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Abstract

Nutritional immunology, immunometabolism, and identification of novel immunotherapeutic 

targets, are areas of active investigation in parasitology. There is a well-documented crosstalk 

among immune cells and cells in metabolically active tissues that is important for homeostasis. 

The numbers and function of these cells are altered by obesity leading to inflammation. A variety 

of helminths spend some part of their life cycle in the gastrointestinal tract and even entirely 

enteral nematode infections exert beneficial effects on glucose and lipid metabolism. The 

foundation of this review is the ability of enteric nematode infections to improve obesity-induced 

type 2 diabetes and the metabolic syndrome, which are significant health issues in developed 

areas. It considers the impact of nutrition and specific nutritional deficiencies, which are occur in 

both undeveloped and developed areas, on the host’s ability mount a protective immune response 

against parasitic nematodes. There are a number of proposed mechanisms by which parasitic 

nematodes can impact metabolism including effects gastrointestinal hormones, altering epithelial 

function, and changing the number and/or phenotype of immune cells in metabolic tissues. 

Nematodes can also exert their beneficial effects through Th2 cytokines that activate the 

transcription factor STAT6, which upregulates genes that regulate glucose and lipid metabolism.

Helminth Infection and Metabolic Diseases

It is estimated that one third of the world’s population is infected with parasitic helminths 

with the greatest burden in underdeveloped nations particularly Nigeria and the Congo (1). 

Nutrients are cofactors and activators for the developing immune system (2) and 

malnutrition as well as bacterial co-infections are frequent in these developing areas and 

promote the chronicity of helminth infection. There is also increasing recognition that 

specific deficiencies in vitamins and/or minerals can contribute to the severity of parasitic 

infections in endemic areas. Alternately, well developed urban areas with the lowest worm 

burden have a much greater incidence of metabolic diseases including obesity-induced type 

2 diabetes (T2D) and the metabolic syndrome. Increasing evidence suggests that helminth 
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infection regulates food intake and appetite, reduces body weight, and improves the 

symptoms of the metabolic syndrome and T2D (3).

There is a well-documented crosstalk among immune cells and cells in metabolically active 

tissues that is important for homeostasis. Parasitic nematodes or their products can impact 

cellular metabolism by a number of mechanisms including direct effects on hematopoietic 

and non-hematopoietic cell function or indirect effects mediated by downstream activation 

of genes that regulate production of metabolically active factors. There are a variety of 

helminths, including parasitic nematodes, which spend a large portion of their life cycle in 

the gastrointestinal (GI) tract. Their presence in the lumen initiates, extends, or amplifies 

signals that are critical to host defense against parasites. The GI tract provides a starting 

point for this review focused on the known and proposed mechanisms by which the 

nutritional status impacts host defense against parasitic nematodes and by which worm 

infection impacts host nutritional status and metabolism.

THE IMPACT OF NUTRITION ON HOST DEFENSE

For most of human history, malnutrition was common, and the effect of malnutrition on 

immunity, especially cellular immunity, has been studied extensively (4). A systemic review 

of the effects of malnutrition in children reported reduced gut barrier function, atrophied 

lymphatic tissue, and polarized cytokine production toward a Th2 response (2). The skewing 

of cytokine production toward a Th2 response; however, does not necessarily translate into 

improved resistance to nematode infections. Mice fed diets with reduced protein content 

showed delayed expulsion of primary Nippostrongylus brasiliensis (N. brasiliensis), 
Trichinella spiralis (T. spiralis) and Trichuris muris (T. muris) infections (5) and the Th2 

response to a secondary Heligmosomoides polygyrus bakeri (H. polygyrus bakeri) infection 

was impaired resulting in increased worm burden (6). Similarly, mice infected with H. 
polygyrus bakeri and fed a diet with adequate protein and nutrient levels, but reduced caloric 

content, showed impaired lymphocyte proliferation, reduced Th2 cytokine production with 

lower levels of IgE, parasite-specific IgG1, and eosinophils, resulting in higher worm 

burdens and fecundity (7). In a recent study using multiple small (trickle) infections with H. 
polygyrus bakeri to mimic natural infections, the tolerance to infection, as measured by 

intestinal barrier function, was decreased by protein malnutrition (8). These results indicate 

that both sufficient protein and calories are required for optimal resistance to parasitic 

nematode infections.

In the twentieth and twenty-first centuries, consumption of “Western diets” has led to 

excessive caloric intake, increased consumption of highly refined foods, and decreased 

consumption of fruits and vegetables that may lead to deficiencies in at-risk populations 

including the elderly, the economically disadvantaged, or those with diseases that contribute 

to impaired absorption including Crohn’s disease, ulcerative colitis, and parasitic infections 

(9, 10). In particular, both gastrointestinal diseases and parasitic infections have been shown 

to impair micronutrient absorption. Several of these micronutrients, including vitamin A, 

selenium and zinc, play critical roles in immune function and resistance to parasitic 

infections.
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The Role of Vitamin A in Resistance to Parasitic Infections

The role of vitamin A in immunity is highly pleiotropic. The effects are dose-, receptor 

form-, cell type-, and environmentally-dependent (reviewed in (11)). Dietary vitamin A or 

retinol is converted to retinaldehyde by ubiquitous alcohol dehydrogenases and then 

irreversibly acted on by cell-specific retinaldehyde dehydrogenases to generate its active 

metabolite, retinoic acid (RA), which binds to the RAR and RXR nuclear receptor families 

and function as transcription factors (11). RA can be produced locally by migratory CD103+ 

dendritic cells and macrophages in the lamina propria, and by stromal cells in the mesenteric 

lymph nodes and bone marrow (12, 13). In addition, RA is elaborated by intestinal epithelial 

cells that, in turn, promote gut-homing of IgA secreting B-cells (14), CD4+-, and CD8+ T 

cells (15, 16), a process that is impaired in vitamin A deficient mice (15, 17). B-cell 

development and antibody production are also vitamin A dependent [reviewed in (18)].

RA can act as a suppressor or activator of an inflammatory response depending on the 

circumstances. RA provides a critical signal for iTreg cell differentiation and iTreg cells can 

inhibit Th1- and Th17-type inflammatory responses (19–21). iTreg cells are decreased in 

vitamin A deficient mice leading to impaired oral tolerance (22). Differentiation of CD4+ T-

cells is dependent on both vitamin A and RARα. Production of IFN-γ and IL-17A is 

decreased in T-cells lacking RA signaling and Th17 cells are severally reduced in vitamin A 

deficient mice (23). RA is important for maintenance of polarized Th1 cells and preventing 

conversion of Th1 cells to dual IFN-γ/IL-17-expressing Th17 cells (24). In contrast, RAR 

signals favor Th2 differentiation in naïve T-cells (25), is mediated via cytokine production 

by APC (25), and can impact resistance to parasitic infections which are classic inducers of 

Th2 immunity. This is important as the WHO showed that regions where soil-transmitted 

helminthiasis is most prevalent, Central America, especially Mexico, Central Africa, and 

Southeast Asia, are also areas of endemic vitamin A deficiency. Both low and high doses of 

RA increased localized Th1, Th2, Treg, and inflammatory responses in the liver and lung of 

Ascaris suum-infected pigs as well as increased BAL eosinophilia that may be related to 

enhanced induction of eosinophil chemokine activity by alveolar macrophages (26). The 

increase in type 2 innate lymphoid cells (ILC2) cells in vitamin A deficient mice was 

associated with increased resistance to a T. muris infection (23) that was dependent on fatty 

acid oxidation (27). This finding extends earlier work where egg excretion decreased more 

rapidly in Trichuris suis-infected, vitamin A deficient pigs than in vitamin A sufficient pigs 

(28), but contrasts with the increased parasite burden in Litomosoides carini-infected, 

vitamin A deficient cotton rats (29). Although worm expulsion was only slightly reduced in 

T. spiralis infected vitamin A deficient mice, differences in the immune response between 

sufficient and deficient mice were observed including higher IFN-γ and lower IL-4 

production in MLN of infected deficient mice (30). Mice with a chronic infection of T. 
muris have reduced enzyme activity of and cell percentage staining for retinal 

dehydrogenase in lamina propria-derived dendritic cells and macrophages that did not 

rebound until the infection was cleared, indicating that chronicity may be related to 

decreased local RA levels (31) and impaired immune responses. The cause of this reduction 

was not identified, but may be a regulatory mechanism used by the parasite, or may result 

from reduced vitamin A absorption (32). These studies demonstrate that the ability of 
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vitamin A to enhance or impair immunity to parasitic infections is at least partially parasite 

specific and additional studies are required to further clarify this dependency.

Selenium and Zinc are Key Minerals Required for Immune Function and Resistance to 
Infection

Selenium (Se), via its incorporation into selenocysteine-containing proteins (Sels), has 

substantial effects on immune function. There are 25 Sels identified in humans and 24 in 

mice with only partially characterized function. Selenium is important for both humoral and 

cell-mediated responses including cytotoxic T-lymphocytes and natural killer cells (33), 

chemokine and cytokine responses to viral infections (34, 35), respiratory burst (36), and for 

protection against LPS-induced oxidative stress (37). Many of the immune modulating 

effects of Se are due to its role in regulating activation of important transcription factors 

including NF-κB (38, 39), p38 MAPK (39), ERK (40), JNK (41) and AP-1, at least in part, 

by modulating redox status (42).

Specific Sels have been implicated in immune function. Both glutathione peroxidase 1 

(GPx1) and glutathione peroxidase 2 (GPx2) are important for controlling Th2-dependent 

allergen-induced airway inflammation (43) with knockout of GPx1 shifting the Th cell bias 

toward Th1 and suppressing development of Th17 cells (44). Thioredoxin reductase 

maintains thioredoxin in its reduced state and thioredoxin is important for immune function 

and cell survival (45). Selenoprotein K KO mice exhibit aberrant calcium signaling in 

immune cells and an impaired immune response (46). Selenoprotein S is linked to regulation 

of inflammation (47). Selenoprotein P is also important for intercellular transport of Se, 

especially to the brain, and in controlling inflammation, and colitis-induced tumorigenesis 

(48–50).

Se status affects the immune response to parasitic infections. Selenium deficiency resulted in 

delayed expulsion of H. polygyrus bakeri (51, 52) due at least, in part, to decreased Th2 

responses and production of Relm-β, a goblet cell protein critical for worm expulsion (53). 

Similarly, Se deficiency impaired clearance and reduced the Th2 response to N. brasiliensis 
infection in mice, an effect also observed in mice with conditional knockout of selenoprotein 

expression in macrophages (54). This effect of N. brasiliensis infection was attributed to the 

reduction in the transcription factor proliferator-activated receptor-γ (PPAR-γ)-mediated 

switch from a classically activated (M1) to an alternatively activated (M2) macrophage 

phenotype (55). This change was dependent on prostaglandin D2 synthase and 15-deoxy-

Δ12,14-prostaglandin J2 (15d-PGJ2) (55–57), highlighting a role for Se in regulating 

prostaglandin synthesis (56) and promoting the development of M2.

Many aspects of immunity are dependent on zinc. Zinc deficiency leads to atrophy of the 

thymus, a reduction in leukocytes, as well as in antibody-mediated, cell-mediated, and 

delayed-type hypersensitivity responses (58). In addition, NK cell activity is decreased in 

neutrophils, and macrophages have reduced levels of phagocytosis and respiratory burst in 

zinc deficiency (59). Production of the Th1 cytokines IL-2 and IFN-γ is attenuated by zinc 

deficiency resulting in a shift toward a Th2 response (60). Basal levels of pro-inflammatory 

cytokines are elevated in zinc deficiency, but production is ablated upon stimulation (61). 

Decreased cytokine production may result from decreased NF-κB activation in zinc 
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deficiency (62, 63). Both immature and mature B-cells are reduced by zinc deficiency (64) 

as is antibody production (65). Zinc was found to increase Treg cell numbers in allergen-

stimulated cells from atopic subjects and in mice with experimental autoimmune 

encephalitis (66, 67). Significantly, moderate zinc deficiency (3 mg/kg diet) in rats delayed 

expulsion and increased worm burden of T. spiralis, egg excretion, but not worm burden of 

N. brasiliensis, and delayed clearance of Strongyloides ratti (68). Moderate and severe (0.75 

mg/kg), but not marginal (5 mg/kg) zinc deficiency, impaired the Th2 response to H. 
polygyrus bakeri and prolonged worm survival in primary H. polygrus bakeri-infected mice 

while in a challenge infection, only severely deficient mice had an impaired Th2 response 

and increased worm burdens (69). These data indicate that zinc deficiency impairs the Th2 

response to parasitic infections and that zinc is important for Th2 immunity to parasitic 

infections. Supplementation may be indicated for at-risk or infected populations where 

inadequate dietary intake or malabsorption is present.

The impact of malnutrition and micronutrient deficiencies was focused for many years on 

developing nations. In areas of endemic infection, parasitic helminths that have evolved 

strategies that favor chronic infection are common (1) and the adverse effects of nutritional 

deficiencies to host defense further compound chronicity. Despite the epidemic of obesity 

and the metabolic syndrome in the United States and across the world, obese patients are 

often malnourished and exhibit similar deficiencies in micronutrients (70). The World 

Health Organization (WHO) estimates that 39% of adults aged 18 years and over were 

overweight in 2014, and 13% were obese in the world. The nutritional status of obese 

populations in developed nations merits equal attention as these conditions increase 

mortality, morbidity, and the economic costs of health care.

THE IMPACT OF PARASITIC NEMATODES ON HOST METABOLISM

There is little information on the impact of obesity on type 2 immune responses. Obesity 

prone mouse strains however, are more susceptible, while lean mouse strains were more 

resistant, to parasitic nematode infection (71). Obesity induces a wide variety of 

inflammatory and stress responses in metabolic tissues and higher concentrations of 

circulating inflammatory markers. This results in chronic, low grade inflammation termed 

“metaflammation” (72) which is central to insulin resistance and disruption of insulin 

receptor signaling (73), and requires the participation of both immune and non-immune 

cells. This has fostered the emerging field of immunometabolism that is focused on 

investigating the pro-inflammatory cytokines and mediators of obesity, the metabolic 

syndrome, and T2D (74). Parasitic infections, even those restricted to the intestine, increase 

circulating levels of IL-4, IL-5, and IL-13 which may act to blunt or reverse the Th1-induced 

inflammation in metabolic tissues.

Nematode Infection Alters Intestinal Barrier Function and the Intestinal Microenvironment

The surface epithelial cells that line the GI tract form the first line of defense in the gut and 

include the absorptive enterocytes, the mucus-producing goblet cells, and the hormone-

secreting enteroendocrine cells (EEC). Along with immune cells, epithelial cells transduce 

specific pathogen-derived signals into effector functions; however, the mechanisms by which 
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a wide variety of helminths induce a Th2 response remain to be elucidated. A confounding 

issue is that helminths elaborate antigens and excrete and secrete (E/S) a variety of products 

that may be involved in the initiation and maintenance of the type 2 immune response. How 

the cells respond to E/S products is also unclear, but highly implicated are pattern 

recognition receptors (PRR) and membrane-associated toll like receptors (TLR) that 

recognize conserved features of pathogens. There is also evidence that enteric parasitic 

nematodes elaborate trypsin-like serine proteases that activate protease activated receptors 

(PAR) such as PAR-2 on epithelial cells (75).

Worm-derived proteases may play a role in transducing the density and location of 

nematodes in the intestinal lumen (76). PAR-2 expression is ubiquitous along the GI tract 

and is expressed by epithelial cells, enteric nerves, and smooth muscle cells as well as by a 

variety of immune cells, including mast cells, macrophages, and T cells (77). Activation of 

PAR-2 on enterocytes increases epithelial permeability and fluid secretion from enterocytes 

and also enhances the nerve sensitivity of visceral afferent nerves (76), effects that are 

important for worm expulsion (78–81). Of interest is that in functional GI disorders, such as 

IBS, these effects are amplified and/or unresolved (82, 83). The reduced barrier function 

also facilitates the passage of E/S products across the intestinal barrier where they interact 

with resident immune cells to initiate and maintain the type 2 immune response. Activation 

of PAR-2 on macrophages also promotes development of the M2 phenotype (84).

The magnitude and duration of the effect of proteases is determined by the level of proteases 

and the number and availability of PARs on the cell surface (85, 86). PARs are “one shot” G 

protein-coupled receptors that must be continuously replenished from intracellular stores. Of 

interest is that the exposure to nematode proteases results in loss of surface PAR-2 on 

enterocytes thereby limiting the duration of their direct effects on epithelial permeability 

(76). With the loss of protease-mediated permeability, changes in barrier function are 

maintained during nematode infection by IL-25/IL-13/STAT6-dependent mechanisms (78, 

79, 87).

The GI epithelium produces IL-25 and recent studies confirm that doublecortin-like kinase 1 

(Dclk1)-expressing tuft cells are the sole epithelial source (88). Tuft cells are a distinct 

lineage that arise from stem cells in the located in the crypts and comprise approximately 

0.4% of epithelial cells (89). The receptor for IL-25 (IL-25R) is a heterodimer consisting of 

IL-17RB and IL-17RA (90), which is expressed by various tissues/cells, including epithelial 

cells and immune cells including macrophages (91, 92) and ILC2. IL-25 plays a major role 

in the promotion and initiation of type 2 immunity, down-regulating pro-inflammatory 

cytokines, and facilitating development of M2 (91–93). IL-25 increases mucosal 

permeability through release of IL-13 (92) from resident mast cells and ILC2. Thus, the 

enhanced permeability during nematode infection is initiated by both worm-derived products 

and immune-mediated processes (76). Worm proteases and epithelial release of IL-25 

facilitate the early passage of intraluminal products that promote the type 2 immune 

response. The increased permeability is sustained by IL-4, IL-13 working through STAT6-

dependent mechanisms, including the influx of mast cells (79, 80, 94).
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Parasitic Nematode Infection Regulates Glucose Transport

Obesity and T2D are associated with poor glycemic control as a result of dysregulated 

control of glucose sensing hormones and insulin resistance. Enteric nematode infection is 

associated with hypophagia and weight loss with improvement of the metabolic syndrome 

and T2D (3, 95). The mechanisms for the weight loss and decreased food intake remain 

unclear, but may be linked to local GI events including changes in intestinal glucose 

handling (78) or the immune cell phenotypes and the cytokine profile associated with 

infection (96).

Glucose is absorbed in the small intestine by transcellular pathways utilizing transporters as 

well as by paracellular pathways through solvent drag, a process that is modulated by 

changes in intestinal permeability. Enteric nematode infection slows enterocyte glucose 

absorption by inhibiting the activity of insulin-independent sodium-linked glucose 

transporter 1 (SGLT1) (97). This high affinity transporter can absorb glucose against a 

concentration gradient and is considered to be the major mechanism for postprandial glucose 

absorption in the small intestine (98). The nematode-induced effect on glucose absorption 

was dependent on M2, as depletion of macrophages during nematode infection restored 

SGLT1 activity (97). Given the prominent role of macrophages in insulin resistance, 

manipulation of macrophage phenotype may be a potential therapeutic strategy. Enteric 

nematode infection also decreased the expression of the insulin-dependent transporter 

GLUT2 by a mechanism that is independent of STAT6 (97). This is a facilitative transporter 

located on the basolateral membrane that is also trafficked to the apical side at high luminal 

glucose concentrations. The inhibited SGLT1 activity and reduced expression of GLUT2 

during parasitic nematode infection lower enterocyte intracellular glucose (97, 99). This 

results in a metabolic stress that induces HIF-1α, leading to STAT6-dependent upregulation 

of GLUT1, a constitutive insulin independent transporter (97), thereby providing glucose for 

cellular metabolism.

The enhanced permeability during nematode infection also results in a greater absorption of 

glucose by the paracellular route and provides nutrients to fuel the high metabolic demands 

required by activated CD4+ T cells (100). Signaling through the T cell receptor activated 

mTOR leads to upregulation of GLUT1 and HIF-1α (101). Nematode infection induces an 

upregulation of GLUT1 in both enterocytes and T cells. Of interest is that GLUT1 is 

expressed by M1, which preferentially use glucose as an energy substrate, while M2 use free 

fatty acids (102), showing a preference of immune cells for specific energy substrates. Thus, 

by shifting the major route of intestinal glucose absorption to the paracellular pathway, 

parasitic nematode infection effectively bypasses insulin-dependent glucose transporters on 

enterocytes and fuels activated CD4+ T cell and macrophage metabolism. The increased 

demands of immune cell metabolism may contribute also to weight loss during nematode 

infection.

Parasitic Nematode Infection Reduces Appetite/Food Intake

The GI tract is the largest endocrine organ in the body. Comprising 1% of the epithelium, 

EEC arise from intestinal stem cells, are rapidly turned over, and function to sense the 

composition of the luminal contents and to coordinate release of hormone based on the 

Shea-Donohue et al. Page 7

Parasite Immunol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



location and type of nutrients detected and play a major role in satiety (103, 104). The 

numbers of EEC are modulated by diet and respond to the intraluminal nutrient composition 

through taste/chemosensory receptors that are sensitive to bitter, sweet, and umami 

compounds (105). Sweet taste receptors play a key role in secretion of GI hormones 

involved in glucose metabolism as well as the activity and expression of SGLT1 and GLUT2 

(105). EEC also respond to products released by commensal bacteria (106), so it is likely 

EEC “sense” the presence of enteric nematodes or their products. There is now strong 

evidence of communication between immune cells and EEC (107) with EEC functioning as 

innate immunity sensors (104).

Recent studies show that N. brasiliensis induces an IL-25/IL-13 mediated expansion of the 

secretory lineage of epithelial cells that includes IL-25-producing tuft cells (108), which also 

express taste receptors (108). There are changes in the EEC number in T. spiralis infection, 

with increased numbers of cholecystokinin (CCK) positive (+) EEC that are dependent on 

the presence of CD4+ T cells (109). CCK plays many roles in intestinal, pancreatic, and 

liver function including a role in glucose metabolism and satiety (110). Both T. spiralis and 

N. brasiliensis induced a transient decrease in food intake in mice that returned to normal 

levels during the course of the infection (95, 111), implying a role for satiety hormones. T. 
muris infection of the colon also increased the number of EEC (112). Thus, enteric 

nematodes may affect metabolism through changes in the numbers of tuft cells and EEC 

thereby increasing the expression of taste receptors or by increasing the release of GI 

hormones that regulate satiety and/or glucose metabolism.

The Metabolic Consequences of Type 2 Immune Response to a Parasitic Nematode 
Infection Are Mediated by STAT6-Dependent and Independent Effects

Evolution continually refines the interaction between host and parasites resulting in a 

sufficient response to clear worms while limiting immunopathology. For soil-based 

nematodes that spend all or part of their life cycle in the gut, worm expulsion is facilitated 

largely by IL-13-, STAT6- and M2-dependent changes in gut function (81, 113, 114). The 

presence of worms and their products induces the release of epithelial-derived cytokines 

such as TSLP, IL-25 and IL-33, which are associated with the transition of innate to adaptive 

immunity. In particular, binding of these cytokines to receptors on ILC2, macrophages, and 

mast cells induces release of IL-13, which plays a key role in the metabolic effects of enteric 

nematode infection (figure 1).

The metabolic benefits afforded by nematode infection have been attributed to their 

immunomodulatory effects including a shift from a Th1 to a Th2 response, promotion of the 

M2 phenotype, downregulation of the Th17 response, and development of ILC2 (115). ILC2 

are a source of IL-13 and are the most recent cells proposed to regulate metabolic 

homeostasis in adipose tissue in both humans and mice (116–118). IL-13 binds to type 2 

IL-4R located on non-hematopoietic cells and a few immune cells such as macrophages. 

This receptor is linked to the transcription factor, STAT6, with activation leading to 

upregulation of genes that control the phenotype and/or function of both hematopoietic and 

non-hematopoietic cells. Many of the enteric nematode infection-induced stereotypic 

STAT6-dependent changes in intestinal enterocyte function in the small intestine (78–81) are 
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mimicked by exogenous administration of IL-13 as well as by IL-33 or IL-25 mediated 

release of IL-13 (78, 81).

There are several models of obesity-induced T2D and metabolic syndrome including the 

HFD-induced obesity, the ob/ob mouse, and the RIP2-OPa1 deficient mouse. Induction of 

obesity using a HFD is one of the most well-documented models of obesity and after 8–10 

weeks on the diet, mice have elevated fasting blood glucose levels consistent with type 2 

diabetes, insulin resistance, and hepatic steatosis (119). Infection of HFD-induced obese 

mice with N. brasiliensis resulted in weight loss, improved glucose metabolism, increased 

circulating insulin levels, and decreased adipose tissue masses (120). Of interest is that the 

weight loss effects of N. brasiliensis in HFD-induced obese mice were only partly dependent 

on STAT6, but fully dependent on IL-13 (95). In contrast, the ability of N. brasiliensis 
infection to reduce epididymal and brown fat was retained in STAT6−/− mice indicating 

some of the beneficial effects of nematode infection on metabolism are independent of IL-4 

or IL-13 (120). Exogenous administration of IL-4 to mice fed HFD resulted in activation of 

STAT6 in the liver and attenuated adipose tissue inflammation which in turn lead to 

improvement of insulin action (121). HFD fed mice have reduced expression of IL-25 in the 

liver, and exogenous administration of IL-25 mimicked the beneficial effects of N. 
brasliensis infection on weight loss and hepatic steatosis in HFD fed mice (118). This effect 

was dependent on IL-13 and STAT6, as well as the development of alternatively activated 

Kupffer cells/macrophages. These data show the importance of IL-4, IL-13 and IL-25 in the 

ability of enteric nematode infection to improve the obesity-induced metabolic syndrome 

and T2D.

Specific STAT6 dependent genes regulating glucose metabolism

There is little information on the specific STAT6-dependent genes responsible for the 

beneficial effects of nematode infection on metabolism. M2 play a key role in these effects 

and up regulation of arginase-1, CD206, and other M2 markers are STAT6-dependent. In 

addition, there are several products of cells in the intestine, liver, or adipose tissue that have 

significant impact on glucose metabolism.

A family of four closely related cysteine-rich proteins, Resistin, and resistin-like molecules 

(RELM) α, β, and γ, (encoded by the genes Retnla, Retnlb, and Retnlg, respectively) have 

been identified in mice that share about 70% sequence homology, contain conserved C-

terminal cysteine residues, and bind to unidentified receptors (122, 123). Two orthologs have 

been identified in humans, Resistin and RELM-β (124). RELM-α and γ have not been 

identified in humans, but the expression pattern of human Resistin is more similar to mouse 

RELM-α than mouse Resistin (125) and thus may share similar functions. Three of these 

genes, RELM-α, -β and -γ, are induced by parasite infections, including T. muris, H. 
polygyrus bakeri and N. brasiliensis, by a mechanism that is IL-4/IL-13 and STAT-6 

dependent (126–129).

RELM-β is constitutively expressed in the colon, primarily in goblet cells, and is induced by 

colonization with commensal bacteria (130). Expression of RELM-β can be induced further 

by infection with pathogenic bacteria, parasitic nematodes, or dextran sodium sulfate 

suggesting that induction of RELM-β expression in the colon is a general response to 
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mucosal insults. In contrast, RELM-β is not expressed constitutively in the small intestine, 

but is induced by parasite infections. RELM-β has been shown to bind to chemosensory 

organs on enteric parasitic nematodes resulting in impaired feeding and worm health. It is 

critical for expulsion of H. polygyrus bakeri (53) but may not be as important for expulsion 

of other parasites including T. muris (131) and N. brasiliensis (132).

In addition to regulation by commensal bacteria and infections, RELM-β expression is 

altered by diet and obesity. The circulating levels of RELM-β are increased in obese db/db 
mice and by feeding mice a high-fat diet (133). Furthermore, other dietary factors can alter 

RELM-α and -β expression. In the intestine, high-protein and high-carbohydrate diets 

suppressed gene expression of RELM-β while RELM-α expression was decreased in 

epididymal fat by a high-carbohydrate diet (134). Retnlb−/− mice are resistant to methionine-

choline deficient, diet-induced non-alcoholic steatohepatitis (135). In this study, liver 

Kupffer cells were found to be a source of RELM-β, and expression in both colon and 

Kupffer cells was increased by the deficient diet and was necessary for full manifestation of 

the disease.

RELM-β also affects glucose metabolism. RELM-β inhibits SGLT-1 activity while 

increasing GLUT-2 dependent glucose transport (136). Mice infected with N. brasiliensis 
have increased Relm-β expression and decreased SGLT-1 activity; however, their GLUT2 

expression also was decreased by infection (97). These data indicate the inhibitory effects of 

nematode infection on glucose absorption cannot be attributed fully to Relm-β. Rajala et al. 

demonstrated that increases in circulating RELM-β stimulated glucose production in the 

presence of fixed insulin levels (137). These changes were associated with increased 

activation of and flux through glucose-6-phosphatase. Injection of mice with RELM-β 
induced insulin resistance (137) and transgenic mice over-expressing RELM-β in the liver 

exhibit hyperglycemia, hyperlipidemia, fatty liver, and pancreatic islet enlargement when fed 

a high fat diet but not when fed a normal diet (138). Insulin resistance and glucose 

intolerance were associated with reduced protein expression of IRS-1 and IRS-2 as well as 

reduced insulin-induced activation of phosphatidylinositol 3-kinase and Akt. Additional in 
vitro studies with primary cultured hepatocytes demonstrated that RELM-β activated ERK 

and p38, and to a lesser extent, JNK.

RELM-α expression can also affect glucose metabolism. RELM-α mRNA was reported to 

be decreased in fasting or ob/ob mouse adipose tissue, and increased by hyperglycemia in rat 

adipose tissue (123). Interestingly, while fasting affected mRNA levels in adipose tissue, 

expression in lung tissue was unaffected suggesting that RELM-α may be differentially 

regulated depending on the cell or organ type. Retnla−/− mice have lower baseline levels of 

the satiety hormone, leptin, but no alterations in insulin levels were observed and mice 

exhibited similar weight gains on both normal and high-fat diet (139). Baseline glucose 

levels were also unaffected by normal or high-fat diet in Retnla−/− mice. In addition, when 

compared to WT mice, the kinetics of glucose clearance were unchanged in Retnla−/− mice. 

In another study, however, mice injected i.p with RELM-α for seven days had increased 

insulin resistance (140).
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Recently, a tissue-resident CD301b mononuclear phagocyte population in adipose tissue was 

identified that secretes RELM-α and is required for positive energy balance under normal 

and high-fat metabolic conditions. Depletion of CD301b cells in mice caused hypoglycemia, 

increased insulin sensitivity, and weight loss in both lean and obese mice. Exogenous 

administration of RELM-α to CD301b-depleted mice fed a regular diet restored body 

weight and normoglycemia indicating that RELM-α was responsible for the altered glucose 

metabolism. Considering that both RELM-α and -β can decrease insulin sensitivity and 

increase glucose levels and improve the metabolic syndrome, the role of the high levels of 

both RELM-α and -β in enteric parasitic nematode infection merits further investigation.

STAT6 dependent genes regulating fat metabolism

Dyslipidemia and hepatic steatosis are common in obese individuals due to abnormalities in 

lipid metabolism. Hepatic steatosis is caused by lipid accumulation within hepatocytes, 

mainly due to excessive lipogenesis. There is evidence that enteric parasitic nematodes also 

induce a STAT6-dependent effect on genes that modulate fat metabolism. N. brasiliensis 
infection ameliorated the HFD-induced enlargement of the liver that was accompanied by 

increased levels of hepatic triglycerides (95). N. brasiliensis infection also downregulated 

genes encoding key lipogenic enzymes in the liver and epididymal fat, including Fasn, Acly, 

and Acaca, in both lean and HFD induced obese mice (99).

Cell death activator (CIDEA) is an important regulator of energy expenditure and lipid 

metabolism (141). CD36 in liver functions as a fatty acid plasma membrane transporter that 

takes up fatty acid into hepatocytes (142). Hepatic Cidea and Cd36gene expression were 

significantly upregulated in obese mice and N. brasiliensis infection normalized hepatic 

Cidea expression to levels in lean mice by a IL-13/STAT6 dependent mechanism (95). 

Exogenous administration of IL-25 also ameliorated HFD-induced hepatic steatosis, and 

decreased expression of the CIDEs in the livers of HFD-fed mice (118). In contrast, gene 

expression levels of major hepatic enzymes critical for lipolysis or FA oxidation, including 

hepatic lipase, carnitine palmitoyltransferase 1a, and hydroxyacyl-coenzyme A 

dehydrogenase, were not significantly altered by the HFD or infection (99). Thus, enteric 

nematodes improve hepatic steatosis through STAT6-dependent transcription of specific 

genes involved in the regulation of energy and lipid metabolism.

CONCLUSIONS

Throughout evolution, parasites have co-existed with humans resulting in an intricate 

interaction between the host and the parasite. For much of the twentieth century, parasite 

infections were only viewed as deleterious to the host, but as our understanding of the 

relationship between host and parasite has improved, it is evident our co-evolution has 

provided us with unappreciated benefits. It is clear that diet can impact resistance to parasitic 

infections and dietary interventions may be prudent in regions with endemic parasitic 

infections. Furthermore, ensuring adequate nutrition may improve any therapeutic 

interventions based on parasite products. It is also clear that parasite infections have 

significant effects on host metabolism and especially on energy metabolism, opening the 

door to new and novel approaches to treating obesity and T2D. In mice fed a HFD, N. 
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brasiliensis infection attenuated body weight gain, improved glucose metabolism, decreased 

adiposity and hepatic steatosis, and increased M2 macrophages in adipose tissue (95). 

Further work is needed to determine if the benefits induce acute changes that persist only for 

as long as the parasite is present or chronic changes indicative of a new homeostasis.

There are inherent difficulties in obtaining regulatory approval for use of live parasites to 

treat otherwise healthy individuals and this has prompted exploration of alternative 

approaches. Experimental evidence demonstrated that the Th1 dominant C57Bl/6 mouse 

strain gains weight more rapidly on a HFD and has higher fasting glucose levels on both 

NCD and HFD than the Th2 dominant BALB/c mouse (143). Overexpression of IL-13 in fat 

tissue of C57Bl/6 mice blocked HFD-induced weight gain, improved glucose tolerance and 

insulin sensitivity and reduced inflammation in adipose tissue (144). Administration of 

IL-25 has beneficial effects on obesity-induced T2D and associated hepatic steatosis (117, 

118). The effects of IL-25 are mediated by its ability to increase the numbers of ILC2, M2 

macrophages and eosinophils in adipose tissue (116–118). Studies harnessing the therapeutic 

potential of parasite products or administration of cytokines that promote restoration of anti-

inflammatory Th2 environment in metabolic tissues may prove more amenable to approval.
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Figure 1. 
Worms and worm products induce an increase in epithelial permeability, in part by activation 

of PAR-2, facilitating passage of these products across the mucosal barrier. Epithelial release 

of IL-25/IL-33 binds to mast cells and ILC2 leading to release of IL-13. IL-13 binds to the 

type 2 IL-4R and activates STAT6 on hematopoietic and non-hematopoietic cells. STAT6 u–

pregulates genes for markers of alternatively activated macrophages (M2) and M2 play a key 

role in the STAT6-dependent inhibition of absorption of glucose in enterocytes. IL-13 also 

activates STAT6 on epithelial cells with upregulation of genes that maintain increased 

epithelial permeability. In addition, STAT6 activates genes in other cell types leading to 

alterations in glucose and lipid metabolism.
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