
Analysis of accelerated failure time data with dependent 
censoring using auxiliary variables via nonparametric multiple 
imputation

Chiu-Hsieh Hsua,b,*,†, Jeremy M. G. Taylorc, and Chengcheng Hua,b

aDivision of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, 
Tucson, AZ, 85724, U.S.A

bArizona Cancer Center, University of Arizona, Tucson, AZ, 85724, U.S.A

cDepartment of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 
48109, U.S.A

Abstract

We consider the situation of estimating the marginal survival distribution from censored data 

subject to dependent censoring using auxiliary variables. We had previously developed a 

nonparametric multiple imputation approach. The method used two working proportional hazards 

(PH) models, one for the event times and the other for the censoring times, to define a nearest 

neighbor imputing risk set. This risk set was then used to impute failure times for censored 

observations. Here, we adapt the method to the situation where the event and censoring times 

follow accelerated failure time models and propose to use the Buckley–James estimator as the two 

working models. Besides studying the performances of the proposed method, we also compare the 

proposed method with two popular methods for handling dependent censoring through the use of 

auxiliary variables, inverse probability of censoring weighted and parametric multiple imputation 

methods, to shed light on the use of them. In a simulation study with time-independent auxiliary 

variables, we show that all approaches can reduce bias due to dependent censoring. The proposed 

method is robust to misspecification of either one of the two working models and their link 

function. This indicates that a working proportional hazards model is preferred because it is more 

cumbersome to fit an accelerated failure time model. In contrast, the inverse probability of 

censoring weighted method is not robust to misspecification of the link function of the censoring 

time model. The parametric imputation methods rely on the specification of the event time model. 

The approaches are applied to a prostate cancer dataset.
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1. Introduction

The event times for censored observations can be regarded as missing data [1]. Missing data 

methods such as the data augmentation algorithm [2] and multiple imputation [3] have been 

proposed to handle censored observations to recover lost information due to censoring [4–6] 

or to simplify doubly censored data into right censored data [7]. Not only does censoring 

result in a loss of efficiency of estimators but also a potential for bias too if the censoring 

mechanism is not independent of the event time mechanism. In many studies, auxiliary 

variables predictive of the failure time often are also available, for example, Gleason score 

and prostate-specific antigen (PSA) level in studies of prostate cancer. In this paper, our 

interest is in estimating the marginal survival distribution when the data are subject to 

dependent censoring; thus, the auxiliary variables will only be used to provide some 

additional information on endpoint occurrence times for censored observations.

Incorporating auxiliary variables has the potential to reduce bias due to dependent censoring 

in estimating the marginal survival distribution. A few statistical approaches have been 

proposed to handle dependent censoring through the use of auxiliary variables. Of the 

existing approaches, the inverse probability of censoring weighted (IPCW) method [8], 

where the weight is derived from a model for the censoring times with auxiliary variables as 

the covariates, and parametric multiple imputation (PMI) method, where a specific 

parametric model is used to impute event times for censored observations, are two popular 

methods. Both approaches use a model to directly incorporate auxiliary variables into 

estimation of the marginal survival function. To weaken the reliance on the model, we 

previously developed a nonparametric multiple imputation approach using auxiliary 

variables to recover information for censored observations. The approach uses two working 

semiparametric models to indirectly incorporate auxiliary variables into estimation of the 

marginal survival function. Specifically, we use two working Cox proportional hazards (PH) 

models, one for the failure time and one for the censoring time. The parameter estimates 

from these models are then used to give two risk scores for each subject, defined as the 

linear combination of covariates. The method then selects an imputing risk set of 

observations for each censored observation [9], which consists of subjects who survive 

longer than the censored subject and have similar risk scores as the censored subject. Then 

the event time was drawn from a nonparametric distribution derived from this imputing risk 

set. The idea is similar to predictive mean matching [10] and propensity score matching [11] 

in the missing data literature. By incorporating predictive auxiliary variables into the 

multiple imputation method, one can both increase efficiency and reduce bias due to 

dependent censoring. We also showed that conditions under which the nonparametric 

imputation enhanced estimate is consistent and reproduces the weighted Kaplan–Meier 

estimator, a method for incorporating categorical auxiliary variables. This approach has nice 

properties; however, the two working models assume that the hazards are proportional.

When the PH assumption is questionable, the accelerated failure time (AFT) model is an 

alternative to the Cox PH model. It is often characterized by specifying that the logarithm of 

a failure time be linearly related with covariates. In that sense, the AFT model is more 

appealing and easier to interpret than the PH model because of its quite direct physical 

interpretation [12]. Based on how the AFT model is often characterized, one would use 
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conventional linear regression methods to perform estimation. However, often, there are 

censored observations, which complicate the estimation. One popular approach to deal with 

censored observations in estimation of the AFT model is the Buckley–James method [13, 

14], which is an iterative method based on the expectation-maximization (EM) algorithm. 

The estimation of the Buckley–James method can be highly unstable, especially in a 

situation with a small sample size. Also, the estimation of its variance involves the density 

and the derivative of the density of an unknown distribution [14].

In this paper, we adapt our nonparametric multiple imputation approach to handle the case 

of the data from an AFT model when the goal is estimating the marginal survival function. 

Specifically, we propose to use two Buckley–James estimators, one for the failure time and 

one for the censoring time, to derive two risk scores to select an imputing risk set for each 

censored observation. The two Buckley–James estimators are only used to derive two risk 

scores to select an imputing risk set. Hence, the approach is expected to be less affected by 

unstable estimation, and it is not required to estimate the variance of the Buckley–James 

estimator. In this paper, not only will we study the performances of the proposed multiple 

imputation approaches but also will compare their performances with these two existing 

popular approaches, IPCW and PMI, and, furthermore, shed light on the use of IPCW and 

PMI approaches when the true model for the event time is from an AFT model.

This paper is organized as follows. In Section 2, we review estimation for the AFT model 

and the relationship between PH and AFT models. In Section 3, we briefly describe the 

IPCW and the PMI methods. In Section 4, we describe multiple imputation procedures and 

discuss their properties. In Section 5, we apply the techniques to data from a prostate cancer 

study. In Section 6, we give results from a simulation study. A discussion follows in Section 

7.

2. Estimation for the accelerated failure time model

Let T denote the failure time, C denote the censoring time, X = min(T, C), δ = I(T ≤ C), and 

ZT = (Z1, Z2, …, Zp) denote the time-independent auxiliary variables. Assume that there are 

n independent observations of X, δ, and Z.

2.1. Buckley–James estimator

Under the AFT model, one can specify log(T) = α0+αTZ+σW to study the relationship 

between T and Z, where αT = (α1, …, αp), σ > 0 are unknown parameters and W has 

density f (w) and distribution function F(w). Without censoring, the ordinary least square 

(OLS) method can be performed on the logarithm of T to estimate α0 and α by minimizing 

 with respect to α0 and α. With censoring, the OLS 

method cannot be performed directly because log(T) is unobserved for censored 

observations. The Buckley–James estimator [13,14] has been proposed to handle censored 

observations by adapting the OLS method. The method iterates between replacing each 

censored log(T) with the expected value of log(T) conditional on the current parameter 

estimate, censoring indicator, and Z (i.e., the E step) and then performing the OLS method 

on the ‘complete’ data (i.e., the M step). It has been shown that it is difficult to derive the 
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variance of the Buckley–James estimator, and the estimation can be unstable. However, we 

only use the Buckley–James estimator to derive risk scores (defined as αTZ) to select an 

imputing set for each censored observation, therefore, we do not need to derive the variance. 

Specifically, in this paper, we propose to use two Buckley–James estimators, one for the 

failure time and one for the censoring time, only to summarize the auxiliary variables into 

two risk scores.

2.2. Relationship between Cox proportional hazards and accelerated failure time models

In practice, often, people use a PH model to study the relationship between T and Z 
regardless of the underlying distribution of T. In other words, the hazard function given Z is 

specified as , where βT = (β1, …, βp) is a vector of regression coefficients 

and λ0(t) is the unspecified baseline hazard function. The regression coefficients β can be 

estimated based on the partial likelihood. There are some known relationships between the 

AFT and PH models. Specifically, when the AFT model has the extreme value distribution, 

the partial likelihood of the PH model estimates the parameter β = σ−1α. In addition, based 

on first-order approximations, several studies [15–17] have shown that the relative 

importance of the covariates derived from the PH model remains unchanged approximately 

when the true model is an AFT model. The relative importance of the covariates is measured 

using the ratios of the estimated regression coefficients to the estimated regression 

coefficient of a reference covariate. This is equivalent to the coefficients from the two 

models being the same up to an unknown scale factor. In symbols, the property is that αj∕‖α‖ 
≈ βj∕‖β‖, j = 1, …, p. A consequence of this property is that the rank order of the estimated 

regression coefficients from a PH model should be the same as the rank order of the 

estimated regression coefficients of the AFT model. In practice, with finite samples that 

introduce uncertainty in to the estimates, and because the result is based on an 

approximation, the relative importance from the two estimated models will not be exactly 

the same, but it can be expected to be similar. Because on this property of preserving the 

relative importance, PH models can be expected to produce good estimates of the risk scores 

even if the true models are AFT models. Thus, if two subjects have similar risk scores under 

one model, they will very likely have similar risk scores under the other model. Therefore, 

the nonparametric multiple imputation approach based on two working PH models is 

expected to produce similar survival estimates as the imputation method based on the two 

working Buckley–James estimators when the true models are the AFT models.

3. Alternative methods

3.1. Inverse probability of censoring weighted method

In survival analysis, the IPCW method [8] is a popular way to correct potential bias due to 

dependent censoring. Specifically, the IPCW method uses the auxiliary variables Z to derive 

censoring weights and then incorporates the weights into estimation. The weights are 

derived from a regression model for the censoring time. Once the weights are estimated, the 

expression of the point estimator for the marginal survival rate at time t [8, Equation 10] can 

be specified as follows: , where Y(u) = I(X ⩾ 
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u) is the at-risk indicator and  is the subject-specific weight at 

time Xi for subject i.  is the usual Kaplan–Meier estimator of the probability being 

uncensored by time Xi, and  is the conditional probability of being uncensored by 

time Xi given Zi derived from a model for censoring time using the auxiliary variables Z as 

the covariates. When a Cox PH model is used for the censoring time, the expressions for the 

standard errors of the IPCW method involve complicated formulas and can be found in the 

appendix of [8]. Besides using a PH model to derive the censoring weights (denoted as 

IPCWPH), we will also use a specific parametric AFT model (a lognormal (denoted as 

IPCWLognormal) or log-logistic (denoted as IPCWLoglogistic) model) to derive the censoring 

weights. The standard error formulas in [8] are only for the censoring weights derived from 

a PH model. When the censoring weights are derived from an AFT model, the estimate of 

the standard error is derived from 500 bootstrap samples. When the censoring time model is 

indeed an AFT model, then IPCW using the AFT model to derive the weights is expected to 

perform well. In this paper, we will study their performances and compare them with the 

proposed imputation methods in simulation when the true censoring time model is from an 

AFT model.

3.2. Parametric multiple imputation

In this method, a parametric AFT model is fit to a bootstrap sample of the event time data, 

with the auxiliary variables as covariates. Based on the parameter estimates derived from the 

bootstrap sample, the residual time distribution is calculated for each censored observation 

in the original sample. An event time is then imputed for each censored case in the original 

sample by drawing from this residual time distribution [18]. The procedure is repeated M 

times. A Kaplan–Meier estimator is obtained from each completed dataset. The final 

estimates and standard errors are obtained from the results of the M analyses using the 

standard combining rules for multiple imputation.

4. Nonparametric multiple imputation

To conduct nonparametric multiple imputation, for each censored observation, we seek an 

imputing risk set consisting of subjects who survive longer than the censored subject and 

have similar risk scores as the censored subject. We describe the imputation procedures in 

the following four steps.

4.1. Imputation procedures

Step 1. Estimate the two risk scores on a bootstrap sample—To define each 

imputing risk set, we first reduce the auxiliary variables to two scalar indices (risk scores), 

which provide an indicator of an individual’s risk of failure and censoring. This strategy 

summarizes the multidimensional structure of the auxiliary variables into a two-dimensional 

summary. The hope is that this two-dimensional summary contains most, if not all, of the 

information about the future event and censoring times. Here, we assume that the data arise 

from an AFT model. Hence, we propose to use two Buckley–James estimators, one for the 

failure time and one for the censoring time, to derive two risk scores, summarizing the 

associations between the auxiliary variables and the failure and censoring times. Two 
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Buckley–James estimators will be derived on a nonparametric bootstrap sample [19] of the 

original dataset to incorporate the uncertainty of parameter estimates from the working 

models. This step results in proper multiple imputation ([20] and references therein). More 

specifically, let (XB, δB, ZB) denote the bootstrap sample. Two Buckley–James estimators 

are conducted on the bootstrap sample to calculate two risk scores,  (failure) 

and  (censoring), for each individual in the bootstrap sample. We further 

standardize these scores by subtracting their sample mean and dividing by their standard 

deviation and denote the standardized scores by  and , respectively.

Combinations of these two risk scores will be studied to see to what extent a double 

robustness property for model misspecification can be established [21]. In addition, two 

working PH models will also be fit to the bootstrap sample to calculate the two risk scores to 

study whether a robustness property for link function misspecification can be established for 

the nonparametric multiple imputation method [15–17].

Step 2. Calculate the distance between subjects—For a censored subject j in the 

original dataset with covariate values Zj, two risk scores are derived using the regression 

coefficient estimates obtained from the bootstrap sample (i.e.,  and 

) and then standardized by subtracting the sample mean of the corresponding 

bootstrap sample risk scores and dividing by the standard deviation of the corresponding 

bootstrap sample risk scores, respectively (denoted as  and ). The distance 

between subject j in the original dataset and subject k in the bootstrap sample is then defined 

as , where w1 and w2 are non-

negative weights that sum to 1. Non-zero weights for w2 may be useful in reducing the bias 

resulting from model misspecification. Specifically, a small weight w2 (e.g., 0.2) will result 

in incorporating the risk scores from the censoring time model into defining a set of nearest 

neighbors for censored subjects. Based on our previous study [9], we found that w1 = 0.8 

and w2 = 0.2 gave reasonable results even when the working failure time model is 

misspecified. Hence, we set w1 = 0.8 and w2 = 0.2 in this paper.

Step 3. Define the imputing risk set—For each censored subject j, the distance derived 

in step 2 is then employed to define a set of nearest neighbors. This neighborhood, R(j+, 
NN), consists of NN subjects who have longer survival time than the censoring time of 

subject j and a small distance from the censored subject j. For example, R(j+, NN = 10) 

consists of 10 subjects, including both censored and uncensored subjects, with the 10 nearest 

distances from subject j among those who have longer survival time than the censoring time 

for subject j. When the number of individuals still at risk is less than NN, then they are all 

included in the imputing risk set. We previously studied NN in the range of 5 to 50 and 

found that NN = 10 gave the most reasonable results in terms of having the minimum mean 

square error [9]. Hence, in this paper, we set NN = 10.

Step 4. Impute a value from the imputing risk set—After the imputing risk set R(j+, 
NN) is defined, the Kaplan–Meier imputation (KMI) scheme developed in [6] and briefly 
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described in the succeeding text can be easily used. The KMI method draws an event time 

from a KM estimator of the distribution of failure times based on the imputing risk set. Thus, 

the procedure imputes only observed failure times unless the longest time in the imputing 

risk set is censored, in which case, some imputed times may include this censored time. 

Specifically, for each censored time tj, a survival curve, , is estimated from among 

those individuals in R(j+, NN). Then the KMI method imputes a value  by drawing at 

random from the corresponding estimated distribution function . The KMI method 

using two Buckley–James estimators to derive the risk scores is denoted as KMIBJ. The KMI 

method using two PH models to derive the risk scores is denoted as KMIPH.

Step 5. Repeat steps 1 to 4 independently M times—Each of the M imputed 

datasets is based on a different bootstrap samples. Once the M multiply imputed datasets are 

obtained, we carry out the multiple imputation (MI) analysis procedure established in [3]. 

Specifically, for our purposes, Kaplan–Meier estimation of the marginal survival distribution 

is performed on the M imputed datasets. The final estimate of S(t) (denoted as ŜM(t)) is the 

average of the M Kaplan–Meier estimates (i.e., Ŝ(t)), and the final variance (denoted as 

var[ŜM(t)]) is the sum of the sample variance (denoted as B) of the M Kaplan–Meier 

estimates and the average (denoted as U) of the M variance estimates of the Kaplan–Meier 

estimator. The quantity  approximately follows a t 
distribution with a degree of freedom v = (M − 1) ∗ [1 + {U ∗ M∕(M + 1)}∕B]2 [3]. We use a 

value of 10 or higher for M.

4.2. Properties of the proposed multiple imputation approach

We have previously shown in large samples that by conditioning on the two risk scores, a 

situation of independent censoring can be induced within each imputing risk set if one of the 

two working models is correctly specified [9]. Based on this property, we have further 

shown that the proposed KMI approach has a double robustness property: if one of the two 

working models is correctly specified, then the estimate derived from the multiple 

imputation method is consistent. In addition, based on the relationship between PH and AFT 

models, we expect that the KMI method has a second robustness property. Specifically, if 

one of the two true models is from the AFT model family, then fitting two PH models still 

gives good estimates of the regression coefficients [15–17]. Because it is only the regression 

coefficients, and not the link function that is used in defining the imputing risk set, the KMI 

method is robust to misspecification of the link function. The aforementioned properties of 

the KMI method apply in large sample conditions. In small sample size situations, this 

nearest-neighborhood approach could produce biased survival estimates due to the lack of 

availability of suitable donor observations even if one of the two working models is correctly 

specified, especially when the failure time model is misspecified.

5. Illustration of the method on a prostate cancer dataset

We demonstrate the nonparametric multiple imputation approach using auxiliary variables 

on a prostate cancer dataset, which consists of 503 patients with localized prostate cancer 

treated with external-beam radiation therapy at the University of Michigan and affiliated 
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institutions between July 1987 and February 2000. This dataset has been previously used to 

develop individualized prediction models of disease progression using serial PSA [22–24] 

and to develop a weighted Kaplan–Meier approach to adjust for dependent censoring using 

linear combinations of prognostic variables where the linear combination is categorized to 

define risk groups, and the final Kaplan–Meier estimate is the weighted average of the 

Kaplan–Meier estimates from all of the risk groups [25].

There are several variables collected at baseline, including age, Gleason score, PSA, T stage, 

and total radiation dose. T stage, PSA, and Gleason score are well-known prognostic 

variables of prostate cancer. In addition, age and total radiation dose are expected to be 

predictive of the patient’s survival or censoring time. In this paper, we treat those five 

variables as the auxiliary variables for estimating the distribution of recurrence/prostate 

cancer-free survival. To assess the PH assumption, time-dependent variables consisting of an 

interaction between the auxiliary variables and log(time) are included. Non-PH are detected 

for age and Gleason score with a p-value of 0.04 and 0.02, respectively.

To demonstrate the MI approach when potential non-PH exist, baseline PSA value, age, 

Gleason score, total radiation dose, and T stage are treated as time-independent covariates in 

the two working Buckley–James estimators and two working PH models. The results for 

estimation of the two working Buckley–James estimators and PH models are provided in 

Table I. Based on the two working Buckley–James estimators, all of the five auxiliary 

variables are significantly associated with failure time. Age, Gleason score, T stage, and 

total radiation dose are significantly associated with censoring time. Based on the two 

working PH models, Gleason score, T stage, and total radiation dose are significantly 

associated with failure time. All of the five auxiliary variables are significantly associated 

with censoring time. Even though the Buckley–James estimators pick up the significant 

covariates slightly different from the PH models (this could be due to unstable estimates of 

the standard errors for Buckley–James estimators), they show similar relative importance of 

the covariates as the PH models, as shown in the relative importance columns in the table. 

Specifically, negative/positive estimates (shorter/longer survival time) of the regression 

coefficients for Buckley–James estimators always correspond to positive/negative estimates 

(higher/lower hazard) of the regression coefficients for the PH models, the rank order of the 

estimated regression coefficient remains unchanged, and the ratio of regression coefficients 

is quite similar.

The risk scores derived from the two working Buckley–James estimators and the two 

working PH models, respectively, are used to calculate the distance between subjects and 

then to select the imputing risk set for each censored observation. The two risk scores 

derived from the two Buckley–James estimators are highly correlated with a Spearman 

correlation coefficient of −0.59. The two risk scores derived from the two PH models are 

also highly correlated with a Spearman correlation coefficient of −0.77. Based on principal 

component analysis, about 90% of variation of the two risk scores derived from both the 

Buckley–James estimators and the PH models is explained by the first principal component.

The results for estimating the recurrence-free probability are provided in Table II and Figure 

1. Table II displays selected estimates from the partially observed (PO) analysis, which is the 
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Kaplan–Meier estimation based on the observed censored event time data, IPCWPH, 

IPCWLognormal, KMIBJ, and KMIPH methods. In addition, two PMI methods (PMILognormal 

and PMIWeibull), where a parametric model (log-normal or Weibull model) is fitted to the 

observed data to impute residual life times for each censored observation, are also 

performed. KMIBJ and KMIPH methods, as well as both PMIs and both IPCW methods, 

produce slightly higher estimated survival at both 5 and 10 years and slightly lower 

associated estimated standard errors than the PO analysis at 5 years. Both IPCW methods 

produce slightly greater survival estimates than the two KMI methods especially at the tail. 

KMIBJ and KMIPH produce almost identical results for both survival and associated standard 

error estimates. Figure 1 displays the estimated survival curves for all of the aforementioned 

methods. The PMILognormal, PMIWeibull, IPCW, KMIBJ, and KMIPH methods consistently 

produce slightly higher estimated survival compared with the PO analysis, especially the 

IPCW methods. This indicates that the IPCW and KMI methods both have potential to 

reduce bias due to dependent censoring.

6. Simulation study

We perform several simulation studies to investigate the properties of the KMI, IPCW, and 

PMI methods when failure and censoring times are from AFT models, and the quantity of 

interest is the marginal survival distribution of the event time. We consider a situation with 

multiple time-independent prognostic covariates and dependent censoring. We investigate 

the effects of the magnitude of dependent censoring, which is measured by Spearman 

correlation coefficient (ρ) between failure and censoring times, sample size, misspecification 

of one of the two working models, and misspecification of the two link functions. The 

simulation program is written in R and is available upon request.

For each of the 500 independent simulated datasets, there are five hypothetical auxiliary 

variables (Z1, …, Z5) independently generated from a U(0, 1) distribution. The true failure 

and censoring time models are from an AFT family, the failure time T is generated from a 

hypothetical AFT model conditional on auxiliary variables, where log(T) = 0.10 − 2Z1 

+ 0.5Z2 − 2Z3 + 2Z4 + 2Z5 + residual. The censoring time C is generated from a 

hypothetical AFT model, as well, where log(C) = 0.08 − 2.5Z1 + 0.5Z2 − 2Z3 + 2Z4 + 2Z5 + 

residual. The regression coefficients and residual distributions are selected to give a 

censoring rate of approximately 50%. The residuals for log(T) and log(C) are generated 

either from a Normal(0, σ2), where σ is selected to control the correlation between failure 

and censoring times, or from a logistic(0, 1) distribution.

For the ‘fully observed’ (FO) analysis, treated as the gold standard, we derive KM estimates 

for each simulated dataset before any censoring is applied. For the ‘partially observed’ (PO) 

analysis, we derive KM estimates from the observed censored data. The estimate of the 

standard error for both FO and PO analyses is based on Greenwood’s formula. For the 

IPCW methods, all five auxiliary variables (Z1, …, Z5) are included in the PH and AFT 

models for the censoring time to derive the weights. For the PMI methods (i.e., 

PMILognormal, PMIWeibull and PMILoglogistic), an AFT model (lognormal/Weibull/log-

logistic) with the five auxiliary variables as covariates is fitted to each of the M bootstrap 

samples and then used to impute residual times for each censored observation. For the 
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KMIBJ method, when both working Buckley–James estimators are correctly specified (i.e., 

including all five auxiliary variables in both estimators), it is denoted by KMIBJ55. When the 

working Buckley–James estimator for failure time is correctly specified and the working 

Buckley–James estimator for censoring time is misspecified (i.e., by only including Z1, Z2 

and Z3 in the model), it is denoted by KMIBJ53. When the working Buckley–James estimator 

for failure time is misspecified and the working Buckley–James estimator for censoring time 

is correctly specified, it is denoted by KMIBJ35. For the KMIPH method, the same inclusion 

of covariates as for KMIBJ is considered, and is denoted by KMIPH55, KMIPH53, and 

KMIPH35. All three KMIPH estimators are considered as misspecified even if both working 

PH models include all five auxiliary variables in the models (i.e., KMIPH55) because the true 

models are not PH models.

The results are provided in Tables III–V. The FO analysis, which is the gold standard 

method, targets the true values in all situations and produces coverage rates comparable with 

the nominal level, 95%. The PO analysis as expected produces biased survival estimates in 

all situations and has a lower coverage rate.

In all situations, both KMIBJ and KMIPH methods produce reasonable survival estimates and 

coverage rates, for KMIBJ55 and KMIPH55, that is, when both working models include all 

five auxiliary variables, and adequate performance if covariates are omitted. For both weak 

(Tables III and V) and strong (Table IV) dependent censoring, when the working Buckley–

James estimator or PH model for the failure time only includes the first three auxiliary 

variables (i.e., KMIBJ35 and KMIPH35), the KMI methods have a larger bias. KMIBJ and 

KMIPH methods produce almost identical survival estimates and the associated standard 

error estimates. Their bias increases with the correlation between the failure and censoring 

times but decreases with sample size in all situations.

The performance of the IPCW method depends on whether a correct model is used to derive 

the censoring weights and the correlation between the failure and censoring times (i.e., the 

magnitude of dependent censoring). In all situations, when a correct censoring time model is 

used to derive the weights (i.e., IPCWLognormal in Tables III and IV and IPCWLoglogistic in 

Table V), IPCW produces survival estimates almost identical to the FO analysis and the 

coverage rates comparable with the nominal level. When a wrong censoring time model is 

used to derive the weights (i.e., IPCWPH) and the correlation between failure and censoring 

times is weak (Tables III and V), IPCW produces survival estimates very close to the FO 

analysis, and the bias decreases with sample size. However, when the correlation is strong 

(Table IV), IPCW using a wrong censoring time model produces biased survival estimates, 

and the bias increases with sample size. In all situations, when a wrong censoring time 

model is used, IPCW’s standard errors tend to underestimate the variability of its survival 

estimates, and the underestimate is substantial when the correlation between the failure and 

censoring times is strong. As a result, IPCW’s coverage rates are lower than the nominal 

level even when the correlation between the failure and censoring times is weak. When the 

correlation between the failure and censoring times is weak (Tables III and V), IPCW 

methods have a bias slightly smaller than KMI methods. However, when the correlation 

between the failure and censoring times is strong (Table IV), KMI methods have a bias 

smaller than IPCW. The KMI methods are more efficient than the IPCW method as seen by 

Hsu et al. Page 10

Stat Med. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the smaller SD and MSE values. In some scenarios, the difference superiority of KMI over 

IPCW in efficiency is substantial.

The performance of the PMI method depends on whether a correct model is used to impute 

residual times for each censored observation. In all situations, when a correct residual time 

model is used for imputation (i.e., PMILognormal in Tables III and IV and PMILoglogistic in 

Table V), PMI produces survival estimates almost identical to the FO analysis. The coverage 

rates are slightly higher than the nominal level due to over-estimation of the variability of its 

survival estimates. In all situations, when a wrong residual time model is used for imputation 

(i.e., PMIWeibull), PMI produces survival estimates very close to the FO analysis at the 

median survival time. However, PMI produces biased survival estimates at the 75th 

percentile survival time. When the correlation between the failure and censoring times is 

high (Table IV), PMI methods have a bias smaller than KMI methods at both median and 

75th percentile survival times. When the correlation between the failure and censoring times 

is weak (Tables III and V), PMI methods using a wrong residual time model could produce a 

bias slightly larger but comparable with KMI methods at the 75th percentile survival time, 

especially when the sample size is equal to 400. In all situations, PMI methods have a 

smaller mean squared error estimate than KMI methods.

In simulation results not shown, we assessed the properties of the IPCW and PMI methods, 

which only used the first three auxiliary variables. We found that this substantially increased 

the bias, and that the standard error estimates were poor for the IPCW method.

In summary, all methods reduced the bias of the standard PO analysis, but the amount of the 

remaining bias, the efficiency, and the validity of the estimated standard errors varied 

between methods. The performance of the IPCW method depends on whether a correct 

censoring time model is used to derive the weights, especially when the dependent censoring 

is strong. In contrast, the KMI methods in which two risk scores are derived from either two 

working Buckley–James estimators or two working PH models can provide reasonable 

survival estimates for both weak and strong dependent censoring and is robust to 

misspecification of either one of the two working models and is robust to misspecification of 

the link functions in the failure time and censoring time models. The performance of the 

PMI approach depends on whether a correct residual time model is used for imputation, 

especially in the tail area of the survival curve.

7. Discussion

In this paper, we adapt the nonparametric multiple imputation approach we previously 

proposed to recover information for censored observations and compare it with the two 

existing popular approaches when the data are from AFT models. Based on the simulation 

results, the performance of the PMI method depends on whether the failure time model is 

correctly specified, especially in the tail area. The performance of the IPCW method 

depends on whether the censoring time model is correctly specified. This indicates that 

while performing the PMI and IPCW methods, one has to be sure that the corresponding 

model is correct, and specifically requires all aspects of the models including the link 

functions and choice of covariates to be correct. In contrast, for the nonparametric multiple 
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imputation approach, the two working Buckley–James estimators or PH model estimators 

are only used to derive two risk scores to select imputing risk sets for censored observations. 

Once the imputing risk sets are selected, nonparametric multiple imputation procedures are 

conducted on the risk sets. Therefore, this approach is expected to have weak reliance on the 

two working models compared with the IPCW method. As expected, the simulation study 

shows that the multiple imputation approaches based on two working Buckley–James 

estimators and two working PH models produce similar results for both point survival 

estimates and the associated standard error estimates when the data are from AFT models. 

This is because the PH model preserves the relative importance of the covariates in the AFT 

model. This indicates that the multiple imputation approach [9] we previously proposed is 

robust to misspecification of the link functions of the two working PH models when the data 

are from AFT models. In other words, the multiple imputation approach in [9] has good 

properties even when the true model is from an AFT family. In addition, the multiple 

imputation approach based on the two working Buckley–James estimators is also robust to 

misspecification of either one of the two working estimators when the data are from AFT 

models. Even though both the nonparametric multiple imputation approaches are robust to 

misspecification of either one of the two working models and misspecification of the link 

functions, the nonparametric multiple imputation approach based on two working PH 

models is preferred because in general, the estimation of a PH model is easier and more 

stable.

Although the double robustness property of the KMI methods is attractive, simulation results 

do show that in a situation with a finite sample size when the working Buckley–James or PH 

model estimators for the failure time are misspecified, the bias is greater than when it is 

correctly specified. This suggests that it is more important to try to find a reasonable 

working model for the failure time than the censoring time because the main interest is in 

estimating the survival function for the failure time, not for the censoring time. Hence, it is 

important to identify all of the prognostic variables for the failure time and evaluate how 

prognostic they are.

The performances of the proposed nonparametric multiple imputation method will depend 

on the censoring rate. Specifically, the censoring rate will affect the number of available 

‘donors’ for each censored observation, especially at the tail of the survival function. In a 

situation with a high censoring rate, say, 0.90, a much larger sample size is required for the 

proposed method to perform well, than a situation with a low censoring rate.

In this paper, we assume that censoring only depends on the observed auxiliary variables. 

This assumption is untestable. It is possible that censoring also depends on some unobserved 

auxiliary variables. This indicates that informative censoring may still remain even 

conditioning on all of the observed auxiliary variables. Sensitivity analysis [26, 27] would be 

a possible way to evaluate the impact of unobserved auxiliary variables on the proposed 

multiple imputation approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prostate cancer study: recurrence-free curves derived from the methods considered in this 

paper. PO: KM estimates are derived from the observed censored data. IPCW (Lognormal): 

a lognormal model is fitted to derive the censoring weights. IPCW(PH): a PH model is fitted 

to derive the censoring weights. PMI(Lognormal): a lognormal model is fitted to impute 

residual lifetime. PMI(Weibull): a Weibull model is fitted to impute residual lifetime. 

KMI(BJ): two Buckley–James estimators are derived to define imputing risk sets. KMI(PH): 

two PH models are fitted to define imputing risk sets.
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Table II

Data analysis: estimation of recurrence-free probability at 5 and 10 years.

t = 5 years t = 10 years

Methodb Ŝ(t) SEa Ŝ(t) SEa

PO 0.852 0.018 0.742 0.029

KMIPH 0.863 0.017 0.766 0.030

KMIBJ 0.863 0.016 0.766 0.029

IPCWLognormal 0.869 0.013 0.763 0.023

IPCWPH 0.868 0.016 0.770 0.028

PMILognormal 0.866 0.016 0.748 0.027

PMIWeibull 0.864 0.016 0.769 0.024

IPCW (Lognormal): a lognormal model is fitted to derive the censoring weights.

IPCW(PH): a PH model is fitted to derive the censoring weights.

PMI(Lognormal): a lognormal model is fitted to impute residual lifetime.

PMI(Weibull): a Weibull model is fitted to impute residual lifetime.

KMI(BJ): two Buckley–James estimators are used to define imputing risk sets.

KMI(PH): two PH models are fitted to define imputing risk sets.

PO, partially observed; KMI, Kaplan–Meier imputation; IPCW, inverse probability of censoring weighted; PMI, parametric multiple imputation.

a
Estimated standard error.

b
PO: KM estimates derived from the observed censored data.
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