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Abstract

Human parainfluenza viruses (family Paramyxoviridae), human metapneumovirus, and respiratory syncytial
virus (family Pneumoviridae) infect most infants and children within the first few years of life and are the
etiologic agents for many serious acute respiratory illnesses. These virus infections are also associated with
long-term diseases that impact quality of life, including asthma. Despite over a half-century of vaccine research,
development, and clinical trials, no vaccine has been licensed to date for the paramyxoviruses or pneumoviruses
for the youngest infants. In this study, we describe the recent reclassification of paramyxoviruses and pneu-
moviruses into distinct families by the International Committee on the Taxonomy of Viruses. We also discuss
some past unsuccessful vaccine trials and some currently preferred vaccine strategies. Finally, we discuss
hurdles that must be overcome to support successful respiratory virus vaccine development for the youngest
children.
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Reclassification and Comparison of Paramyxoviridae
and Pneumoviridae

The paramyxoviruses and pneumoviruses have been
recently reclassified (2,3). Previously, the Para-

myxoviridae family of viruses included subfamilies Para-
myxovirinae and Pneumovirinae. However, in 2016 the
International Committee on the Taxonomy of Viruses re-
commended that the paramyxoviruses and pneumoviruses be
split into distinct families (Paramyxoviridae and Pneumovir-
idae). The reclassification was made for several reasons. First,
the polymerase genes of pneumoviruses are more closely re-
lated to those of filoviruses than those of paramyxoviruses.
Second, pneumoviruses differ from paramyxoviruses by pos-
session of an M2 gene that encodes two unique proteins. Third,
the ribonucleoprotein (RNP) complexes of pneumoviruses and
paramyxoviruses are structurally distinct (2).

The most current taxonomy listings and virus names can
be found online at www.ictvonline.org Table 1 includes
examples of Paramyxoviridae and Pneumoviridae family
members. The Paramyxoviridae family currently contains
seven genera, including Morbillivirus, Respirovirus, and

Rubulavirus. The Pneumoviridae family contains the genera
Metapneumovirus and Orthopneumovirus.

The paramyxoviruses and pneumoviruses have a variety
of similarities and differences. The polymerase (L) proteins
of viruses from these two families are well separated phy-
logenetically, having an almost equal phylogenetic rela-
tionship with members of the Filoviridae family (e.g., Ebola
virus) as with each other (Fig. 1A). On the other hand, the
fusion (F) surface glycoproteins of pneumoviruses are much
more closely related phylogenetically to those from para-
myxoviruses than they are to the glycoproteins (GP) of fi-
loviruses (Fig. 1B). Accordingly, the structures of the F
proteins of the paramyxovirus PIV5 and the pneumovirus
human respiratory syncytial virus (HRSV or RSV) in their
prefusion forms are similar to each other and quite distinct
from Ebola virus GP (48,54,96). In addition to having
similar domain structures (Fig. 2), the PIV5 and HRSV F
proteins have similar intermediate structures that can be
inhibited by heptad repeat-derived peptides (46,69,71) and
form similar six-helix bundle structures in their post-
fusion forms (6,56,84). As the F surface glycoprotein is a
primary antigen of the pneumoviruses and paramyxoviruses,
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similar vaccine strategies for both virus families may prove
successful.

Virion Structure

As members of the order Mononegavirales, the para-
myxoviruses and pneumoviruses have nonsegmented, linear,
single-stranded negative-sense RNA genomes (Fig. 3). Their
viral RNA (vRNA) genomes are encapsidated by nucleo-
proteins (N). The genetic cores of these viruses are RNP
complexes that consist of vRNA, N protein, phosphoprotein
(P), and the large (L) polymerase protein (19). The matrix
(M) protein has two compact beta-rich domains connected
by a linker (59). The M protein facilitates virus assembly
through interactions with the RNP, plasma membrane, and
envelope glycoproteins (75,87). While the F glycoproteins
of the paramyxoviruses and pneumoviruses are phylogeneti-
cally and structurally similar (Fig. 2), the hemagglutinin–
neuraminidase (HN), hemagglutinin (H), and glycoprotein (G,
for HMPV and HRSV) surface attachment proteins differ in
sequence, structure, and binding properties (13,31,47,55,97).
For both virus families, the F protein and the attachment
protein are exposed on the surfaces of virions and infected
cells, help promote virus entry, and provide targets for
vaccine development.

Diseases Caused by the Paramyxoviruses
and Pneumoviruses in Infants and Young Children

Lower respiratory tract (LRT) infection is the leading
cause of death in low-income nations and the third-leading

cause of mortality worldwide (www.who.int) (62). Ap-
proximately half of the respiratory viral hospitalizations of
U.S. children annually are caused by RSV (63,000), HMPV
(21,000), and HPIV1, HPIV2, and HPIV3 (21,000) (18).
RSV infects most children by age 2 and may cause more
than 100,000 deaths worldwide annually (30,61,77). Acute
RSV bronchiolitis associates with recurrent respiratory
symptoms in approximately one third of the infected chil-
dren (78–80). Chronic diseases include asthma, which af-
flicts over 8% of the United States at an annual cost of $56
billion (57). HPIV1 is the leading cause of severe croup
(laryngotracheobronchitis), and HPIV3 is a leading cause of
bronchiolitis and pneumonia (14,27,90).

The Measles Virus Vaccine, a Successful Vaccine
for Older Children

Impressive clinical successes in the paramyxovirus field
include development of the human mumps and measles
virus vaccines. These licensed vaccines are usually formu-
lated as elements of the mumps, measles, and rubella
(MMR) pediatric vaccine product, widely distributed
throughout the world (44). When communities of individ-
uals reject MMR vaccinations, new measles epidemics and
associated morbidities can arise, demonstrating the signifi-
cant positive influence of the MMR vaccine on human
health (25). The MMR vaccine is usually delivered intra-
muscularly with priming and booster doses.

Measles virus vaccines have changed over the years. One
of the first measles virus vaccines was a formalin-
inactivated (FI) product. A noted risk with this product was

Table 1. Examples of Members of the Families Paramyxoviridae and Pneumoviridae

Family Genus Speciesa

Paramyxoviridae Aquaparamyxovirus Salmon aquaparamyxovirus (Atlantic salmon paramyxovirus, AsaPV)
Avulavirus Avian avulavirus 1 (Newcastle disease virus, NDV)
Ferlavirus Reptilian ferlavirus (Fer-de-Lance virus, FDLV)
Henipavirus Hendra henipavirus (Hendra virus, HeV)

Nipah henipavirus (Nipah virus, NiV)
Cedar virus (CedV)

Morbillivirus Measles morbillivirus (measles virus, MeV)
Canine morbillivirus (canine distemper virus, CDV)
Rinderpest morbillivirus (rinderpest virus, RPV)

Respirovirus Human respirovirus 1 (human parainfluenza virus 1, HPIV1)
Murine respirovirus (Sendai virus, SeV)
Human respirovirus 3 (human parainfluenza virus 3, HPIV3)
Bovine respirovirus 3 (bovine parainfluenza virus 3, BPIV3)

Rubulavirus Mumps rubulavirus (mumps virus, MuV)
Mammalian rubulavirus 5 (parainfluenza virus 5, PIV5;

previously named simian virus 5, SV5)
Human rubulavirus 2 (human parainfluenza virus 2, HPIV2)
Human rubulavirus 4 (human parainfluenza virus 4, HPIV4)
Simian rubulavirus (simian virus 41, SV-41)

Pneumoviridae Metapneumovirus Human metapneumovirus (HMPV)
Avian metapneumovirus (AMPV)

Orthopneumovirus Human orthopneumovirus (human respiratory syncytial virus, HRSV)
Bovine orthopneumovirus (bovine respiratory syncytial virus, BRSV)
Murine orthopneumovirus (murine pneumonia virus; previously

pneumonia virus of mice, PVM)

aRenamed virus species that use non-Latinized binomial names similar to nomenclature already implemented for six of the eight families
of Mononegavirales are listed first (ICTV code 2016.011aM). Names of exemplar virus members and abbreviations are listed in
parentheses.
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FIG. 1. Phylogenetic relationships between representative members of the Paramyxoviridae, Pneumoviridae, and Filo-
viridae families. Amino acid sequences of the polymerase (A) and surface glycoprotein (B) genes were used to compare
virus families. Taxonomy is shown according to the 2016 release by the International Committee on the Taxonomy of
Viruses. The phylogenetic tree was generated with CLC Main Workbench (CLC bio). The scale bar represents branch
length as base substitutions per site. Virus names are abbreviated as follows: human metapneumovirus (HMPV), human
parainfluenza virus 1 (HPIV1), human parainfluenza virus 2 (HPIV2), human parainfluenza virus 3 (HPIV3), human
respiratory syncytial virus (HRSV), and Newcastle disease virus (NDV). L protein sequences are as follows: Ebolavirus
Zaire (NP_066251), Marburg virus 1980 (YP_001531159), Hendra virus (NP_047113), HMPV CAN97-83 (YP_012613),
HPIV1 Z (CAA272273), HPIV2 Toshiba (P26676), HPIV3 (ZLNZP3), HRSV B1 (NP_056924), measles virus Ichinose-
B95a (NP_056924), NDV B1 (NP_071471), and Sendai virus Enders (AAA69579). GP protein sequences are from Ebo-
lavirus Zaire (AAB81004) and Marburg virus Popp (CAA48507). F protein sequences are from Hendra virus
(NP_047111.2), HMPV TN/92-4 (ABM67j072), HPIV1 C39 (P12605), HPIV2 (NP_598404), HPIV3 (AAB21447.1),
HRSV B 9320 (AAR14266), measles virus Edmonston (AF266288_6), NDV LaSota (AAC28374.1), and Sendai virus Z
(AAB06281.1).

FIG. 2. Prefusion structures of the fusion (F) proteins of PIV5 and HRSV. (A) Ectodomain structure of the F protein.
Domains are as follows: domain I (DI, yellow), domain II (DII, green), domain III (DIII, orange), domain III heptad repeat
A (DIII HRA, brown), fusion peptide (f.p., magenta), heptad repeat B (HRB, blue), and trimerization domain (t.d.). (B, C)
Trimer and monomer structure of the PIV5 F protein in its prefusion form. (D) Monomer structure of the HRSV F protein in
its prefusion form. Domains in B–D are color coded as in the domain structure (A). Structures of PIV5 F (96) and HRSV F
(54) were rendered with MacPYMOL using coordinates 2B9B and 4JHW, respectively.
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that when children were naturally exposed to measles virus
after vaccination, they could suffer enhanced immunopa-
thology (33). Today, live attenuated vaccines are used.
Vaccine success is high (>95%) and clinicians hope that the
vaccine will eventually eliminate measles virus from the
human population. It is noteworthy that the MMR vaccine is
usually recommended only for older infants or children over
the age of 1 year. These children no longer harbor protective
maternal antibodies at high titer, and are therefore particu-
larly vulnerable to measles virus infections (44).

The mumps component of the MMR vaccine is a live
attenuated virus developed by the serial passage of wild-
type virus. Following vaccination, durable neutralizing
antibodies are induced and protection from infection is
virtually complete (10).

Past and Current Strategies for Pneumovirus
and Paramyxovirus Vaccine Development

The past and current strategies for pneumovirus and
paramyxovirus vaccine development for the youngest in-
fants are many, and will be described only briefly in this
report. Despite convincing studies using research models,
and numerous phase I clinical studies, few of these vaccines
have advanced to phase III clinical trials (9,11).

RSV vaccines have been heavily studied, because RSV
infections cause high-frequency morbidity and mortality in
infants. One strategy that has yielded many candidates for
phase I testing has been the attenuation of wild-type human
RSV (7,15,23,40,42,51,67,72,83,94). This was originally
accomplished by selecting cold-adapted mutants (e.g., RSV
cps2, NCT01852266, and NCT01968083-2013) or by dele-
tion of whole genes (e.g., MEDIDM2-2, NCT01459198-2011
and RSV LID DM2-2, NCT02040831; NCT02237209-2014)
or by combinations of both strategies (e.g., RSV LID cpDM2-
2, NCT02948127-2016). Mutations were also introduced de-
liberately into genes for internal and/or external proteins (e.g.,
RSV LID DM2-2 1030s, NCT02952339; NCT02794870-2016,

RSV DNS2/D1313/I1314L, NCT03227029; NCT01893554-
2013, RSV D46/NS2/N/DM2-2-HindIII, NCT03099291;
NCT03102034-2017, and RSV 276, NCT03227029). When
candidate vaccines were advanced for clinical testing, they were
often abandoned or tagged for further mutation if (1) the vaccine
was overattenuated and did not induce a robust immune re-
sponse, or (2) the vaccine was underattenuated and associated
with adverse events such as wheezing or reversions to a less-
attenuated phenotype (38,52). The production of sufficient
vaccine virus for distribution has been another key challenge
with this approach.

Another popular strategy has been to produce recombinant
vaccines by expressing RSV proteins in a non-RSV viral
construct. Examples of live viral delivery vehicles have in-
cluded a bovine PIV-type 3/HPIV3 chimera (b/hPIV-3)
(49,74) and Sendai virus (SeV) (1,32,34,36,68,81,85,86,98–
100). For example, MedImmune advanced a b/hPIV-3 con-
struct carrying a recombinant RSV F gene. Immune responses
toward this vaccine were unfortunately lower than expected
and there was evidence of RSV F gene instability (88,95).
New strategies using the b/hPIV-3 construct are now being
developed (50). A chimpanzee-derived adenovirus vector,
ChAd155-RSV, has also been tested in adults (NCT 2491463-
2015) and is currently being investigated in a phase II study in
RSV seropositive infants aged 12–23 months (NCT02927873-
2016). The SeV platform has been advanced at St. Jude
Children’s Research Hospital (1,32). For example, a recom-
binant SeV-expressing RSV F has been proven effective in
small animals and nonhuman primates, and is expected to ad-
vance to a phase I clinical trial soon (34–36,68,86,98–100).

Recombinant constructs may be used as vaccines directly,
or may be used to produce purified RSV protein vaccines. As
an example, Novavax is testing a baculovirus-derived RSV F
protein vaccine using recombinant nanoparticle technology.
This vaccine was immunogenic in both alum adjuvanted and
unadjuvanted preparations in elderly subjects, but the un-
adjuvanted preparation failed to demonstrate disease preven-
tion in a pivotal phase III trial in the elderly (as described by

FIG. 3. Schematic diagrams of paramyxovirus and pneumovirus genomes. Genomes shown include Sendai virus (SeV,
blue), a generic human parainfluenza virus genome (HPIV, brown), human metapneumovirus (HMPV, green), human
respiratory syncytical virus (HRSV green) and an RSV F vaccine vectored by Sendai virus (SeV-RSVF, blue with yellow
insert). The additional (termed ‘‘addnl’’ in the figure) proteins expressed from the P genes of HPIV1, HPIV2, and HPIV3 are
shown in brown below the generic HPIV genome. Surface glycoproteins of the human viruses are shown in yellow. In each
genome, the 3¢ leader is on the left terminus and the 5¢ trailer is on the right. The intergenic junctions are not shown but
contain transcription stop, intergenic, and transcription start sequences. In the HMPV and HRSV genomes, the M2 gene
contains two overlapping products, M2-1 and M2-2. The RSV M2 and L genes overlap. Genomes are drawn to scale
(bottom), except for the generic HPIV genome.
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Fries, L. at RSV 2016, 29 September 2016, Bariloche, Ar-
gentina). Currently, a second phase II trial is being conducted
in 300 elderly subjects in Australia comparing the immuno-
genicity of vaccine with no adjuvant, alum adjuvant, and a
novel adjuvant called Martrix M-1 (NCT 030263348). Im-
munogenicity and safety of the alum adjuvanted preparation in
women of childbearing age (4,26) and in pregnant women
were demonstrated (please see http://novavax.com/download/
files/presentations/FIGO_7OCT2015_
AA_P2_Data_10_14_15_FINAL(1).pdf), and a phase III trial
of the alum-adjuvanted vaccine in pregnant mothers for the
protection of infants is ongoing (NCT02624947-2015). Med-
immune developed a novel RSV sF vaccine adjuvanted to
GLA (glucopyranosyl lipid A)—MEDI7510 (20,21) that
entered into a 2-year phase II study in healthy elderly pa-
tients (NCT02508194). The trial was terminated at the end
of year 1, and drug development discontinued due to lack
of efficacy (22).

Other developers (e.g., Vaccine Research Center) are
testing prefusion F proteins derived from mammalian cells
(28,37,45,50). A study to evaluate the safety, reactogenicity,
and immunogenicity of the GlaxoSmithKline RSV investi-
gational vaccine (GSK3003891a) in healthy pregnant wo-
men and infants born to vaccinated mothers, using a novel
prefusion form of RSV F protein, was cancelled due to in-
stability of the PreF during manufacturing (NCT03191383).
Debates continue as to which protein vaccine is best, and
which form of protein should be used (e.g., prefusion or
postfusion F) (4,45,53–56,84,101). Today, dozens of RSV
vaccine candidates are under development (9).

Recombinant vectors have also been used to target
paramyxoviruses or pneumoviruses other than RSV. For
example, Mok et al. (58) have used Venezuelan equine
encephalitis virus replicon particles, and Russell et al. (70)
have used SeV recombinants to present the F protein of
HMPV. SeV additionally serves as a Jennerian vaccine
against HPIV1, because the two viruses are closely similar,
both by protein sequences and by protein conformations
(16,66,82). Similarly, BPIV3 or BPIV3 chimeras have been
tested as Jennerian vaccines for HPIV3 (5,29,39,41,73).
Newer strategies include RNA-based vaccines, such as the
HMPV/PIV3 vaccine produced by Moderna, mRNA-1653
(17). Finally, we note that cocktail vaccines have been
studied, so that several pathogens can be represented in a
single vaccine formulation (e.g., a mixture of three SeV
recombinants protected against RSV, HPIV1, HPIV2, and
HPIV3 in a cotton rat model) (34,100).

Hurdles That Must Be Overcome

It is perhaps surprising that the vast research dedicated to
the paramyxovirus and pneumovirus vaccine fields has not
generated licensed products for the youngest infants. One
hurdle to be considered is that maternal antibodies may
weaken vaccines in young infants, but experiences in other
fields and with vaccine models (36) show that vaccines can
be efficacious shortly after birth. We consider two additional
hurdles as follows.

Lack of community awareness

When a young infant suffers from a respiratory virus in-
fection, the disease is often inaccurately termed ‘‘flu.’’ The

reality is that acute lower respiratory viral infections in the
youngest children are most often caused by paramyxoviruses
or pneumoviruses (61,77). Furthermore, infections with the
paramyxoviruses and pneumoviruses are not routinely reported
to the Centers for Disease Control and Prevention or other
regulatory agencies, meaning that communities cannot easily
tabulate the number of infections per year or the disease out-
comes [agencies contemplate making RSV infections notifi-
able in select states on a trial basis to assist future evaluation of
candidate vaccines (43)]. The vast morbidity and mortality
caused by infections with the paramyxoviruses and pneumo-
viruses perhaps go unrecognized by the public eye, and the
value of potential protective vaccines is not understood. In-
stead, the risk of vaccine development may be perceived as too
high, and research funds may be diverted elsewhere.

Vaccine-induced inflammation in the respiratory tract:
beneficial or pathogenic?

The paramyxoviruses and pneumoviruses are somewhat
unique in that they often strike the respiratory tracts of the
youngest infants. If a vaccine can induce antibodies and ef-
fectors (e.g., plasma cells and T cells) that target virus in the
respiratory tract, this may have the desired effect of inhibiting
virus replication in the lung. However, by definition, entry of
cells into tissues is termed ‘‘inflammation,’’ a condition that is
generally feared in the context of the pediatric respiratory
tract. The situation differs from vaccination with other prod-
ucts such as the polio vaccine, after which cellular responses
in the mucosa are expected and tolerated (64).

A fear of inflammation in the pediatric respiratory tract is
warranted, because excessive cell influx into the airways can
block respiration. An experience of the 1960s provides an
example. When an FI-RSV vaccine was tested in a clinical
trial, vaccinated children fared worse than their control
counterparts following natural exposure to RSV (reminis-
cent of the immunopathology associated with the FI-measles
vaccine previously described). There were numerous hos-
pitalizations and two deaths caused by the vaccine (12). The
explanation for the FI-RSV vaccine outcome remains un-
known. Perhaps, because there were no neutralizing anti-
bodies induced by the vaccine, virus trafficked to the LRT
unperturbed; innate and adaptive immune cells then infil-
trated the LRT and constricted the airways (60).

To avoid consequences similar to those observed with FI-
vaccines, new respiratory virus vaccines must induce bal-
anced inflammatory responses. A robust, acute, local immune
response in respiratory tissues may be desired to support rapid
virus clearance and to avoid tissue damage [and consequent,
enhanced inflammatory responses (65)], but the initial cell
recruitment into respiratory tissues must not be so great as to
constrict the airways. How robust should the response be?
This question is difficult to answer, in part because responding
cells are heterogeneous in nature, and in part because a cell
population that might benefit one individual might harm an-
other. Outcomes will depend on the age, size, and lung con-
stitution/environment of each vaccinee.

When particular cytokines, CD4+ T cells, or eosinophils
(to name a few factors) are upregulated locally or systemi-
cally by vaccination with a new candidate respiratory virus
vaccine, concerns are raised in the research community that
can discourage advanced vaccine development. Debates
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then continue as to the benefits/risks of particular immune
effector populations, and models/assays by which effectors
should be measured (8,24,63,76,89,91–93). Currently, such
debates are unresolved, but their eventual resolution may
greatly accelerate the development of paramyxovirus and
pneumovirus vaccines for the pediatric arena.

Conclusions

Mumps and measles virus vaccines mark two successes in
the paramyxovirus field, but these are often recommended
for children age 1 or older. Neither the paramyxovirus nor
pneumovirus field has yet to produce a licensed vaccine for
the youngest infants. While numerous promising vaccine
candidates exist, major hurdles are also present. The public
is often unaware of the diseases caused by paramyxoviruses
and pneumoviruses, and therefore does not appreciate the
importance of associated vaccines. Also, researchers must
be assured that vaccine-induced inflammation in the re-
spiratory tract will be effective without constricting the
airways. These significant hurdles must be overcome if
vaccines for the paramyxoviruses and pneumoviruses are to
be developed for the youngest children.
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