, goodness-of-fit 

methods are needed not only to validate a specific model but also to guide the selection of 

the number of latent classes. In general, the choice of the number of classes should be based 

on a number of considerations, i.e. not only the smallest information criterion, but also a 

Proust-Lima et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



good discrimination between classes, correct predictions, satisfactory conditional 

independence and meaningful latent classes.

3.1 Posterior classification

A specific aspect of the JLCM is that posterior classification can be obtained from the 

posterior estimates of the latent class membership probabilities:

(7)

where π̂ ig is the latent-class probability defined in equation (1) and computed at the 

parameter estimates θ̂ G; and λi(Ti | ci=g; θG), Si(Ti | ci=g; θG) and f(Yi | ci=g; θG) are 

defined as in Section 2.4.

From these probabilities, each subject is classified in the class for which he has the highest 

posterior probability of belonging . The more discriminatory the 

posterior classification is, the better the model. Discrimination of the latent classes can be 

considered in several ways: (1) the proportion of subjects with their maximal posterior latent 

class membership probability above a certain level, e.g above 0.8 or above 0.9,14 (2) the 

measure of entropy  (where ) that indicates a clear 

classification when close to one,30 or (3) the posterior classification table12 that provides the 

mean of the posterior probabilities for subjects classified in each class. For the latter, a very 

discriminatory classification would have diagonal terms close to 1 and non-diagonal terms 

close to 0.

3.2 Fitted values and comparison with observed values

As in any mixed model, marginal and subject-specific predictions from a JLCM 

(respectively Y(M) and Y(SS)) can be computed and compared to observed data. The 

difference is that predictions are class-specific: for subject i, occasion j and class g, 

 and  with 

, the empirical Bayes estimates of the class-specific 

random-effects. From these class-specific individual predictions, either individual 

predictions averaged over classes  or class-specific predictions averaged 

over individuals  can be computed, N(t) representing the number of 

subjects with measurements at t (in practice, time may be discretised in intervals for this 

computation). Depending on the type of predictions (marginal or subject-specific), π̂
ig can 

be computed either as marginal class-membership probabilities from equation (1) or as 

conditional probabilities from equation (7). Both averaged predictions  and Ŷg(t)(.) are 
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useful to evaluate the fit of the observed data, Ŷg(t)(.) being compared with the weighted 

class-specific mean of observed values .

Marginal and subject-specific residuals  can be also computed from individual 

predictions. However, as in any joint model, these residuals may suffer from non-random 

dropout caused by the events so that standard residual analyses do not apply. Instead, the 

multiple-imputation technique proposed for the SREM31 may be used.

The fit of the survival part of the JLCM can also be evaluated by comparing, for example, 

the class-specific weighted individual survival functions , 

where Si(t | ci = g; θ̂G) is derived from the survival model (3), with the corresponding class-

specific weighted Kaplan–Meier estimates.

3.3 Conditional independence assumption

The JLCM assumes that the latent class structure captures the entire dependency between 

the longitudinal marker and the time-to-event. Several approaches were proposed to evaluate 

this assumption: analysis based on the posterior classification,28 analysis of the residuals 

conditional on the event,12 and a score test.29 In the score test, the alternative hypothesis ℋ1 

is defined by a residual dependence between the time-to-event and the marker through the 

random-effects in addition to the dependence through the latent classes. Thus, the model 

under ℋ1 is a JLCM with shared random-effects in which equation (3) is replaced by:

(8)

where η is a p-vector associating the p random-effects uig of the longitudinal model (2) with 

the time-to-event.

From this, evaluation of the conditional independence assumption consists in testing ℋ0: 

η=0 (vs ℋ1: η ≠ 0), and the corresponding score test statistic is:

(9)

where Λig(Ti) is the class-specific cumulative hazard.

The score test statistic is an estimate of the covariance between the martingale residuals 

from the survival model and the class-specific empirical Bayes estimates of the random-

effect weighted by the posterior class-membership probability. Under the null hypothesis, 

UTVar(U)−1U follows a chi-square distribution with p degrees of freedom.29 This approach 

was found to be much more powerful than the other methods to detect any departure from 

the conditional independence assumption in simulations.
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4 Dynamic prediction

In recent years, there has been a growing interest in predictive/prognostic tools derived from 

joint models.2,5,7 Indeed, joint models have the ability to produce predictive tools that can be 

dynamically updated according to the observed trajectory of the marker, and thus offer a 

powerful aid for clinical decision making in patient monitoring. Such dynamic predictive 

tools were proposed both in SREM5,7 and in JLCM2 contexts but their evaluation is 

challenging. Prognostic tools evaluation is already complex in standard survival analysis due 

to censoring, so that only a few methods have been proposed to extend predictive accuracy 

assessment to joint models.32–34 We introduce in this section the dynamic predictive tools 

computation and provide a review of measures to assess their predictive accuracy in JLCM 

and SREM frameworks.

4.1 Individual dynamic predictions and confidence bands

The dynamic predictive tool derived from a joint model consists of the predicted probability 

of an event in a window [s, s+t] given covariates and marker measurements collected until 

time s. In the following, s is called the time at prediction (s≥0), and t is called the horizon 

(t≥0). For any subject i, let  denote the vector of marker repeated measures until time s, 

Xi all the other covariates, Ti the time of event, and θ the parameter vector of the joint 

model. In a JLCM, the predicted probabilities of events are given by:

(10)

Predicted probabilities of events in a SREM are similarly obtained by replacing the sum over 

the latent classes by an integral over the random effects distribution:

(11)

An estimate of  can be obtained by replacing θ by θ̂. 

However, to obtain 95% credibility bands, its posterior distribution must be approximated by 

a Monte Carlo method,2,7 using the 2.5% and 97.5% percentiles (and possibly the median 

for the point estimate) of the distribution of the probabilities computed from equation (10) 
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with a large number D of parameter vectors (θd)d=1, … ,D drawn from the asymptotic 

distribution  (θ̂, V̂(θ̂)).

4.2 Predictive accuracy measures for dynamic predictions

Two types of predictive accuracy measures were proposed for assessing dynamic predictive 

tools: errors of prediction2,32,33 and more recently, a measure derived from the theory of 

information, the expected prognostic observed cross-entropy.34

4.2.1 Quadratic error of prediction—Let 

denote the predicted event-free probability, and ϒ(s+t) the survival status at time s+t. The 

quadratic error of prediction for rule Ŝ, also known as half the expected Brier Score (BS), is 

E (ϒ(s + t) − Ŝ(s + t|s))2]. In the dynamic prediction context, two difficulties arise in the 

estimation of this quantity. First, the survival status ϒ(s+t) may be censored, and second the 

error of prediction is a two-dimensional surface that needs to be summarised. To take into 

account censoring, two estimators were proposed. The first one (called data-based BS) 

consists in weighting the observations according to their probability of being observed33:

(12)

where Ns is the number of subjects still at risk at time s and Ĝ(u) is the survival function of 

the censoring distribution at time u estimated using either a Kaplan–Meier estimate33 or a 

regression model.35

The second estimator (called model-based BS) consists in predicting the contribution to the 

error of prediction of censored observations directly using the joint model2,32:

(13)

While the second estimator may be biased with misspecified models, the first one may lack 

efficiency36 and may require modelling the probability of being observed.35 We provide 

both estimators to validate the dynamic predictive tools.
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Summary measures of these 2D estimators may be useful in practice. For a given time at 

prediction s, we summarise the error of prediction over a [0, ]-window of horizons using the 

weighted average32:

(14)

where  is the number of different times of events in the window (s, s+ τ),  is the 

number of events at time tk among subjects at risk at time s and Ĝ(u) is the Kaplan–Meier 

estimate of the censoring distribution at time u.

4.2.2 Expected prognostic observed cross-entropy—Let fT|Y(s),T*−s denote the 

conditional density of the right-censored time of event T=min(T*, C) derived from the joint 

model. The expected prognostic observed cross-entropy (EPOCE) is defined as E(− ln 

fT|Y(s),T*−s | T*≥s). The EPOCE can be estimated by leave-one-out cross-validation.34 For a 

fixed time at prediction s, an approximate cross-validated estimator is CVPOLa defined as:

(15)

where Ns is the number of subjects still at risk in s, H is the Hessian matrix of the joint log-

likelihood,  with vî(s) and d̂i the gradients of the 

individual contributions respectively to the conditional log-likelihood in s using only 

and the joint log-likelihood computed in θ̂ using the total vector of repeated measures Yi. 

Finally, Fi is the individual contribution to the conditional log-likelihood defined for i=1, 

… ,Ns in respectively a JLCM and a SREM as:

(16)

(17)

Advantages of the EPOCE over previously described measures of predictive accuracy are 

multiple. First, EPOCE can be estimated either on the data used for estimating the joint 

model thanks to the approximate cross-validation correction (Trace(H−1 Ks)) with CVPOLa, 

or on external data like other errors of prediction using MPOL which equals CVPOLa 

without this correction. A correction of over-optimism using the cross-validation technique 
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was also proposed for errors of prediction37 but as no approximate formula was given, it 

remains too computationally demanding for joint models evaluation. Second, no assumption 

is made in the CVPOLa regarding the window of horizons [0, ] evaluated nor the type of 

summary measure over the horizons. Third, no assumption is made regarding the censoring 

distribution in contrast with the estimators in equations (12) and (13). Finally, a 95% 

tracking interval of the difference in EPOCE between two joint models can be computed, 

which enables a better evaluation of whether the difference in predictive accuracy between 

two models is of importance (see details in Commenges et al.34). Finally, since the models 

are fitted using the likelihood, it seems more natural to evaluate them using a method based 

on the log of the density, rather than a quadratic loss as in the BS criteria.

5 Application to prostate cancer

We illustrate the JLCM on prostate cancer data. The objective was to propose a dynamic 

prognostic tool to detect clinical recurrence of prostate cancer based on repeated measures of 

Prostate Specific Antigen (PSA) after external radiation beam therapy (EBRT), PSA being a 

well-known biomarker of prostate cancer progression routinely collected after treatment.

5.1 University of Michigan hospital cohort

The joint models were estimated using the data from the University of Michigan hospital 

cohort.5 All subjects with localised prostate cancer of stage T1 to T4, node and metastatis 

negative, who underwent EBRT and did not initiate any androgen deprivation therapy during 

the follow-up were included. Cases were required to have at least 1 year follow-up without 

clinical recurrence and at least two PSA measurements before the end of follow-up. For the 

purposes of this paper clinical recurrence was defined as any of the following: distant 

metastases, nodal recurrence or any palpable or biopsy-detected local recurrence 3 years or 

later after radiation; any local recurrence within 3 years of EBRT if the last PSA value was 

>2 ng/mL; death from prostate cancer. All PSA measures collected after EBRT and until the 

end of follow-up (minimum time to clinical recurrence or lost to follow-up) were analysed. 

Three prognostic factors were considered: initial level of PSA at diagnosis (iPSA) as 

continuous in the log scale, T-stage category (Stage 1–2 vs. 3–4), and Gleason score (7, 8–10 

vs. 2–6), an indicator grading prostate cancers. In brief, the sample included 459 subjects 

with a median follow-up of 5.16 (interquartile range (IQR)=2.68,7.69) years. During the 

follow-up, 74 patients (16.1%) had a clinical recurrence with a median of 2.77 

(IQR=1.87,4.41) years after EBRT. The mean iPSA on the logarithm scale was 2.18 

(SE=0.90), 41 (8.9%) patients had a T-stage of 3 or 4 and, respectively, 173 (37.7%) and 34 

(7.4%) patients had a Gleason score of 7 and above 7.

5.2 Joint latent class model estimation

The trajectory of PSA on the logarithm scale (ln(PSA+0.1)) was described in a three-

component parametric linear mixed model2 with baseline (post-treatment level of PSA), 

short-term drop of PSA approximated by f1(t)=(1+t)1.5−1, and linear long-term trend, each 

of the three components being class- and subject-specific with class-specific correlated 

random-effects. The baseline hazard functions were class-specific Weibull functions starting 

at 1 year. As the aim was to propose a dynamic prognostic tool, we chose to include the 
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three covariates in all parts of the JLCM, that is in the latent class membership probability in 

equation (1), in the interaction with the three components of the trajectory in equation (2) 

and in the survival model in equation (3) with common effects over classes in equations (2) 

and (3). For comparison, exactly the same model structure was adopted for the SREM with 

the same three trajectory components, a Weibull hazard function with a 1-year delay time in 

the survival model and the three covariates included in equation (6), and in equation (5) with 

interaction with each of the three components. In addition, either the current true PSA level 

alone, the current slope of PSA alone, or both the current PSA level and slope was 

considered in the survival model.3 JLCM models with from 1 to 5 latent classes and SREM 

were estimated and summarised in Table 1. We note that the 1-class JLCM represents the 

model assuming independence between PSA and time-to-recurrence and as such, is both a 

special case of the JLCM (G=1) and of the SREM (η=0).

The JLCM with the best BIC included three latent classes but the conditional independence 

assumption was rejected for this model so that the model with four latent classes for which 

the CI assumption was not rejected (p=0.0523) was preferred. In the SREM, inclusion of the 

PSA functions as covariates improved the goodness-of-fit with a maximal difference in log-

likelihood between the SREM with both current PSA level and slope as covariates and the 

model assuming independence of 81. In contrast, the difference in log-likelihood between 

the JLCM with only two latent classes and the model assuming independence was more than 

260. This greater difference illustrates the flexibility of the JLCM to model the biomarker 

trajectory, the time-to-event and their dependence. However, this is accomplished in this 

example with a large increase of the number of parameters: 61 for the 4-class JLCM vs. 30 

for the SREM, which might suggest some over-fitting. We note however that the 4-latent 

class JLCM with a reduced adjustment for covariates (i.e. covariates only in the survival 

model rather than in the survival model, the longitudinal model and the class-membership 

model) gave also a substantially improved fit: ℒ = −2502.4 (BIC=5231.5) with only 37 

parameters.

Class-specific predicted trajectories and survival functions, displayed in Figure 1(A) and (B) 

show a large latent class (class 1) representing 85.2% of the subjects with a very low long-

term increase of PSA and a very small risk of recurrence over years. The three other latent 

classes 2 to 4 (representing respectively 8.9%, 4.1% and 1.7% of the subjects) correspond to 

different profiles of PSA trajectory associated with risks of recurrence from moderate to 

intense. Weighted subject-specific predicted trajectories and weighted subject-specific event-

free probabilities displayed in Figure 1(C) and (D) demonstrate a very good fit of both the 

longitudinal and the time-to-event data.

The four latent classes of the JLCM provided very good discrimination with an entropy 

measure of 0.94 very close to 1 and proportions of maximal posterior probabilities above 0.8 

of respectively 97.7%, 87.8%, 89.5% and 100% in classes 1 to 4. Finally, mean maximal 

posterior probabilities of subjects classified in each of the four latent classes were very close 

to 1 with, respectively, 0.98, 0.92, 0.96 and 0.96 for classes 1 to 4.
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5.3 Evaluation of dynamic predictions

An example of the dynamic predictive tool derived from the 4-class compared to the one 

derived from the 1-class JLCM that does not account for PSA repeated measures (i.e. a 

standard survival model) is given in Figure 2 for a subject who recurred 3.8 years after the 

end of EBRT. While a low risk of recurrence is predicted by the standard survival model 

during the whole follow-up, the risk of recurrence predicted by the 4-class JLCM increases 

with the increasing PSA post-treatment trajectory.

Predictive accuracy can be evaluated on the same dataset as used for estimation using the 

cross-validated estimate of EPOCE. Graph 3 displays (A) this estimate, the CVPOLa, 

computed for a time at prediction from 1 to 6 years after EBRT from the different JLCM and 

SREM, as well as (B) the differences in CVPOLa between the 4-class JLCM and, 

respectively, the best SREM and the 2- and 3-class JLCM with 95% tracking intervals. 

JLCM with at least three latent classes have a better predictive accuracy than the 1-class 

prognostic model not accounting for PSA repeated measures. This illustrates the relevance 

of updating the risk of recurrence using dynamic prognostic tools rather than standard 

prognostic tools based only on baseline information. Moreover, according to the 95% 

tracking interval, the 4-class JLCM seems better than the simpler 2-class JLCM at least in 

the four first years after EBRT where detecting subjects at high risk of recurrence is 

particularly important. Similarly, the 4-class JLCM also appears better than the SREM 

(including the PSA current level and slope as covariate) in these four first years after EBRT 

according to the 95% tracking interval (Figure 3).

In prognostic model development, validation on external data is recommended. We used a 

second independent dataset (VANC) to compute predictive accuracy measures based on the 

joint models estimated on UM data. VANC data came from the British Columbia Cancer 

Agency (Vancouver, Canada).38 Inclusion criteria were the same as in the UM sample. In 

brief, 719 patients including 126 (17.5%) who had a clinical recurrence were followed-up 

for a median of 6.48 (IQR=4.28,8.22) years. The mean iPSA on the logarithm scale was 1.97 

(SE=0.74), 105 (14.6%) patients had a T-stage of 3 or 4 and, respectively, 145 (20.2%) and 

38 (5.3%) patients had a Gleason score of 7 and above 7.

Figure 4 displays the estimate of EPOCE, the MPOL, and its differences, as well as two 

estimates of the Integrated Brier Score (IBS), computed using the data-based approach 

defined in equation (12) or the model-based approach defined in equation (13). The two IBS 

estimates gave roughly the same results, both indicating a reduced error of prediction during 

the entire follow-up for JLCM with at least three latent classes and the SREM. According to 

EPOCE, the SREM and the JLCM from two to five latent classes seemed to have relatively 

close predictive accuracies. But difference in EPOCE between the 4-class JLCM and either 

the 2-class JLCM or (to a lesser extent) the SREM remained substantial in the first years of 

prediction according to the 95% tracking intervals of EPOCE differences, since these 

intervals exclude zero.
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6 Concluding remarks

Joint latent class models have received much less attention than shared-random-effect 

models in the joint modelling literature. Yet, although they may not be suitable to evaluate 

specific assumptions regarding the link between a longitudinal marker and the time to an 

event, as in surrogate marker evaluation for example, they offer a flexible framework to 

model the joint distribution of the longitudinal marker and the time-to-event. The JLCM 

summarises their dependency by the assumed categorical structure explaining heterogeneous 

profiles of the marker and risks of the event, while the SREM summarises their dependency 

by specific a priori determined functions of the marker trajectory. This characteristic of the 

JLCM, which may restrict its usefulness to descriptive analyses, can turn out to be a great 

asset in prediction studies as it approximates any structure, even complex, of the correlated 

data without a priori assumption. As an example, in the illustration about prostate cancer 

progression after radiation therapy, the JLCM with four latent classes gave a substantial gain 

in goodness-of-fit compared to the SREM.

Evaluating predictive accuracy of prognostic tools derived from joint models is not 

straightforward because of the censoring process and of the dynamic nature of the 

prognostic tool. We reviewed two types of predictive accuracy measures, quadratic errors of 

prediction and expected prognostic observed cross-entropy, and showed how to compute 

them with a JLCM and with a SREM. The quadratic error of prediction (or Brier Score) is 

reasonably well known in the prediction literature, but its estimates rely on assumptions 

regarding the censoring distribution and the window of horizons in which predictive 

accuracy is evaluated. In contrast, the expected prognostic observed cross-entropy does not 

require any assumption regarding the censoring distribution, makes use of all the available 

information from the time at prediction, and provides a tracking interval for the difference of 

predictive accuracy that makes the comparison of models possible.

In this article we illustrated the methods using a dataset that was small relative to the 

complexity of the JLCM that included a large number of parameters. This was for 

illustrative purposes only. It emphasised the flexibility of this approach to include covariates 

in different ways, and model the dependency (stratification of the risks of events over classes 

for example). However, it produced large credibility bands for the individual predicted 

probabilities and large tracking intervals for the EPOCE differences. In practice, when 

developing dynamic predictive tools and applying such joint models, estimation on large 

datasets (possibly pooled datasets) is recommended to ensure precise estimates of the model 

parameters and less uncertainty in the individual predictions. Moreover, validation of the 

dynamic predictive tools on different external datasets (rather than a single one as in this 

example) with different characteristics would be recommended. Further validation of 

dynamic predictive tools from a joint model on external data, and comparison with other 

approaches such as survival models including the previous biomarker measures are 

described in Proust-Lima and Taylor.2

Finally, we note that all the models fitted in the illustration were estimated using available R 

packages: lcmm package for JLCM ( Jointlcmm and epoce functions) and JM package for 
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SREM. Other codes for the computation of predictive accuracy measures are available on 

request from the authors.
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Figure 1. 
(A) Class-specific predicted mean trajectories and (B) class-specific event-free probabilities 

from the 4-class JLCM for a subject with Tstage<3, Gleason<7 and iPSA=2 ng/mL. (C) 

Weighted subject-specific predicted trajectories (pred) and weighted observed trajectories 

(obs) from the 4-class JLCM. (D) Weighted predicted event-free probabilities (pred) and 

weighted Kaplan–Meier estimates (obs) from the 4-class JLCM.
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Figure 2. 
Example of individual predicted probability of clinical recurrence within 3 years updated 

every 6 months from the 4-class JLCM (bold plain line) and the 1-class JLCM (plain line) 

for a subject who recurred 3.8 years after the end of EBRT and had T-stage=2 Gleason=7, 

iPSA=9.7 ng/mL and repeated PSA measurements denoted by ×.
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Figure 3. 
(A) CVPOLa, cross-validated estimate of EPOCE, computed from the SREM (with current 

PSA level and current PSA slope included as covariates in the survival model), and from 

JLCM models with G=1 to G=5 latent classes for times at prediction from 1 to 6 years after 

EBRT, (B) Differences in EPOCE with 95% tracking interval (TI) on UM dataset (N=459).
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Figure 4. 
Predictive accuracy measures at times at prediction from 1 to 6 years after EBRT computed 

on VANC dataset (N=719) from joint models estimated on UM dataset: (A) EPOCE 

estimate, (B) difference in EPOCE and 95% tracking interval (TI), (C) data-based estimate 

of Integrated Brier Score (IBS), and (D) model-based estimate of IBS. The censoring 

distribution for the IBS data-based estimate is modelled in a semi-parametric proportional 

hazard model with Gleason, T-stage, iPSA as covariates. SREM refers to the SREM with 

current PSA level and slope included as covariates in the survival model while G=1 to G=5 

refer to JLCM with G=1 to G=5 latent classes.
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