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Abstract

Research on disease causation often attempts to isolate the effects of individual factors, including 

individual genes or environmental factors. This reductionist approach has generated many 

discoveries, but misses important interactive and cumulative effects that may help explain the 

broad range of variability in disease occurrence observed across studies and individuals. A disease 

rarely results from a single factor, and instead results from a broader combination of factors, 

characterized here as intrinsic (I) and extrinsic (E) factors. Intrinsic vulnerability or resilience 

emanates from a variety of both fixed and shifting biological factors including genetic traits, while 

extrinsic factors comprise all biologically-relevant external stressors encountered across the 

lifespan. The I×E concept incorporates the multi-factorial and dynamic nature of health and 

disease and provides a unified, conceptual basis for integrating results from multiple areas of 

research, including genomics, G×E, developmental origins of health and disease, and the 

exposome. We describe the utility of the I×E concept to better understand and characterize the 

cumulative impact of multiple extrinsic and intrinsic factors on individual and population health. 

New research methods increasingly facilitate the measurement of multifactorial and interactive 

effects in epidemiological and toxicological studies. Tiered or indicator-based approaches can 

guide the selection of potentially relevant I and E factors for study and quantification, and 

exposomics methods may eventually produce results that can be used to generate a response 

function over the life course. Quantitative data on I×E interactive effects should generate a better 
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understanding of the variability in human response to environmental factors. The proposed I×E 

concept highlights the role for broader study design in order to identify extrinsic and intrinsic 

factors amenable to interventions at the individual and population levels in order to enhance 

resilience, reduce vulnerability and improve health.
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Social determinants of health; gene-environment interactions; exposome; risk; epidemiology; toxic 
chemical exposure

1. Introduction

In 1981, Doll and Peto [1] proposed sharply segmented environmental contributions to 

cancer (30% tobacco, 3% alcohol, 35% diet, 4% occupational, 10% infection, 7% 

reproductive/sexual behavior). This formulation of disease risk is now widely regarded to be 

incomplete because it disregards the interactive effects of multiple stressors, as well as the 

background of susceptibility that modulates risk.

While much research continues to examine contributions of individual genetic and 

environmental factors to disease, there has been a growing emphasis on studying the 

interplay and accumulation of multiple factors in disease causation. As researchers have 

historically viewed disease susceptibility as being mainly genetic, the majority of interaction 

studies in chronic disease risk have been gene-environment (G×E) interaction studies. 

Simonds et al. recently reviewed G×E studies related to cancer [2]. The authors identified 

272 studies, focusing largely on breast, lung and colorectal cancers, and 4896 interactions, 

mostly in the areas of energy balance (dietary factors and anthropometrics), lifestyle 

(smoking and alcohol), and exogenous hormones (hormone replacement therapy and oral 

contraceptives). The authors reported a median interaction odds ratio (OR) of 1.3 for the 29 

analyses for which p-values of interaction were reported, many of which did not remain 

significant after multiple test correction. Thus, the majority of these G×E studies, which 

examined interactions between single polymorphisms and environmental factors, revealed 

only low or modest effect sizes.

Concurrent consideration of multiple genetic variants and environmental factors may reveal 

a greater contribution of gene-environment interactions to disease outcome [3, 4]. Compared 

to the volume of research focused on individual factors and traits, relatively little research 

has been done in this area to date. Emerging scientific concepts and tools are making the 

simultaneous evaluation of multiple stressors over time more feasible and desirable. 

Examples of existing research paradigms that seek to address multiple additive or interacting 

stressors and susceptibility factors include the exposome, Developmental Origins of Health 

and Disease (DOHaD), and environmental health disparities research; cumulative risk 

assessment seeks to apply the outcomes of research to describe the impacts of multiple 

stressors and susceptibility factors on health risk. Each of these approaches is defined and 

described below.
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The goal of this review is to expand upon current concepts to conceptualize the universe of 

potential susceptibility factors and environment stressors that impact on health outcomes and 

to explore the implications of this broader formulation for epidemiological and toxicological 

research and for the use of the resulting data in describing risk. A single unifying concept 

may help to guide the acquisition and integration of data from multiple research areas and 

the development of more complete models of disease causation.

2. Concepts and strategies related to cumulative impacts of multiple 

environmental stressors in the face of vulnerability

The exposome, a term first coined by Wild (2015), was redefined by Rappaport and Smith 

to be the “totality of environmental exposures from conception onwards” [5, 6]. They further 

proposed a methodology by which this concept could be operationalized and “exposures” 

could be identified from measurable amounts of biologically active chemicals (small 

molecules) in the internal environment of the body arising from both exogenous and 

endogenous sources [6]. Rappaport and Smith also described how the lifelong exposome 

may be characterized in a series of “snapshots” at critical time points throughout the 

lifecourse [6]. Mass spectrometry can identify and measure in blood samples thousands of 

chemicals from foods, drugs, pollutants, and endogenous processes [7, 8]. Others have 

considered how the exposome could be quantified in part using external measurements from 

monitors over extended periods, geospatial information and questionnaires [9]. Miller and 

Jones expanded the exposome concept to include the body’s responses to environmental 

influences – DNA mutations and adducts, epigenetic alterations and protein modifications – 

observable molecular manifestations of cumulative exposures [10], and this concept is being 

advanced in research [8, 9, 11–14].

The DOHaD concept, which emerged over 30 years ago, links conditions and diseases of 

late childhood and adulthood—including obesity, diabetes mellitus, cardiovascular disease, 

and cancer— with early life environmental conditions [15–17]. Persistent epigenetic 

modifications have been shown to mediate lifelong health effects resulting from adverse 

nutritional and diabetic intrauterine environments [18], and neurodevelopmental disorders 

resulting from exposure to environmental toxicants [19].

The environmental health disparities and justice concept links the effects of social 

constructs such as race and class with psychosocial stress and vulnerability to environmental 

exposures [20–23]. For example, variation in stressors and counter-balancing resources at 

the individual and community level, as a result of residential segregation, can modulate 

vulnerability to toxicant exposures. Morello-Frosch and colleagues described how extrinsic 

social constructs such as race and class and intrinsic biological susceptibility factors can 

interact with environmental hazard inequalities to exacerbate health disparities [22], and 

may be used to explain health disparities observed in disadvantaged communities [22, 24].

Cumulative risk assessment has been defined as the assessment of “combined risks from 

aggregate exposures to multiple agents or stressors, where agents or stressors may include 

chemical and nonchemical stressors” [25, 26], whereas cumulative impacts assessment 
skirts the risk assessment imperative to obtain probabilistic estimates of risk and instead 
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obtains a more general characterization of harms from multiple stressors. Both applications 

can build on research findings described above along with environmental epidemiologic 

studies that ideally [26] combine measurements of multiple biomarkers to evaluate the 

effects of exposures and vulnerability factors on biological pathways relevant to disease. 

Researchers have examined cumulative impacts of extrinsic factors such as chemical and 

non-chemical stressors, and background intrinsic population vulnerability arising from 

differential susceptibility and exposure [22, 27–31]. Smith et al. (2015) proposed using 

exposomics tools to quantify cumulative risks and impacts and suggested engaging impacted 

communities in participatory exposome research [8].

Thus emanating from various areas of research are conceptual framings that recognize that 

chemical exposures, be they occupational or environmental, do not occur in isolation and 

can be modified by other lifestyle and biological factors, such as stress, obesity, concurrent 

tobacco smoking and chronic infections (e.g. hepatitis B virus). Collectively, these factors 

play a role in determining a person’s susceptibility to any given set of environmental 

chemical exposures, as illustrated in Figure 1. As such, cumulative risk can vary and 

depends on the susceptibility an individual has come into the world with and accrues 

through daily life. Thus, to understand human susceptibility to disease we must look beyond 

genetics and account for all forms of exposure as well as intrinsic factors that confer 

additional vulnerability, including sex, lifestage and health status.

3. I×E – a unifying concept?

Given the understanding that multiple environmental factors combine with intrinsic 

susceptibility factors to increase risk of disease and death, a broad approach is needed to 

fully depict disease causation. Here, we describe a unifying concept, that we call I×E, 

illustrated in Fig. 2. The “environment” in gene-environment (G×E) studies typically 

encompasses a narrow range of factors such as occupational chemical exposures, infections, 

and lifestyle factors. Here we expand “environment” to include all extrinsic (E) factors, as 

illustrated in the upper panel in Fig. 2 where E factors are loosely grouped by type, e.g. diet, 

food contaminants, food security; different kinds of pollution; and behavioral factors. 

Similarly, expansion beyond the “gene” in gene-environment is necessary to account for the 

many inter-related intrinsic biological factors that contribute to disease susceptibility [2, 32, 

33], e.g. obesity, allostatic load—a composite physiological factor signifying chronic stress 

[34], nutritional status, immune status, and even age. Thus “gene” or G becomes all intrinsic 

factors (I), as shown in the middle panel. An individual is exposed to multiple I and E 

factors which combine to influence health over time.

Some I factors are fixed (sex and initial genome) and some are modifiable during the life 

course due to the actions of extrinsic factors, as when infectious agents or drugs modify 

immune status. Although the E factors act on and influence the I factors, there is some 

reciprocal relationship. For example, mental health status (I) influenced by chronic stress (E) 

can in turn influence dietary choices (E). Using arrows, a simplified relationship in which 

the effect of a large number of E factors are modulated by (to a lesser degree; thin arrows), 

and act upon (to a greater degree; thick arrows), a large number of I factors, is depicted in 

Fig. 2.

McHale et al. Page 4

Mutat Res. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I×E interactions are complex and can vary over the lifespan (background schematic in 

middle panel), as I is modified by extrinsic factors, and age-dependent changes in function. 

Intrinsic factors in an individual are also accrued via parental transmission, such as via 

inherited epigenetic change through the female or male lineage [35]. The I×E concept 

includes exposures occurring before conception, as well as those occurring in utero or within 

the first years of life that can induce epigenetic or other changes which may result in health 

effects expressed later in life, thus incorporating the DOHaD concept.

The lower panel of Figure 2 illustrates that I×E interactions influence vulnerability and 

resilience, and consequentially health status. Factors causing increased vulnerability can lead 

to disability and disease. People exposed to a lesser degree and those with greater biological 

or social resilience are in general able to maintain a longer, healthier life without disability. 

The Healthy Aging Phenotype is an example of a multi-dimensional, age and gender-

dependent biological resilience that is governed by interactions among genes (I), epigenetic 

status (I) and environmental (E) factors [36]. Resilience, vulnerability and health status may 

be positively and negatively impacted throughout the lifespan. The fluctuating curves 

represent possible trajectories for a hypothetical individual that could arise through various 

scenarios. For example, a healthy individual with low resilience in early life due to low 

parental socioeconomic status (SES) and lead exposure in the home may gain resilience 

through an enriched home environment and strong social support. As a young adult, 

decreased resilience and increased vulnerability, due to factors such as loss of employment, 

exposure to violence, and community environmental exposures may lead to a decline in 

health status in response to a challenge (e.g., infection) or the cumulative effects of different 

factors (e.g., poorer diet, chronic stress, less physical activity, smoking). Improved social, 

economic and medical support together with factors such as improved nutrition and physical 

activity, cessation of smoking, reduced environmental exposures, and stress reduction can 

increase resilience and improve health status. In this example resilience declines with age, 

perhaps exacerbated by grief or reduced social support, and is followed by a decline in 

health status, perhaps due to infection, or on-going chronic disease processes.

Thus, our unifying I×E concept illustrates how health and disease throughout the life-span 

can arise from a set of intrinsic factors, responding and modulating susceptibility to multiple 

extrinsic factors including traditional environmental stressors such as occupational and non-

occupational chemical exposures, as well as nutritional, lifestyle, and socioeconomic factors 

(Fig. 2). We propose that this conceptualization will encourage researchers to move beyond 

the G×E approach and to study a greater number of potential I×E interactions using 

emerging research methodologies.

This conceptual framing can guide evaluation of data on factors and interactions relevant to 

a particular population/health outcome and identification of data gaps to be addressed in 

future studies. A systematic checklist or algorithm to assess potentially relevant extrinsic and 

intrinsic factors, and potential interaction among them at various stages across the lifespan 

could be developed (see Section 8). Examples of such framework approaches exist in the 

literature e.g. the U.S. Environmental Protection Agency’s Causal Analysis/Diagnosis 

Decision Information System for assessing aquatic systems [37] and a multilevel model of 

postmenopausal breast cancer incidence [38].
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4. Illustration of the Concept: Examples of I×E studies

Here we illustrate the I×E concept through examples of studies examining the interaction of 

I factors other than genetics with E factors but do not provide systematic compilation of such 

studies, nor an evaluation of the strengths and weaknesses of individual studies, which is 

beyond the scope of this review.

4.1. Obesity (I) and environmental exposures (E) interact to affect a variety of diseases

In several studies, obesity (I) has been reported to exacerbate the effects of various 

environmental exposures (E). Multiple studies have reported that obesity and air pollution 

together increased the risk of several different diseases, including hypertension in children 

[39], asthma in children [40], and stroke and cardiovascular disease [41]. Obesity was found 

to modify the effects of indoor fine and coarse particulate matter exposure on chronic 

obstructive pulmonary disorder, producing more severe symptoms, greater rescue 

medication use, and greater proinflammatory effect than in non-obese individuals [42]. A 

substantive review of obesity, ozone exposure, and cardiopulmonary health reported that 

obesity was associated with decreased lung function and increased inflammatory mediators 

in the seven studies which met the criteria of examining the interaction of excess weight and 

ozone exposure on cardiopulmonary outcomes in adults [43]. In one study, obesity was 

observed to increase the risk of arsenic-associated lung and bladder cancer by over 10-fold 

in individuals with elevated arsenic exposure compared to non-obese individuals. This study 

found a 4-fold increase in the Rothman synergy index [44], a classic epidemiological 

measure of interaction based on departure from additive risks [45]. Finally, arsenic’s 

carcinogenicity and adverse pulmonary effects are synergistically higher in obese 

individuals, smokers, and those with concurrent occupational exposures [44, 46]. These 

findings suggest that obesity is a susceptibility factor in a number of diseases linked to 

environmental exposures, and is an area worthy of further exploration.

Obesity is an intrinsic factor modifiable by multiple extrinsic factors including diet, exercise, 

and certain chemical obesogens [47], and may be “programmed” by conditions in utero and 

early life. Obesity was found to be more prevalent among children with high exposure to 

both second-hand smoke and low levels of fiber (OR=2.6) or eicosapentaenoic acid (EPA, a 

polyunsaturated fatty acid precursor for physiologically active lipid compounds) (OR=2.6) 

compared to those with high levels of fiber or EPA [48]. The interactions were significant by 

both additive and multiplicative analyses.

4.2. Preexisting disease (I) and environmental exposure (E) interactions

I×E interactions can be complex. Preexisting disease status (I) may affect capacity for 

physical activity (E), which in turn can affect a variety of intrinsic factors. Further, extrinsic 

factors can become intrinsic factors. For example, exposure to hepatitis B virus (HBV) (E) 

can result in infection, and, depending upon intrinsic factors (e.g., immune status, life stage), 

an individual can develop chronic hepatitis. Chronic hepatic inflammation becomes an 

intrinsic factor, which can increase vulnerability to other hepatotoxicants, and can lead to 

cirrhosis of the liver and cancer. A synergistic interaction has been reported between chronic 

HBV infection (I) and aflatoxin B1 exposure (E) resulting in an increased risk of 
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hepatocellular carcinoma [49]. This association was found across 5 large cohort studies in 

which odds ratios ranged from 40.7 to 70.0 with a mean of 59.6 compared with HBV alone 

(mean OR=10) or aflatoxin B1 alone (mean OR=13.7) [49]. Off-target effects of medication 

(E) taken to treat HBV can also impact intrinsic factors, which in turn can affect health. The 

balance of susceptibility versus resilience operates both at an individual and a population 

level. For example, in countries where HBV is prevalent and dietary aflatoxin B1 exposure is 

poorly controlled, “background” rates of hepatic carcinoma in the population are high [49]. 

In other populations, different I and E factors and their interactions result in higher 

“background” rates of breast cancer or cardiovascular disease. Thus, the rate of a disease in a 

population should be considered to be a marker of the balance of susceptibility versus 

resilience in that population, and the importance of I×E effects overall may be estimated 

based on population variation in “background” risk of disease.

4.3. Social resilience (I) and environmental exposures (E)

Social resilience is another key determinant of health outcome [50]. Although biological and 

social resilience are distinct, they are intertwined. Environmental exposures (E) may interact 

with social stressors (E), as well as with susceptibility factors (I) to worsen disease risk in 

highly vulnerable populations [24]. Low SES (E) increases allostatic load (I) [51], which can 

affect immune and metabolic status (I) [52], as well as amplifying the adverse effects of 

environmental chemical exposures (E) [31]. Thus low SES may sometimes be treated as a 

surrogate for allostatic load. In 2003, a review described how low socioeconomic position 

may worsen the adverse effects of air pollution [53]. This was further seen in later studies 

that included stressors related to SES, particularly in relation to childhood asthma. Among 

413 children in an urban community-based pregnancy cohort in Massachusetts, higher rates 

of asthma diagnosis were reported for children chronically exposed to high levels of 

violence and high levels of traffic-related air pollution [54]. In another study of 73 children 

with asthma over a 6 month period, chronically increased family stress was found to interact 

with traffic-related pollution exposure to exacerbate asthma symptoms in children; this study 

reported no effect of stress or pollution alone [55]. In a 3-year study of 2,497 children, the 

risk of onset of childhood asthma attributable to in utero exposure to high levels of traffic-

related pollution was found to be significantly higher for those born to parents with high 

levels of perceived stress compared with those with low levels of stress (HR=1.51 vs 1.05) 

[30].

Socioeconomic stress may also exacerbate the risk of endpoints besides asthma. Low 

neighborhood SES was reported to amplify the risk of air pollution-related preterm births 

(OR=1.3 in low vs high SES neighborhoods with high air pollution levels) [56] and adult 

mortality (RR=2.62 in low income-high pollutant vs high income-low pollutant) [57]. The 

working memory component of IQ in children was found to be inversely impacted by 

significant interactions between high prenatal exposure to PAHs (measured as cord blood-

DNA adducts) and high levels of prenatal hardship (β=−8.07) and between high DNA 

adduct levels in cord blood and recurrent material hardship (β=−9.82) [58]. For 

neurobehavioral development in children, another study reported that maternal 

psychological distress during pregnancy interacted with PAH exposure, and found a 
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βinteraction=4.37 (p-value=0.021) for somatic complaints and βinteraction=3.31 (p-value=0.04) 

for aggressive behavior [59].

5. A more precise representation of IxE by exposomics

Quantitative measurements of both extrinsic and intrinsic factors are needed so that their 

relative importance in affecting health outcomes can be better understood and characterized. 

The disparity in coverage of genetics and environmental factors in GxE studies was 

previously discussed [60]. Measurement of proportional effects of multiple factors is more 

precise if they are continuous measures rather than binary or categorical classifications such 

as those derived from a job exposure matrix or recall questionnaire [61–63]. Quantitative 

measurements of intrinsic factors such as metabolic health or disease status beyond yes/no 

diagnosis are also crucial. The latter requires the establishment of biomarkers of underlying 

disease processes or predictors of outcome. Zeise et al. previously discussed opportunities 

for incorporating evidence from in vitro, experimental in vivo, and GWAS studies on 

differences in intrinsic factors such as molecular transport systems, enzyme activity, and 

DNA repair capacity in modeling pharmacokinetic and/or pharmacodynamic variability 

[64]. Exposomics offers another means to quantify a range of factors.

In the exposome paradigm, the internal biochemical environment reflects all exposures from 

both exogenous and endogenous sources [6]. Going beyond that, the internal biochemical 

environment in the I×E concept provides a lens for representing interacting mixtures of I and 

E factors at any given time. Thus, in a manner analogous to the “snapshots” proposed for the 

exposome [6], representations of multiple contributing E and I factors and their interactions 

would be identified and measured over time. Use of exposomics tools such as targeted and 

untargeted metabolomics or other assays [7, 13, 14] could quantify both I and E factors, 

thereby allowing for much improved assessments of the importance of different 

environmental factors including non-chemical stressors in modulating risk. The expanded 

concept of exposomics by Miller and Jones, which includes the proteome and adductome, 

improves the capacity of exposomics to reflect cumulative exposures [10]. Once the 

relationships in the internal environment are understood, evaluations can describe the 

relationship of external exposure to the internal milieu to move toward characterizations of 

external exposures – sources and circumstances – that lead to modification of intrinsic 

factors, increased susceptibility and risk.

There have been many recent improvements in how samples are processed and analyzed, 

and new bioinformatics tools and databases to store exposome data, analyze it, and integrate 

it with data on other omics and pathways are being developed [12, 13, 65–68]. Recently, the 

National Institutes of Health (NIH) launched the “Big Data to Knowledge” (BD2K) program 

under which a consortium of research centers are devising methods to streamline the 

synthesis and analysis of large-scale data from a variety of biomedical sources [69–71]. For 

example, a big-data platform, BD2K Patient Centered Information Commons (http://pic-

sure.org), was created to enable programmatic access to exposome and phenome data from 

the National Health and Nutrition Examination Survey (NHANES) via a web browser 

(https://nhanes.hms.harvard.edu) [72].
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6. Increasing the focus on I×E in epidemiologic research

The IxE conceptualization can guide the design of epidemiological investigations in 

addressing the multiple stressors and susceptibilities leading to response. The tools and 

capacities in many cases exist, as evidenced by various published epidemiological studies of 

multiple exposures and their interactions with genomic and other intrinsic factors. Some 

specific challenges and trends are explored below.

6.1 Lessons learned from G×E studies

Some of the challenges of I×E-based research can be anticipated from those noted 

previously for G×E studies. For example, many of the G×E interaction ORs estimated by 

Simonds et al. were of small magnitude and were not significant after multiple test 

correction [2]. A review of studies on gene-obesity interactions showed that although 

interactions between specific genes and a variety of environmental, lifestyle and treatment 

exposures were reported, findings were limited by issues related to “statistical modelling, 

confounding, low replication rate, underpowered analyses, biological assumptions and 

measurement precision” [73]. A systematic review of gene-macronutrient interaction studies 

in type-2 diabetes (T2D) also revealed that many reported interactions could not be 

replicated and highlighted the importance of improving standards for examining and 

reporting interactions, multiple test correction and independent replication [74]. Ultimately, 

the requirement for large epidemiological studies to address study power limitations has 

fostered the development of multicenter consortia, tissue databanks and data-sharing 

procedures [75].

6.2. Explicit examination of the effects of “confounders” as possible mediators of effect

The classic epidemiological study design was based on the objective of measuring the 

impact of a single factor (such as a well-defined chemical exposure). Other factors affecting 

the observed outcome were regarded as potential “confounders” that were, if possible, 

eliminated by selection of a relatively homogeneous study population that minimized 

variability. Consider, for example, the number of studies that deliberately excluded women, 

asthmatics, or non-whites. To the extent that this was not possible, mathematical approaches 

controlled for, and sought to eliminate the impact of these confounding factors. Thus, an 

estimate of the impact of the single factor of interest was presented, unmodified by other 

influences or averaged over a relatively homogeneous study population. Even if quantitative 

estimates of the impacts of these other potential modifiers of risk were obtainable from the 

data, these were often not reported or were only listed in table footnotes. However, 

controlling for confounders that are in fact mediators and part of the exposure-response 

pathway results in essentially ‘controlling-away’ a significant finding. Studies that control 

for related factors may miss both multiplicative and additive effects (commonly identified by 

the study design as effect modification and confounding, respectively). Some epidemiology 

studies do look at effect modification, but the statistical bar is high for modeling interactive 

terms, and additive effects may go undetected (i.e., false negatives).

Standard techniques for achieving a multifactorial analysis exist (see for example Johnson 

and Wichern, 2007 [76]), but there are challenges to implementing such a study: more 
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power, and therefore larger sample size, is often required. Recent developments in the range 

of available computational and analytical tools, such as the use of artificial intelligence (AI) 

techniques for identifying associations in large datasets, and the application of open-ended 

multifactorial approaches such as principal component analysis present an opportunity for 

method development in this area. Various efforts are underway to coordinate, standardize 

and develop processes for the use and sharing of “big data” from multi-consortia, large data 

set collaborations [75].

In evaluating I and E, factors of interest need to be explicitly examined both for their 

individual impacts on the disease endpoint(s) of interest, and for their role as modifiers of 

the impact of other contributing factors. Findings from such studies would support models 

that characterize responses to a number of different intrinsic and extrinsic contributing 

factors [75].

Finally, when studying multifactorial causes of ill-health, it is important to integrate 

consideration of IxE disease determinants both as individual-level attributes and group-level 

features to which individuals belong [77]. Diez-Roux and colleagues (2004) point to the 

concept of herd immunity, an important group-level factor that affects population differences 

in disease incidence, but also determines an individual’s risk of contracting a particular 

infectious disease. Similarly, there has been increasing scientific interest in the field of 

environmental epidemiology to integrate environmental health with social epidemiological 

methods to better elucidate the pathways by which group-level or macro-social factors, such 

as neighborhood characteristics, racial segregation, and income inequality, may mediate or 

interact with environmental hazard exposures in ways that affect health disparities [78]. 

Multilevel modeling enables the simultaneous examination of group-level and individual-

level factors on individual-level outcomes, while accounting for the non-independence of 

observations within groups and allowing for inferences regarding intergroup variation [77].

6.3. Study design to account for temporality

Single exposure measurements are often taken at one point in time in epidemiologic studies, 

but measurements at different times may be needed, depending on the nature of the 

interaction. This is likely to be especially important in studies of developmental impacts, 

which may create health states or enhanced sensitivity reflecting permanently altered 

intrinsic factors after an initial, extrinsic, early-in-life exposure. The ideal study design is a 

prospective cohort, which would allow repeated sampling and monitoring during critical 

windows of susceptibility. As continuous monitoring of biomarker or exposure data is 

seldom feasible, cross-sectional “snapshot” analyses of the study population are important. 

Large prospective studies are difficult and expensive to implement, especially over the 

timescale needed to measure developmental impacts, limiting their feasibility in many 

situations. Other study types such as ecological and time-series studies of effect incidence, 

and case-control studies traditionally are designed to address single exposure factors and 

single health endpoints. However, these design approaches can be expanded to examine 

multiple factors and the interactions between them, subject to the necessary power for 

multifactorial analyses. Meta-analysis is also an important tool for achieving the desired 

power and breadth of coverage for analysis of the interaction between various intrinsic and 
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extrinsic factors (see for example Munsell et al., 2014 [79] who review a number of studies 

of various designs and provide a meta-analysis relating body mass, estrogen use, breast 

cancer and hormone receptor status).

6.4. Selection of vulnerable populations and relevant I×E factors for study

Recent migrants, disadvantaged socioeconomic groups with high environmental chemical 

exposures, and pregnant women are potential high priority populations for quantitative study 

of I×E interactions using exposomics. Other vulnerable populations can be selected using 

indicator and map-based approaches. These methods use geographic information systems 

(GIS) mapping to integrate chemical and nonchemical stressors, vulnerability, and 

background risk factors and generate semi-quantitative indicators that highlight communities 

with enhanced vulnerability [24, 80, 81]. An example is the California Communities 

Environmental Health Screening Tool (CalEnviroScreen), developed by the California Office 

of Environmental Health Hazard Assessment, which maps measures of cumulative impact at 

the census tract level based on 20 indicators of “pollution burden” (exposures and 

environmental threats) and “population characteristics” (sensitive populations and 

socioeconomic factors) [81]. A screening tool such as this one could help identify 

communities for in-depth epidemiological study of the interactions between the various 

stressors, and to select factors for study. Tiered or phased approaches have been used to 

identify relevant factors in cumulative risk assessments, with the different tiers applying 

increasingly more conservative filters based on availability of data supporting an effect [82–

85].

We suggested in section 3 that a systematic approach based on the I×E concept could be 

developed to assess extrinsic and intrinsic factors and potential interaction among them at 

various stages across the lifespan for further consideration. In selecting I and E factors for 

study, consideration can be given to their contribution to a hypothesized common general 

mechanism of toxicity. For example, the interaction of arsenic/obesity in lung and bladder 

cancer risk identified in a human population study was based on a hypothesized common 

mechanism of inflammation [44]. Another approach is to consider interaction among factors 

that affect common adverse outcomes such as lead/methylmercury/polychlorinated 

biphenyls, nutritional factors, social deprivation and IQ [86] or multiple endocrine disruptors 

and reproductive tract development [87]. In recognition of the fact that stressors may act at 

different points in carcinogenesis, synergies of chemicals acting via linked but dissimilar 

sequences/processes, in different targets/tissues could also be considered [88]. For example, 

chemicals that alter cell signaling and those that increase oxidative stress may interact to 

increase cancer risk.

Other approaches to identifying relevant I and E interactions for further study include 

Environment-Wide Association Studies (EWAS) and the exposome globe approach. In the 

EWAS approach associations between exposures and phenotypes can be examined, e.g. type 

2 diabetes and multiple environmental factors [89, 90], in a non-hypothesis based manner. 

For example, an EWAS of 76 environmental contaminants or lifestyle factors in 70 

Caucasian adults living in Sweden reported significant additive interactions between dietary 

saturated fat and levels of p,p′-dichlorodiphenyldichloroethene, polychlorinated biphenyls 
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and exercise, that lead to high prevalence of metabolic syndrome in an elderly population 

[91]. Using the “exposome globe” approach, a visual depiction of the network of replicated 

correlations between individual exposures in the exposome, clusters of exposure can be 

visualized [92]. In this area, the use of statistical machine learning methods, such as 

regularized regression and tree-based methods, to identify exposures and mixtures of 

exposures associated with phenotypes and outcomes recently has been discussed [93].

7. Usefulness of I×E studies in animals

The study of multifactorial impacts in humans is important, but obviously has limitations in 

terms of the number of intrinsic and extrinsic factors that can be evaluated. An advantage of 

animal studies is that they can overcome some of the limitations of human studies and allow 

exploration of exposure scenarios and phenotypic effects that are challenging to explore in 

human studies, such as early-life/late-life effects in the same individuals exposed to stressor 

combinations, or pathology of organs and tissues not generally accessible in humans, or the 

interaction of multiple toxicological mechanisms [73]. For example, early-life environmental 

tobacco smoke exposure plus later exposure to asbestos was shown to increase the risk of 

lung disease via immune effects in mice [94]. Intrinsic factors resulting from a high fat diet 

(HFD) also have a profound effect on the toxicity of numerous chemicals in different organ 

systems, resulting for example in an elevated risk of mammary cancer in mice following 

maternal dioxin exposure [95] and of steatogenesis in mice following valproic acid exposure 

in adulthood [96]. Recognition of I×E interactions observed in animals such as these has 

important implications for the design and interpretation of toxicology studies, which are 

usually performed in healthy, young adult animals fed low fat diets. Observations in humans 

of profound toxicity associated with environmental chemical exposures in individuals with 

pre-existing conditions, such as obesity and diabetes, who are eating a HFD, also highlight 

limitations of the current toxicity testing paradigm, where healthy animals are typically 

exposed to a single chemical, in predicting human health effects resulting from I×E 

interactions [97].

One challenge of animal studies has been the limited ability to approximate human genetic 

variability, and the interaction of genetic variability with other intrinsic as well as extrinsic 

factors. Genetically diverse mouse models such as Collaborative Cross strains [98] and 

Diversity Outbred mice [99] were developed to address this. They have enabled the 

examination of effects of environmental exposures against variable genetic backgrounds 

[75], e.g., susceptibility to micronuclei formation for benzene [100], liver toxicity for 

trichloroethylene [101], and the effect of diet on intestinal cardiometabolic-related 

microbiota [102]. Using the Collaborative Cross mouse population model, a complex and 

highly variable relationship was identified between perchloroethylene and the toxicokinetics 

and toxicodynamics of its primary oxidative metabolite trichloroacetate at the population 

level [103]. Similarly studies with the Collaborative Cross can be designed to study the 

interaction of genetic susceptibility with other intrinsic factors and environmental stressors. 

The Mouse Phenome Database hosts data on molecular and clinical phenotypes collected 

across genotypes, tissues, ages, environmental exposures, interventions, and treatments in 

Collaborative Cross strains and Diversity Outbred mice [104].
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Another challenging but important I×E scenario to study in animals is the interaction of 

embodied stress with other environmental factors. Multiple mouse studies have examined 

the effects of exposures in combination with stress and elucidated underlying mechanisms. 

Studies in male mice have shown that a combination of chronic social defeat stress and a 

high fat diet resulted in altered expression of hepatic genes involved in lipid metabolism, 

dysregulation of lipid profile, and modulation of effects on body weight [105, 106]. In rats, 

enhanced effects in behavioral, neurochemical and glucocorticoid outcomes occurred in 

response to combined maternal lead (Pb) and prenatal restraint stress [107–111]. Notable 

differences in neurotransmitter changes induced by developmental Pb exposure with and 

without prenatal stress were observed to depend on the nature of behavioral experiences 

[108, 112]. On the positive side, repeated learning behavioral experience was observed to 

attenuate the effects of combined Pb exposure and prenatal stress [113]. In another series of 

studies, combined low level maternal Pb exposure and prenatal stress followed by offspring 

stress was found to significantly increase impulsive behavior in males [114]. Brain regions 

and neurotransmitter systems that mediate learning/behavioral flexibility were found to be 

more greatly impacted in males, illustrating the potential modifying effect of sex as an 

intrinsic factor. Studies such as these can generate potentially useful data and hypotheses 

relevant to IxE interactions that can then be tested in human epidemiological research.

8. Utility of I×E-based research in cumulative risk and impact assessment

I×E-guided research can help to address some of the challenges identified in assessing 

cumulative risk, such as a need for the incorporation of data on background exposures, 

vulnerability factors, and non-chemical stressors such as psychosocial stress; a need for 

improved biomarkers of exposure, susceptibility, and effect; and difficulty incorporating 

some epidemiologic research findings into risk assessment [85]. Intrinsic and extrinsic 

factors have traditionally been addressed in risk assessment as two separate problems: one 

involving cumulative risks from extrinsic factors and the other involving inter-individual 

variability from intrinsic factors. For non-cancer outcomes, the latter is estimated by generic 

variability factors for toxicokinetics and toxicodynamics [115, 116], which were found to 

not adequately address children [117–119]. Many of the potential interactions in Figure 2 

and the examples provided in the paper expand beyond the traditional notion of 

toxicokinetics and toxicodynamics, and the I×E concept introduces multiple intrinsic and 

extrinsic stressors as potential contributors to the range of population variability, 

vulnerability and risk. The implication of the I×E concept is that the total range of variability 

and vulnerability in the population may be greater than that captured by the current default 

uncertainty factors, in part due to the sheer numbers of potential interactions that are not 

currently assessed. Few studies have been done to date to test this hypothesis, but some 

suggest that even fairly simple combinations can result in effects that differ across the 

population by more than 10-fold [44, 54]. Ultimately, a risk assessment approach that 

attempts to explicitly mathematically model I×E interactions across population distributions 

might be more useful, but would require considerable data and analytical effort, and is not 

currently feasible. More feasible options, while the research in this area is developing, would 

include the following practices:
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1. Adopt a mathematical description for human variability to model dose-response 

for non-carcinogens

The fact that any single chemical, industrial site, or other factor evaluated in a 

risk assessment exists against a background of a large volume of extrinsic 

exposure, homeostatic impairment and pre-existing disease in the population 

calls into question the use of a threshold assumption for many non-carcinogens. 

The National Research Council (2009) recommended a unified probabilistic 

approach that explicitly and formally models human variability to estimate risk, 

for carcinogens and non-carcinogens [85]. Chiu and Slob (2015) [120] developed 

a related probabilistic approach for a general class of chemicals into a unified 

three-step framework for dose-response extrapolation. Their framework is 

relatively straightforward to compute, and also explicitly addresses variability 

across a population; however it does not consider the potential addition of the 

effect of the chemical exposure to that of other similarly acting chemicals in the 

“background” of exposures experienced by individuals within the population and 

so it is most applicable for rare health outcomes.

2. Adoption of a structured algorithm to assess I×E factors and interactions

A systematic inquiry based on the I×E concept could be developed to assess 

extrinsic and intrinsic factors, and potential interactions among them at various 

stages across the lifespan. The risk assessors could examine:

• Are there studies of the chemical’s effects in vulnerable human 
populations? E.g., pregnant mothers, newborns, children, the elderly, 

obese individuals, those with preexisting conditions, genetically 

susceptible subjects, those with relevant co-exposures. What is the 

effect of this vulnerability on dose-dependent effects? Are effects seen 

at lower doses? Can the vulnerability be quantified?

• Are there studies of the chemical’s effects in susceptible animals? 
E.g., early life and in utero exposure, studies in the Collaborative Cross, 

studies in animals given a high-fat diet or one low in essential nutrients, 

studies in stressed animals, studies in animals with other co-exposures. 

What is the effect of this susceptibility on dose-dependent effects? Are 

effects seen at lower doses? Can the difference be quantified?

• What are the general toxicity mechanisms that are affected by the 
chemical, and what intrinsic (I) and extrinsic factors (E) can be 
expected to contribute to vulnerability, based on those 
mechanisms? E.g., if genotoxicity is one mechanism by which a 

chemical is thought to act, are there deficiencies in DNA repair that 

would likely amplify the effects of the chemical? If a chemical acts on a 

hormonal pathway, are there other chemical stressors that can contribute 

to the same general mechanism?

• How is the chemical activated, distributed, metabolized, and 
excreted? E.g., if a chemical is activated via a certain CYP isoform, are 
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there medications or other agents that are known to induce that 

isoform?

• Is there evidence that the chemical possesses any of the ten key 
characteristics of carcinogens [28]? How about key characteristics 
of other major classes of toxicants such as endocrine disruptors? If 

so, what other intrinsic and extrinsic factors could amplify these effects.

• Are there biomarkers of susceptibility that could be used to 
quantify the effect? E.g., polymorphisms in a gene or set of genes that 

amplify or reduce the effects of the chemical; a biomarker of 

inflammation that is associated with an increased risk in combination 

with chemical exposure etc.

• Are there potential interactions between the chemical agent and 
infectious agents in producing disease. E.g., hepatitis B infection is 

already known to interact with hepatocellular carcinogens such as 

aflatoxin B1 to cause liver cancer, so the infection may also confer 

vulnerability to other hepatocellular carcinogens.

• Are there members of the population with background exposure to 
other chemical or non-chemical stressors that affect the same target 
tissue/organ/system, or act via the same toxicity mechanisms? E.g., 

persons on a specific diet or with concurrent occupational exposures.

• Are the health outcomes caused by the chemical relatively 
common?

A structured algorithm that includes the considerations above could 

help the risk assessors consider which I×E interactions may be most 

relevant to a given assessment. Where adequate data exist, quantitative 

assessments should be attempted. In the absence of data, these issues 

would be addressed in the assessment using adequate factors to account 

for variability, vulnerability, and uncertainty. The responses to these 

questions would guide discussion in the risk assessments of the 

potential areas of interactive and cumulative effects. If data do not exist 

to quantify I×E interactions, the need for additional data would be 

articulated, along with a qualitative discussion of the impact of the 

resulting uncertainty on the assessment.

3. Employ indicator-based approaches to describe impact

Index/indicator-based approaches have the advantage of being able to incorporate 

an almost unlimited number of stressors for which data are available, and to 

combine very different types of stressors (chemical, psychosocial, health) into 

one analysis. Such approaches are not intended to produce estimates of health 

risk for any given population. The CalEnviroScreen tool described above 

facilitates comparisons of communities differentially impacted by intrinsic and 
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environmental factors, and directs attention to communities substantially 

impacted by cumulative stressors.

9. Concluding Remarks

While recognizing that various I and E factors can have significant contributions, 

understanding the role (i.e., if a cause and effect relationship exists) and magnitude of effect 

of individual factors remains an important aspect of epidemiologic research and risk and 

impact assessments. In some cases, even where there are multiple component causes, 

removal of one cause can have an impact, e.g., smoking cessation and reducing exposure to 

environmental tobacco smoke remain important public health actions even when other lung 

cancer risk factors such as air pollution are present.

Similarly, the demonstration of a synergistic relationship between cigarette smoking and 

asbestos exposure highlights the need for smoking prevention and cessation for workers in 

industries with high asbestos exposure [121]. Neonatal vaccination against HBV is another 

example, as prevention of chronic HBV infection and chronic liver inflammation 

substantially reduces the risk of liver cancer resulting from the interaction of inflammation 

and environmental chemical exposures such as aflatoxin B1. Thus, I×E complements other 

research efforts seeking to understand what are the important risk factors, what risk factors 

are present, how do the risk factors add or otherwise interact, and which risk factors can be 

targeted through public health action.

We propose the I×E concept to promote a more robust and nuanced understanding of the 

combined impacts of intrinsic and extrinsic factors, including their potentially additive and 

multiplicative effects, on the health of diverse populations. Epidemiologic and toxicological 

studies should be designed and sufficiently powered to assess multifactorial effects, and 

enhanced technologies and novel methods in exposure science should be leveraged in their 

implementation. As methods improve for integrating I×E more systematically into research 

and risk assessment, use of indicator/index approaches can facilitate valuable spatial 

screening to inform decisions in ways that advance environmental equity goals by improving 

existing conditions and reducing future harm. Ultimately, improved understanding of I×E 

interactions throughout the life span may facilitate timely public health interventions that 

can effectively tip the scales toward resilience and health and away from vulnerability and 

disease.
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Fig. 1. 
Higher vs. lower cumulative disease risk of hypothetical individuals at a single point in time 

based on combinations of multiple risk factors.
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Fig. 2. 
Extrinsic (E, upper panel) and intrinsic (I, middle panel) factors interact throughout the 

lifespan, enhancing vulnerability or resilience in a cumulative manner. Intrinsic genome and 

sex are fixed I factors whereas the other I factors are modifiable. Many E factors act on and 

influence the I factors, whereas E factors are modulated to a lesser degree by I factors 

(indicated by thick and thin arrows between the upper and middle panels). I×E interactions 

can vary over the lifespan beginning before conception via maternal and paternal effects 

(background schematic in middle panel). In a given individual, I×E interactions influence 

vulnerability and resilience, and consequentially health status, throughout life, as indicated 

by the fluctuating curves in the lower panel. The curves shown are not based on actual data 

and are hypothetical trajectories indicative of negative and positive effects on resilience and 

health status over the lifespan. Scenarios that could contribute to these fluctuations are 

described in the text in Section 3. Occ., occupational; Env., environmental.
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