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Abstract

We consider the situation of estimating the marginal survival distribution from censored data
subject to dependent censoring using auxiliary variables. We had previously developed a
nonparametric multiple imputation approach. The method used two working proportional hazards
(PH) models, one for the event times and the other for the censoring times, to define a nearest
neighbor imputing risk set. This risk set was then used to impute failure times for censored
observations. Here, we adapt the method to the situation where the event and censoring times
follow accelerated failure time models and propose to use the Buckley—James estimator as the two
working models. Besides studying the performances of the proposed method, we also compare the
proposed method with two popular methods for handling dependent censoring through the use of
auxiliary variables, inverse probability of censoring weighted and parametric multiple imputation
methods, to shed light on the use of them. In a simulation study with time-independent auxiliary
variables, we show that all approaches can reduce bias due to dependent censoring. The proposed
method is robust to misspecification of either one of the two working models and their link
function. This indicates that a working proportional hazards model is preferred because it is more
cumbersome to fit an accelerated failure time model. In contrast, the inverse probability of
censoring weighted method is not robust to misspecification of the link function of the censoring
time model. The parametric imputation methods rely on the specification of the event time model.
The approaches are applied to a prostate cancer dataset.

Keywords

accelerated failure time; auxiliary variables; Buckley—James estimator; Cox proportional hazards
model; multiple imputation; nearest neighbor

"Correspondence to: Chiu-Hsieh Hsu, Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health
grmd Arizona Cancer Center, University of Arizona, 1295 N Martin, PO Box 245211, Tucson, AZ, 85724-5211, U.S.A.
pchhsu@email.arizona.edu



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Hsu et al.

Page 2

1. Introduction

The event times for censored observations can be regarded as missing data [1]. Missing data
methods such as the data augmentation algorithm [2] and multiple imputation [3] have been
proposed to handle censored observations to recover lost information due to censoring [4-6]
or to simplify doubly censored data into right censored data [7]. Not only does censoring
result in a loss of efficiency of estimators but also a potential for bias too if the censoring
mechanism is not independent of the event time mechanism. In many studies, auxiliary
variables predictive of the failure time often are also available, for example, Gleason score
and prostate-specific antigen (PSA) level in studies of prostate cancer. In this paper, our
interest is in estimating the marginal survival distribution when the data are subject to
dependent censoring; thus, the auxiliary variables will only be used to provide some
additional information on endpoint occurrence times for censored observations.

Incorporating auxiliary variables has the potential to reduce bias due to dependent censoring
in estimating the marginal survival distribution. A few statistical approaches have been
proposed to handle dependent censoring through the use of auxiliary variables. Of the
existing approaches, the inverse probability of censoring weighted (IPCW) method [8],
where the weight is derived from a model for the censoring times with auxiliary variables as
the covariates, and parametric multiple imputation (PMI) method, where a specific
parametric model is used to impute event times for censored observations, are two popular
methods. Both approaches use a model to directly incorporate auxiliary variables into
estimation of the marginal survival function. To weaken the reliance on the model, we
previously developed a nonparametric multiple imputation approach using auxiliary
variables to recover information for censored observations. The approach uses two working
semiparametric models to indirectly incorporate auxiliary variables into estimation of the
marginal survival function. Specifically, we use two working Cox proportional hazards (PH)
models, one for the failure time and one for the censoring time. The parameter estimates
from these models are then used to give two risk scores for each subject, defined as the
linear combination of covariates. The method then selects an imputing risk set of
observations for each censored observation [9], which consists of subjects who survive
longer than the censored subject and have similar risk scores as the censored subject. Then
the event time was drawn from a nonparametric distribution derived from this imputing risk
set. The idea is similar to predictive mean matching [10] and propensity score matching [11]
in the missing data literature. By incorporating predictive auxiliary variables into the
multiple imputation method, one can both increase efficiency and reduce bias due to
dependent censoring. We also showed that conditions under which the nonparametric
imputation enhanced estimate is consistent and reproduces the weighted Kaplan—Meier
estimator, a method for incorporating categorical auxiliary variables. This approach has nice
properties; however, the two working models assume that the hazards are proportional.

When the PH assumption is questionable, the accelerated failure time (AFT) model is an
alternative to the Cox PH model. It is often characterized by specifying that the logarithm of
a failure time be linearly related with covariates. In that sense, the AFT model is more
appealing and easier to interpret than the PH model because of its quite direct physical
interpretation [12]. Based on how the AFT model is often characterized, one would use
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conventional linear regression methods to perform estimation. However, often, there are
censored observations, which complicate the estimation. One popular approach to deal with
censored observations in estimation of the AFT model is the Buckley—James method [13,
14], which is an iterative method based on the expectation-maximization (EM) algorithm.
The estimation of the Buckley—James method can be highly unstable, especially in a
situation with a small sample size. Also, the estimation of its variance involves the density
and the derivative of the density of an unknown distribution [14].

In this paper, we adapt our nonparametric multiple imputation approach to handle the case
of the data from an AFT model when the goal is estimating the marginal survival function.
Specifically, we propose to use two Buckley—James estimators, one for the failure time and
one for the censoring time, to derive two risk scores to select an imputing risk set for each
censored observation. The two Buckley—James estimators are only used to derive two risk
scores to select an imputing risk set. Hence, the approach is expected to be less affected by
unstable estimation, and it is not required to estimate the variance of the Buckley—James
estimator. In this paper, not only will we study the performances of the proposed multiple
imputation approaches but also will compare their performances with these two existing
popular approaches, IPCW and PMI, and, furthermore, shed light on the use of IPCW and
PMI approaches when the true model for the event time is from an AFT model.

This paper is organized as follows. In Section 2, we review estimation for the AFT model
and the relationship between PH and AFT models. In Section 3, we briefly describe the
IPCW and the PMI methods. In Section 4, we describe multiple imputation procedures and
discuss their properties. In Section 5, we apply the techniques to data from a prostate cancer
study. In Section 6, we give results from a simulation study. A discussion follows in Section
7.

2. Estimation for the accelerated failure time model

Let 7 denote the failure time, Cdenote the censoring time, X= min(7, C), §= (T< C), and
Z2T=(7, 2, ..., Zp) denote the time-independent auxiliary variables. Assume that there are
nindependent observations of X, &, and Z.

2.1. Buckley—James estimator

Under the AFT model, one can specify /og( 7) = agta’Z+cW'to study the relationship
between 7and Z where a’ = (ay, ..., ay), o >0 are unknown parameters and Whas
density 7(w) and distribution function A w). Without censoring, the ordinary least square
(OLS) method can be performed on the logarithm of 7to estimate ag and a by minimizing

WIZZ; [log(T3) — (ao+a” Z)]” with respect to ag and a. With censoring, the OLS
method cannot be performed directly because /og(7) is unobserved for censored
observations. The Buckley—James estimator [13,14] has been proposed to handle censored
observations by adapting the OLS method. The method iterates between replacing each
censored /og( 7) with the expected value of /og( 7) conditional on the current parameter
estimate, censoring indicator, and Z (i.e., the E step) and then performing the OLS method
on the ‘complete’ data (i.e., the M step). It has been shown that it is difficult to derive the
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variance of the Buckley—James estimator, and the estimation can be unstable. However, we
only use the Buckley—James estimator to derive risk scores (defined as a 7.2) to select an
imputing set for each censored observation, therefore, we do not need to derive the variance.
Specifically, in this paper, we propose to use two Buckley—James estimators, one for the
failure time and one for the censoring time, only to summarize the auxiliary variables into
two risk scores.

2.2. Relationship between Cox proportional hazards and accelerated failure time models

In practice, often, people use a PH model to study the relationship between 7and 2
regardless of the underlying distribution of 7. In other words, the hazard function given Zis

specified as )\(t;z):)\o(t)c/”TZ, where g7 = (B4, ..., Bp) is a vector of regression coefficients
and Aq(9 is the unspecified baseline hazard function. The regression coefficients g can be
estimated based on the partial likelihood. There are some known relationships between the
AFT and PH models. Specifically, when the AFT model has the extreme value distribution,
the partial likelihood of the PH model estimates the parameter 8= o 1a. In addition, based
on first-order approximations, several studies [15-17] have shown that the relative
importance of the covariates derived from the PH model remains unchanged approximately
when the true model is an AFT model. The relative importance of the covariates is measured
using the ratios of the estimated regression coefficients to the estimated regression
coefficient of a reference covariate. This is equivalent to the coefficients from the two
models being the same up to an unknown scale factor. In symbols, the property is that a/llall
~ BABI, j=1, ..., p. A consequence of this property is that the rank order of the estimated
regression coefficients from a PH model should be the same as the rank order of the
estimated regression coefficients of the AFT model. In practice, with finite samples that
introduce uncertainty in to the estimates, and because the result is based on an
approximation, the relative importance from the two estimated models will not be exactly
the same, but it can be expected to be similar. Because on this property of preserving the
relative importance, PH models can be expected to produce good estimates of the risk scores
even if the true models are AFT models. Thus, if two subjects have similar risk scores under
one model, they will very likely have similar risk scores under the other model. Therefore,
the nonparametric multiple imputation approach based on two working PH models is
expected to produce similar survival estimates as the imputation method based on the two
working Buckley—James estimators when the true models are the AFT models.

3. Alternative methods

3.1. Inverse probability of censoring weighted method

In survival analysis, the IPCW method [8] is a popular way to correct potential bias due to
dependent censoring. Specifically, the IPCW method uses the auxiliary variables Zto derive
censoring weights and then incorporates the weights into estimation. The weights are
derived from a regression model for the censoring time. Once the weights are estimated, the
expression of the point estimator for the marginal survival rate at time ¢[8, Equation 10] can

g(t)il—[ - SWi(X)
be specified as follows: {ixi<t} Z;;le(Xi)Wj (X:) ), where Y(1) = (X >
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4) is the at-risk indicator and 1i/, (Xi):f(?(Xi)/f{iZ(Xi) is the subject-specific weight at
time X for subject . K?(Xi) is the usual Kaplan—Meier estimator of the probability being

uncensored by time Xj, and f(f(xi) is the conditional probability of being uncensored by
time Xjgiven Z;derived from a model for censoring time using the auxiliary variables Zas
the covariates. When a Cox PH model is used for the censoring time, the expressions for the
standard errors of the IPCW method involve complicated formulas and can be found in the
appendix of [8]. Besides using a PH model to derive the censoring weights (denoted as
IPCW ), we will also use a specific parametric AFT model (a lognormal (denoted as
IPCW £ ognormai) OF l0g-logistic (denoted as IPCW  og/0gistic) model) to derive the censoring
weights. The standard error formulas in [8] are only for the censoring weights derived from
a PH model. When the censoring weights are derived from an AFT model, the estimate of
the standard error is derived from 500 bootstrap samples. When the censoring time model is
indeed an AFT model, then IPCW using the AFT model to derive the weights is expected to
perform well. In this paper, we will study their performances and compare them with the
proposed imputation methods in simulation when the true censoring time model is from an
AFT model.

3.2. Parametric multiple imputation

In this method, a parametric AFT model is fit to a bootstrap sample of the event time data,
with the auxiliary variables as covariates. Based on the parameter estimates derived from the
bootstrap sample, the residual time distribution is calculated for each censored observation
in the original sample. An event time is then imputed for each censored case in the original
sample by drawing from this residual time distribution [18]. The procedure is repeated M
times. A Kaplan—Meier estimator is obtained from each completed dataset. The final
estimates and standard errors are obtained from the results of the M analyses using the
standard combining rules for multiple imputation.

4. Nonparametric multiple imputation

To conduct nonparametric multiple imputation, for each censored observation, we seek an
imputing risk set consisting of subjects who survive longer than the censored subject and
have similar risk scores as the censored subject. We describe the imputation procedures in
the following four steps.

4.1. Imputation procedures

Step 1. Estimate the two risk scores on a bootstrap sample—To define each
imputing risk set, we first reduce the auxiliary variables to two scalar indices (risk scores),
which provide an indicator of an individual’s risk of failure and censoring. This strategy
summarizes the multidimensional structure of the auxiliary variables into a two-dimensional
summary. The hope is that this two-dimensional summary contains most, if not all, of the
information about the future event and censoring times. Here, we assume that the data arise
from an AFT model. Hence, we propose to use two Buckley—James estimators, one for the
failure time and one for the censoring time, to derive two risk scores, summarizing the
associations between the auxiliary variables and the failure and censoring times. Two
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Buckley-James estimators will be derived on a nonparametric bootstrap sample [19] of the
original dataset to incorporate the uncertainty of parameter estimates from the working

models. This step results in proper multiple imputation ([20] and references therein). More
specifically, let (XB, 88, Z8) denote the bootstrap sample. Two Buckley-James estimators

are conducted on the bootstrap sample to calculate two risk scores, S§B):ZB&TB (failure)

and S%) =242 (censoring), for each individual in the bootstrap sample. We further
standardize these scores by subtracting their sample mean and dividing by their standard

deviation and denote the standardized scores by S;<B) and Sg<B), respectively.

Combinations of these two risk scores will be studied to see to what extent a double
robustness property for model misspecification can be established [21]. In addition, two
working PH models will also be fit to the bootstrap sample to calculate the two risk scores to
study whether a robustness property for link function misspecification can be established for
the nonparametric multiple imputation method [15-17].

Step 2. Calculate the distance between subjects—For a censored subject jin the
original dataset with covariate values Zj two risk scores are derived using the regression

coefficient estimates obtained from the bootstrap sample (i.e., S, (j):ZdeB and

Se (j):Zjaf) and then standardized by subtracting the sample mean of the corresponding
bootstrap sample risk scores and dividing by the standard deviation of the corresponding
bootstrap sample risk scores, respectively (denoted as S7.(j) and S, (j)). The distance
between subject jin the original dataset and subject & in the bootstrap sample is then defined

asd(j, k)= \/wl[S;(j) - S;(k)]2+w2[Sg(j) - Sg(k:)]Q, where w; and ws are non-
negative weights that sum to 1. Non-zero weights for us may be useful in reducing the bias
resulting from model misspecification. Specifically, a small weight ws (e.g., 0.2) will result
in incorporating the risk scores from the censoring time model into defining a set of nearest
neighbors for censored subjects. Based on our previous study [9], we found that n; = 0.8
and w, = 0.2 gave reasonable results even when the working failure time model is
misspecified. Hence, we set nq = 0.8 and us = 0.2 in this paper.

Step 3. Define the imputing risk set—For each censored subject j; the distance derived
in step 2is then employed to define a set of nearest neighbors. This neighborhood, R(/*,
NN), consists of NN subjects who have longer survival time than the censoring time of
subject jand a small distance from the censored subject /. For example, R(/*, NN/ = 10)
consists of 10 subjects, including both censored and uncensored subjects, with the 10 nearest
distances from subject jamong those who have longer survival time than the censoring time
for subject j. When the number of individuals still at risk is less than AN, then they are all
included in the imputing risk set. We previously studied AN in the range of 5 to 50 and
found that M/ = 10 gave the most reasonable results in terms of having the minimum mean
square error [9]. Hence, in this paper, we set /N = 10.

Step 4. Impute a value from the imputing risk set—After the imputing risk set R(*,
NN) is defined, the Kaplan—Meier imputation (KMI) scheme developed in [6] and briefly
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described in the succeeding text can be easily used. The KMI method draws an event time
from a KM estimator of the distribution of failure times based on the imputing risk set. Thus,
the procedure imputes only observed failure times unless the longest time in the imputing
risk set is censored, in which case, some imputed times may include this censored time.

Specifically, for each censored time #; a survival curve, Sﬁ (t), is estimated from among
those individuals in A(/*, NN). Then the KMI method imputes a value ¢} by drawing at

random from the corresponding estimated distribution function 1 — S‘j+ (t). The KMI method
using two Buckley—James estimators to derive the risk scores is denoted as KMl gz The KMI
method using two PH models to derive the risk scores is denoted as KMI g

Step 5. Repeat steps 1 to 4 independently M times—Each of the Mimputed
datasets is based on a different bootstrap samples. Once the M multiply imputed datasets are
obtained, we carry out the multiple imputation (MI) analysis procedure established in [3].
Specifically, for our purposes, Kaplan—Meier estimation of the marginal survival distribution
is performed on the Mimputed datasets. The final estimate of S(# (denoted as SM(?) is the
average of the M Kaplan—Meier estimates (i.e., S(#), and the final variance (denoted as
variSM(9]) is the sum of the sample variance (denoted as B) of the M Kaplan-Meier
estimates and the average (denoted as U) of the M variance estimates of the Kaplan—-Meier

estimator. The quantity [SM (t) = S()]/ V var[SM(t)] approximately follows a ¢
distribution with a degree of freedom v= (M- 1) * [1 + {U* M(M+ 1)yB]? [3]. We use a
value of 10 or higher for M.

4.2. Properties of the proposed multiple imputation approach

We have previously shown in large samples that by conditioning on the two risk scores, a
situation of independent censoring can be induced within each imputing risk set if one of the
two working models is correctly specified [9]. Based on this property, we have further
shown that the proposed KMI approach has a double robustness property: if one of the two
working models is correctly specified, then the estimate derived from the multiple
imputation method is consistent. In addition, based on the relationship between PH and AFT
models, we expect that the KMI method has a second robustness property. Specifically, if
one of the two true models is from the AFT model family, then fitting two PH models still
gives good estimates of the regression coefficients [15-17]. Because it is only the regression
coefficients, and not the link function that is used in defining the imputing risk set, the KMI
method is robust to misspecification of the link function. The aforementioned properties of
the KMI method apply in large sample conditions. In small sample size situations, this
nearest-neighborhood approach could produce biased survival estimates due to the lack of
availability of suitable donor observations even if one of the two working models is correctly
specified, especially when the failure time model is misspecified.

5. lllustration of the method on a prostate cancer dataset

We demonstrate the nonparametric multiple imputation approach using auxiliary variables
on a prostate cancer dataset, which consists of 503 patients with localized prostate cancer
treated with external-beam radiation therapy at the University of Michigan and affiliated
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institutions between July 1987 and February 2000. This dataset has been previously used to
develop individualized prediction models of disease progression using serial PSA [22-24]
and to develop a weighted Kaplan—Meier approach to adjust for dependent censoring using
linear combinations of prognostic variables where the linear combination is categorized to
define risk groups, and the final Kaplan—Meier estimate is the weighted average of the
Kaplan—Meier estimates from all of the risk groups [25].

There are several variables collected at baseline, including age, Gleason score, PSA, T stage,
and total radiation dose. T stage, PSA, and Gleason score are well-known prognostic
variables of prostate cancer. In addition, age and total radiation dose are expected to be
predictive of the patient’s survival or censoring time. In this paper, we treat those five
variables as the auxiliary variables for estimating the distribution of recurrence/prostate
cancer-free survival. To assess the PH assumption, time-dependent variables consisting of an
interaction between the auxiliary variables and log(time) are included. Non-PH are detected
for age and Gleason score with a p-value of 0.04 and 0.02, respectively.

To demonstrate the M1 approach when potential non-PH exist, baseline PSA value, age,
Gleason score, total radiation dose, and T stage are treated as time-independent covariates in
the two working Buckley—James estimators and two working PH models. The results for
estimation of the two working Buckley—James estimators and PH models are provided in
Table I. Based on the two working Buckley-James estimators, all of the five auxiliary
variables are significantly associated with failure time. Age, Gleason score, T stage, and
total radiation dose are significantly associated with censoring time. Based on the two
working PH models, Gleason score, T stage, and total radiation dose are significantly
associated with failure time. All of the five auxiliary variables are significantly associated
with censoring time. Even though the Buckley—James estimators pick up the significant
covariates slightly different from the PH models (this could be due to unstable estimates of
the standard errors for Buckley—James estimators), they show similar relative importance of
the covariates as the PH models, as shown in the relative importance columns in the table.
Specifically, negative/positive estimates (shorter/longer survival time) of the regression
coefficients for Buckley—James estimators always correspond to positive/negative estimates
(higher/lower hazard) of the regression coefficients for the PH models, the rank order of the
estimated regression coefficient remains unchanged, and the ratio of regression coefficients
is quite similar.

The risk scores derived from the two working Buckley—James estimators and the two
working PH models, respectively, are used to calculate the distance between subjects and
then to select the imputing risk set for each censored observation. The two risk scores
derived from the two Buckley—James estimators are highly correlated with a Spearman
correlation coefficient of —0.59. The two risk scores derived from the two PH models are
also highly correlated with a Spearman correlation coefficient of —0.77. Based on principal
component analysis, about 90% of variation of the two risk scores derived from both the
Buckley-James estimators and the PH models is explained by the first principal component.

The results for estimating the recurrence-free probability are provided in Table Il and Figure
1. Table Il displays selected estimates from the partially observed (PO) analysis, which is the
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Kaplan—Meier estimation based on the observed censored event time data, IPCW g,
IPCW £ ognorman KMl g, and KMI oy methods. In addition, two PMI methods (PMI . ognormar
and PMI gpu), Where a parametric model (log-normal or Weibull model) is fitted to the
observed data to impute residual life times for each censored observation, are also
performed. KMl gyand KMI g methods, as well as both PMIs and both IPCW methods,
produce slightly higher estimated survival at both 5 and 10 years and slightly lower
associated estimated standard errors than the PO analysis at 5 years. Both IPCW methods
produce slightly greater survival estimates than the two KMI methods especially at the tail.
KMl gyand KMI gz produce almost identical results for both survival and associated standard
error estimates. Figure 1 displays the estimated survival curves for all of the aforementioned
methods. The PMI ognorman PM1 yeipuin IPCW, KMI g5 and KMI py methods consistently
produce slightly higher estimated survival compared with the PO analysis, especially the
IPCW methods. This indicates that the IPCW and KMI methods both have potential to
reduce bias due to dependent censoring.

6. Simulation study

We perform several simulation studies to investigate the properties of the KMI, IPCW, and
PMI methods when failure and censoring times are from AFT models, and the quantity of
interest is the marginal survival distribution of the event time. We consider a situation with
multiple time-independent prognostic covariates and dependent censoring. We investigate
the effects of the magnitude of dependent censoring, which is measured by Spearman
correlation coefficient (o) between failure and censoring times, sample size, misspecification
of one of the two working models, and misspecification of the two link functions. The
simulation program is written in R and is available upon request.

For each of the 500 independent simulated datasets, there are five hypothetical auxiliary
variables (21, ..., Z) independently generated from a (A0, 1) distribution. The true failure
and censoring time models are from an AFT family, the failure time 7'is generated from a
hypothetical AFT model conditional on auxiliary variables, where /og(7) =0.10 - 223

+ 0525 - 223+ 22, + 275 + residual. The censoring time Cis generated from a
hypothetical AFT model, as well, where /og{(C) =0.08 - 2.5, + 055 - 23 +22, + 275 +
residual. The regression coefficients and residual distributions are selected to give a
censoring rate of approximately 50%. The residuals for /og( 7) and /og(C) are generated
either from a Normal0, o2), where o is selected to control the correlation between failure
and censoring times, or from a /og/stic(0, 1) distribution.

For the “fully observed’ (FO) analysis, treated as the gold standard, we derive KM estimates
for each simulated dataset before any censoring is applied. For the “partially observed’ (PO)
analysis, we derive KM estimates from the observed censored data. The estimate of the
standard error for both FO and PO analyses is based on Greenwood’s formula. For the
IPCW methods, all five auxiliary variables (27, ..., Zs) are included in the PH and AFT
models for the censoring time to derive the weights. For the PMI methods (i.e.,

PMI  ognormat PM1weipunr@nd PMI . ogjogistic), an AFT model (lognormal/Weibull/log-
logistic) with the five auxiliary variables as covariates is fitted to each of the M bootstrap
samples and then used to impute residual times for each censored observation. For the
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KMI g;method, when both working Buckley—James estimators are correctly specified (i.e.,
including all five auxiliary variables in both estimators), it is denoted by KMl g55. When the
working Buckley—James estimator for failure time is correctly specified and the working
Buckley-James estimator for censoring time is misspecified (i.e., by only including 21, 2
and Zz in the model), it is denoted by KMI g53. When the working Buckley—James estimator
for failure time is misspecified and the working Buckley—James estimator for censoring time
is correctly specified, it is denoted by KMl gzs. For the KMI gy method, the same inclusion
of covariates as for KMl g;is considered, and is denoted by KMl pr55, KMl p53, and

KMI pr5. All three KMI o estimators are considered as misspecified even if both working
PH models include all five auxiliary variables in the models (i.e., KMl pr55) because the true
models are not PH models.

The results are provided in Tables I1I-V. The FO analysis, which is the gold standard
method, targets the true values in all situations and produces coverage rates comparable with
the nominal level, 95%. The PO analysis as expected produces biased survival estimates in
all situations and has a lower coverage rate.

In all situations, both KMI g;and KMI sy methods produce reasonable survival estimates and
coverage rates, for KMI g 55 and KMl g5, that is, when both working models include all
five auxiliary variables, and adequate performance if covariates are omitted. For both weak
(Tables 111 and V) and strong (Table 1V) dependent censoring, when the working Buckley-
James estimator or PH model for the failure time only includes the first three auxiliary
variables (i.e., KMl g z5 and KMI p35), the KMI methods have a larger bias. KMI gyand
KMI py methods produce almost identical survival estimates and the associated standard
error estimates. Their bias increases with the correlation between the failure and censoring
times but decreases with sample size in all situations.

The performance of the IPCW method depends on whether a correct model is used to derive
the censoring weights and the correlation between the failure and censoring times (i.e., the
magnitude of dependent censoring). In all situations, when a correct censoring time model is
used to derive the weights (i.e., IPCW  pgnormar in Tables 111 and 1V and IPCW  ogp0gistic In
Table V), IPCW produces survival estimates almost identical to the FO analysis and the
coverage rates comparable with the nominal level. When a wrong censoring time model is
used to derive the weights (i.e., IPCW pp) and the correlation between failure and censoring
times is weak (Tables 111 and V), IPCW produces survival estimates very close to the FO
analysis, and the bias decreases with sample size. However, when the correlation is strong
(Table IV), IPCW using a wrong censoring time model produces biased survival estimates,
and the bias increases with sample size. In all situations, when a wrong censoring time
model is used, IPCW’s standard errors tend to underestimate the variability of its survival
estimates, and the underestimate is substantial when the correlation between the failure and
censoring times is strong. As a result, IPCW’s coverage rates are lower than the nominal
level even when the correlation between the failure and censoring times is weak. When the
correlation between the failure and censoring times is weak (Tables Il and V), IPCW
methods have a bias slightly smaller than KMI methods. However, when the correlation
between the failure and censoring times is strong (Table 1V), KMI methods have a bias
smaller than IPCW. The KMI methods are more efficient than the IPCW method as seen by
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the smaller SD and MSE values. In some scenarios, the difference superiority of KMI over
IPCW in efficiency is substantial.

The performance of the PMI method depends on whether a correct model is used to impute
residual times for each censored observation. In all situations, when a correct residual time
model is used for imputation (i.e., PMIgnormasin Tables 111 and IV and PMI , pgjogistic in
Table V), PMI produces survival estimates almost identical to the FO analysis. The coverage
rates are slightly higher than the nominal level due to over-estimation of the variability of its
survival estimates. In all situations, when a wrong residual time model is used for imputation
(i.e., PMI yeipun, PMI produces survival estimates very close to the FO analysis at the
median survival time. However, PMI produces biased survival estimates at the 75th
percentile survival time. When the correlation between the failure and censoring times is
high (Table 1V), PMI methods have a bias smaller than KMI methods at both median and
75th percentile survival times. When the correlation between the failure and censoring times
is weak (Tables Ill and V), PMI methods using a wrong residual time model could produce a
bias slightly larger but comparable with KMI methods at the 75th percentile survival time,
especially when the sample size is equal to 400. In all situations, PMI methods have a
smaller mean squared error estimate than KMI methods.

In simulation results not shown, we assessed the properties of the IPCW and PMI methods,
which only used the first three auxiliary variables. We found that this substantially increased
the bias, and that the standard error estimates were poor for the IPCW method.

In summary, all methods reduced the bias of the standard PO analysis, but the amount of the
remaining bias, the efficiency, and the validity of the estimated standard errors varied
between methods. The performance of the IPCW method depends on whether a correct
censoring time model is used to derive the weights, especially when the dependent censoring
is strong. In contrast, the KMI methods in which two risk scores are derived from either two
working Buckley—James estimators or two working PH models can provide reasonable
survival estimates for both weak and strong dependent censoring and is robust to
misspecification of either one of the two working models and is robust to misspecification of
the link functions in the failure time and censoring time models. The performance of the
PMI approach depends on whether a correct residual time model is used for imputation,
especially in the tail area of the survival curve.

7. Discussion

In this paper, we adapt the nonparametric multiple imputation approach we previously
proposed to recover information for censored observations and compare it with the two
existing popular approaches when the data are from AFT models. Based on the simulation
results, the performance of the PMI method depends on whether the failure time model is
correctly specified, especially in the tail area. The performance of the IPCW method
depends on whether the censoring time model is correctly specified. This indicates that
while performing the PMI and IPCW methods, one has to be sure that the corresponding
model is correct, and specifically requires all aspects of the models including the link
functions and choice of covariates to be correct. In contrast, for the nonparametric multiple
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imputation approach, the two working Buckley—James estimators or PH model estimators
are only used to derive two risk scores to select imputing risk sets for censored observations.
Once the imputing risk sets are selected, nonparametric multiple imputation procedures are
conducted on the risk sets. Therefore, this approach is expected to have weak reliance on the
two working models compared with the IPCW method. As expected, the simulation study
shows that the multiple imputation approaches based on two working Buckley—James
estimators and two working PH models produce similar results for both point survival
estimates and the associated standard error estimates when the data are from AFT models.
This is because the PH model preserves the relative importance of the covariates in the AFT
model. This indicates that the multiple imputation approach [9] we previously proposed is
robust to misspecification of the link functions of the two working PH models when the data
are from AFT models. In other words, the multiple imputation approach in [9] has good
properties even when the true model is from an AFT family. In addition, the multiple
imputation approach based on the two working Buckley—James estimators is also robust to
misspecification of either one of the two working estimators when the data are from AFT
models. Even though both the nonparametric multiple imputation approaches are robust to
misspecification of either one of the two working models and misspecification of the link
functions, the nonparametric multiple imputation approach based on two working PH
models is preferred because in general, the estimation of a PH model is easier and more
stable.

Although the double robustness property of the KMI methods is attractive, simulation results
do show that in a situation with a finite sample size when the working Buckley—James or PH
model estimators for the failure time are misspecified, the bias is greater than when it is
correctly specified. This suggests that it is more important to try to find a reasonable
working model for the failure time than the censoring time because the main interest is in
estimating the survival function for the failure time, not for the censoring time. Hence, it is
important to identify all of the prognostic variables for the failure time and evaluate how
prognostic they are.

The performances of the proposed nonparametric multiple imputation method will depend
on the censoring rate. Specifically, the censoring rate will affect the number of available
‘donors’ for each censored observation, especially at the tail of the survival function. In a
situation with a high censoring rate, say, 0.90, a much larger sample size is required for the
proposed method to perform well, than a situation with a low censoring rate.

In this paper, we assume that censoring only depends on the observed auxiliary variables.
This assumption is untestable. It is possible that censoring also depends on some unobserved
auxiliary variables. This indicates that informative censoring may still remain even
conditioning on all of the observed auxiliary variables. Sensitivity analysis [26, 27] would be
a possible way to evaluate the impact of unobserved auxiliary variables on the proposed
multiple imputation approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.
Prostate cancer study: recurrence-free curves derived from the methods considered in this

paper. PO: KM estimates are derived from the observed censored data. IPCW (Lognormal):
a lognormal model is fitted to derive the censoring weights. IPCW(PH): a PH model is fitted
to derive the censoring weights. PMI(Lognormal): a lognormal model is fitted to impute
residual lifetime. PMI(Weibull): a Weibull model is fitted to impute residual lifetime.
KMI(BJ): two Buckley—James estimators are derived to define imputing risk sets. KMI(PH):
two PH models are fitted to define imputing risk sets.
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Data analysis: estimation of recurrence-free probability at 5 and 10 years.

t=5years t=10years
Method® S  sea Sy  sea
PO 0.852 0.018 0.742 0.029
KMl gy 0.863 0.017 0.766 0.030
KMl g, 0.863 0.016 0.766 0.029
IPCW  ggrommes 0869 0.013  0.763  0.023
IPCW gy 0.868 0.016 0.770 0.028
PMl ognommas ~ 0.866  0.016  0.748  0.027
PMI it 0.864 0.016 0.769 0.024

IPCW (Lognormal): a lognormal model is fitted to derive the censoring weights.

IPCW(PH): a PH model is fitted to derive the censoring weights.

Table Il

PMI(Lognormal): a lognormal model is fitted to impute residual lifetime.

PMI(Weibull): a Weibull model is fitted to impute residual lifetime.

KMI(BJ): two Buckley—James estimators are used to define imputing risk sets.

KMI(PH): two PH models are fitted to define imputing risk sets.

Page 17

PO, partially observed; KMI, Kaplan—-Meier imputation; IPCW, inverse probability of censoring weighted; PMI, parametric multiple imputation.

a_ .
Estimated standard error.

bPO: KM estimates derived from the observed censored data.
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