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Abstract

Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle 

cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, 

we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to 

PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, 

hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-

derived NO production and increased production of superoxide (O2
.−) through eNOS uncoupling 

and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate 

cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α 
(HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at 

increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, 

strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including 

hypoxia-induced PH offers unique opportunities for the rational development of therapeutics 

centered on modulating redox signaling.
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1. Introduction

In general, chronic hypoxia leads to pulmonary artery remodeling driven by smooth muscle 

proliferation and increase in wall thickness, which causes increase in flow resistance. This 

phenomenon leads to pressure overload of the heart right ventricle (RV) potentially causing 

its failure, the main driver of mortality in patients with chronic obstructive disease (Naeije, 

2005). The remodeling process is initiated by oxygen sensors present in vascular cells that 

detect a decrease in partial pressure of oxygen in the blood (pO2), and then activate a 

signaling system that leads to acute constriction of pulmonary arteries (Prabhakar and 

Semenza, 2012). Eventually, this acute phase is “consolidated” by architectural remodeling 
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of the vascular wall that perpetuates lumen narrowing (Prabhakar and Semenza, 2012). 

Interestingly, although RV dysfunction seems to be caused by pressure overload secondary 

to increase in pulmonary vascular resistance, new evidence suggest that these two 

phenomena could develop independently in such a way that RV dysfunction occurs even if 

PH is prevented (Ball et al., 2014).

Among many signaling molecules, the contribution of reactive oxygen species (ROS) and 

NO to the pathophysiology of PH is complex and partially elucidated in the context of 

hypoxia-mediated pulmonary hypertension (World Health Organization Class 3). Some of 

the cellular signals found to participate in the hypoxia-induced PH seem to be also relevant 

in other models of pulmonary vascular remodeling that occur under normoxia (Bonnet et al., 

2006). In this short review, we will outline the salient results that provide a foundation to the 

delineation of the mechanisms by which aberrant production of NO and ROS may contribute 

to the pathogenesis of PH.

2. Nitric oxide and pulmonary hypertension

2.1 Relevant Nitric oxide biochemistry

Nitric oxide (NO) is a paracrine and autocrine messenger molecule that is derived from the 

five electron oxidation of L-arginine (Moncada et al., 1991). This reaction is catalyzed by 

nitric oxide synthase (NOS; Figure 1), of which 3 isoforms have been described in 

mammals, neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial 

NOS (eNOS, NOS3) (Nathan and Xie, 1994). Tissues and cells conserve NO through 

nitrosylation and nitrosation of biomolecules and NO itself can be released upon reductive 

decomposition of functional groups such as S-nitrosothiols (Figure 1; (Feelisch et al., 2002). 

The reaction of NO with metals to form nitrosyl or nitroso species is also an important step 

determining many of the functional effects of NO such as the activation of soluble guanylate 

cyclase (sGC) or inhibition of cytochrome c oxidase (Grisham et al., 1999). In addition, the 

nitrosation of thiols by reactive species derived from NO serves as a posttranslational 

modification that modulates protein function such as certain caspases (Foster et al., 2003).

An alternative source of NO is derived from the reduction of nitrite (NO2
−; Figure 1) that 

proceeds at low pH and under hypoxia (Zweier et al., 1995). The significance of this 

reaction is as an alternative source of NO at sites where NOS might be inhibited due to the 

lack of molecular oxygen but where hypoxic and acidic reduction of diet or 

pharmacologically-derived NO2
− is possible. Deoxyhemoglobin is an important site upon 

which NO2
− is reduced to NO, although the chemical pathway and mechanism by which NO 

may escape erythrocytes still need clarification (Huang et al., 2005). Whether non-

erythrocytic cells mediate hypoxic NO2
− reduction in the lung is also under investigation 

with multiple intracellular activities identified consisting of additional globins (Myoglobin 

(Rassaf et al., 2014), Neuroglobin (Tiso et al., 2011), and Cytoglobin (Li et al., 2012)) and 

molybdenum-containing proteins (xanthine dehydrogenase (Li et al., 2001), sulfite oxidase 

(Wang et al., 2015), aldehyde oxidase and mitochondria amidoxine reducing component 

(Sparacino-Watkins et al., 2014)) potentially contributing to this activity in the pulmonary 

vasculature.
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One of the most significant reactions of nitric oxide (NO) is its combination with superoxide 

(O2
. −) at a diffusion-limited rate (Figure 1; (Beckman et al., 1990)). The product of this 

reaction, peroxynitrite (ONOO−/ONOOH), is a one and two electron oxidant, which 

modifies DNA, proteins, lipids, and sugars by way of oxidation, nitration, and nitrosation 

(Beckman et al., 1990, Beckman et al., 1992, Gow et al., 1997). The biochemical reactivity 

of peroxynitrite in physiologically relevant settings may be dominated by its reaction with 

thiols and transition metals but also with excess carbon dioxide to yield a 

nitrosoperoxocarboxylate anion (ONOOCO2
−) that partially decomposes to nitrogen dioxide 

and the carbonate radical (Denicola et al., 1996). Under most conditions, peroxynitrite might 

not coexist with NO or O2
. − because superoxide dismutase and oxyhemoglobin insure 

limited availability of these molecules in excess of peroxynitrite. However, during conditions 

characterized by high NO synthase activity and multiple cellular sources of O2
. −, 

peroxynitrite-mediated reactions combined with those of excess NO or O2
. − may become 

important. The formation of peroxynitrite in vivo, inferred from the formation of stable 

footprints such as 3-nitrotyrosine, represents an important mediator of tissue injury and 

dysfunction that limits NO bioavailability (Beckman and Koppenol, 1996).

2.2 Nitric oxide signaling in pulmonary hypertension

The bioavailability and signaling of NO is decreased in experimental models and in patients 

with PH (Xue and Johns, 1995, Kharitonov et al., 1997, Fagan et al., 1999, Quinlan et al., 

2000). For example, Giaid and Saleh provided some evidence that the expression of eNOS 

was decreased in the vascular endothelium of pulmonary arteries in a cohort of patients with 

pulmonary hypertension with different grades of arteriopathy (Giaid and Saleh, 1995). The 

dysfunction is usually considered to be decreased vaso-protection including depleted 

vasodilatory, anti-migratory, and anti-proliferative functions. However, loss of eNOS is also 

associated with a decrease in muscularization of small pulmonary vessels during chronic 

hypoxia in the mouse due to a decrease in proliferative capacity (Quinlan et al., 2000). The 

underlying mechanism has been relatively well-studied in animal models and is usually 

considered to be multifactorial through changes in eNOS expression and uncoupling (Zhao 

et al., 2009), alteration in L-arginine metabolism (Block et al., 1995, Xu et al., 2004), and 

increased NO consumption through O2
. −. Although conflicting results exist regarding the 

levels of eNOS expression during PH, it is possible that – if increased - eNOS in the context 

of PH is uncoupled, meaning that a fraction of its activity is diverted towards the production 

of other reactive species such as O2
. −. Increased ROS production is associated with 

endothelial dysfunction and NADPH oxidase (NOX)-derived O2
. − limits NO production and 

downstream signaling through eNOS uncoupling (Landmesser et al., 2003). Overall, this 

provides conditions conducive to decrease NO bioavailability and increase oxidative and 

nitrative stress through the formation of peroxynitrite or metal-catalyzed nitration. 

Insufficient stimulation of sGC by NO reduces cGMP production and downstream effector 

activation such as cGMP-dependent protein kinase (PKG) (Zhao et al., 2009). In addition, 

downstream nitration or oxidation of target molecules such as PKG may lead to 

amplification of the inhibitory effect associated with NO inactivation (Zhao et al., 2009).
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2.3 Therapeutics based on direct targeting of cGMP and NO surrogates’ delivery

With a key role for the dysregulation of NO signaling in PH (including WHO Group 3 PH), 

therapeutic strategies aimed at restoring the NO/cGMP pathway have received increasing 

attention. A novel class of drugs that directly stimulates sGC independently of NO is now 

aggressively pursued for the treatment of PH. One such molecule, riociguat (Figure 2), has 

been approved for the treatment of pulmonary artery hypertension (PAH) and chronic 

thromboembolic pulmonary hypertension (CTEPH)(Wardle et al., 2016, Tsugu et al., 2016). 

Riociguat has also shown significant therapeutic effects in patients with other types of PH 

including interstitial lung disease PH and PH associated with chronic obstructive pulmonary 

disease (COPD) (Benza et al., 2016). The NO/cGMP pathway may also be targeted by 

inhibitors of phosphodiesterase type 5 (PDE-5) causing inhibition of the breakdown of 

cGMP by PDE-5. One such molecule, Tadalafil (Figure 2), has been shown to reduce 

clinical worsening and improve hemodynamic outcomes in patients with PAH and is use in 

the clinic in this specific setting (Galie et al., 2009).

A number of preclinical studies have also indicated the beneficial effect of providing an 

alternate source of NO in the form of pharmacological delivery of NO2
− or nitrate (NO3

−) to 

alleviate PH (Zuckerbraun et al., 2010, Baliga et al., 2012, Pankey et al., 2012). In the 

context of hypoxia-induced PH in the mouse, inhaled nebulized NO2
− inhibits and reverse 

pre-establish PH and high right ventricular pressure. In this case, the effect of NO2
− has 

been shown to be inhibited by a xanthine oxidase inhibitor or through diet-mediated 

inhibition of molybdenum-containing enzymes (Zuckerbraun et al., 2010). Dietary NO3
− 

(which can be reduced to NO2
−through the entero-salivary cycle) also reduced pulmonary 

vascular remodeling in mouse exposed to hypoxia for three weeks (Baliga et al., 2012). 

Interestingly, this effect required eNOS in addition to xanthine oxidase, suggesting a role for 

eNOS as a nitrite reductase. In a recent early phase II pilot study, Simon and coworkers have 

shown that inhaled NO2
− provides some hemodynamics improvement in a small group (n=6) 

of patients with PH due to lung disease or hypoxia, although these effects were less than 

those observed in patients with WHO Group 2 PH (Simon et al., 2016).

3. Reactive oxygen species and pulmonary hypertension

3.1 Significant sources of ROS

While signaling pathways centered on NO bioavailability are key therapeutic targets for the 

treatment of PH, the production of ROS is also an essential contributor to hypoxia-induced 

PH. In this case, cellular respiration is an important source of ROS (Waypa et al., 2016). 

Accordingly, ROS role in the development of PH is strongly suggested by studies showing 

profound alteration in mitochondrial structure and function in that context. Using human and 

rodent models, Ryan and colleagues found evidence of mitochondrial fragmentation (Ryan 

et al., 2013), which is associated with a decrease in the expression of mitofusin-2 (MFN2), a 

molecular regulator that promotes the fusion of mitochondria into long tubular structures. 

Also, PGC1α, a transcriptional activator of mitochondrial biogenesis was found to be 

downregulated in that context. Adenoviral overexpression of MFN2 increased mitochondrial 

fusion, decreased proliferation, lessened the severity of PH, and improved exercise capacity 

in the rodent model (Ryan et al., 2013). These results suggest that decreases in MFN2 and 

Jaitovich and Jourd’heuil Page 4

Adv Exp Med Biol. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PGC1α contribute to pulmonary vascular remodeling and provide indirect evidence of a 

potential role of mitochondrial-derived ROS in the pathophysiology of PH.

Although not completely elucidated in one single model, compelling evidence from different 

laboratories indicates that low oxygen stimulation leads to mitochondrial production of 

ROS, which serves as an activator of prolyl-4-hydroxylases which in turn induce activation 

of Hypoxia-inducible factor 1 (HIF-1), a necessary event that triggers vascular remodeling 

and narrowing of the pulmonary arteries (Figure 3). We present, in the following paragraphs, 

a concise review of the current evidence supporting this mechanism.

During hypoxia, mitochondria from vascular cells release superoxide (O2
. −) from complex 

III to the intermembrane space, where it is converted to hydrogen peroxide (H2O2) by 

superoxide dismutase (Thompson, 2016, Waypa et al., 2016). The H2O2 then enters the 

cytosol, where it activates multiple responses contributing to smooth muscle contraction and 

remodeling. The mechanism of hypoxia-driven ROS generation was first suspected using 

pulmonary artery cell homogenates, which suggested that superoxide generation increased 

during hypoxia in an effect that was inhibited by diphenylene iodonium, a flavoptrotein 

inhibitor of NADPH oxidase but not by the mitochondrial inhibitor myxothiazol, which 

blocks electron entry into complex III (Marshall et al., 1996). Chandel et al first 

demonstrated that mitochondrial ROS signals control gene transcription in hypoxia (Chandel 

et al., 1998). Specifically, using mitochondrial inhibitors, ρ0 cells lacking a functional 

electron transport chain (ETC), and ROS-sensitive fluorescent chemical probes, they showed 

that under hypoxia ETC is required for ROS-dependent stabilization of the HIF-1α 
transcription factor subunit (Chandel et al., 1998). Also, the same group found that even 

though anoxia is the most extreme form of hypoxia, these two stimulations operate 

differently on downstream signaling: the activation of HIF-1 under hypoxia requires 

mitochondrial ETC whereas, under anoxia, HIF-1 is activated without involvement of ETC 

(Schroedl et al., 2002).

The specific mechanisms linking hypoxia and ROS generation are not completely 

understood, but evidence indicates that they involve oxidation of complex III, which requires 

cytochrome c and leads to the formation of O2
. − that is later ejected to the intermembrane 

space due to electrical gradient. Indeed, when cytochrome c is absent, complex III remains 

fully reduced, which prevents ROS generation under hypoxia and are unable to stabilize 

HIF-1α (Mansfield et al., 2005). These findings implicate electron flux through complex III 

as a critical event in the detection of hypoxia in cells (Mansfield et al., 2005). Waypa et al. 

demonstrated that hypoxic pulmonary vasoconstriction required electron flux through 

complex III, and that increases in ROS generation were responsible for eliciting the hypoxic 

response (Waypa et al., 2010, Waypa et al., 2013). Specifically, these authors demonstrated 

that acute production of ROS during hypoxia pulmonary artery smooth muscle cells depends 

on the Rieske iron-sulfur protein subunit of complex III, as reflected by PH attenuation in 

animals with deletion of this gene using a Cre/loxP system (Waypa et al., 2013).

3.2 Signaling pathways associated with increased ROS in pulmonary hypertension

3.2.1 ROS cause HIF-1 activation—HIF-1 is a highly conserved transcription factor 

present in almost all cell types (Prabhakar and Semenza, 2012). It is tightly regulated by O2 
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availability, and modulates the expression of hundreds of genes. HIF-1 exists as a 

heterodimer, consisting of HIF-1α and HIF-1β subunits. HIF-1β is constitutively expressed, 

whereas HIF-1α is found at very low levels under normoxic conditions (Shimoda and 

Semenza, 2011). In this context, HIF-1α protein is ubiquitinated and degraded by the 

proteasomal pathway; however, acute exposure of pulmonary arterial smooth muscle cells 

(PASMCs) or endothelial cells (ECs) to hypoxia (1% O2) causes increased HIF-1α protein 

levels and HIF-1 DNA-binding activity. Thus, HIF-1α confers sensitivity and specificity for 

hypoxic induction of HIF-1 transcriptional activity (Prabhakar and Semenza, 2012, Shimoda 

and Semenza, 2011).

Under normoxia, HIF-1 is associated to von Hippel-Lindau protein (VHL), which recruits an 

E3-ubiquitin protein ligase Elongin 2 and 3, Cullin 2, and RBX1(Kamura et al., 2000, 

Maxwell et al., 1999). Binding of VHL depends on hydroxylation of HIF-1 proline-402 and 

564 in well-oxygenated cells (Ivan et al., 2001). Three prolyl-4-hydroxylase domain proteins 

(PHDs) that hydroxylate proline-402 and 564 in an O2-dependent manner are identified in 

mammalian cells (Ivan et al., 2002, Epstein et al., 2001). These proteins, known as PHD1, 

PHD2, and PHD3 are members of a superfamily of dioxygenases that contain Fe(II) in their 

catalytic center and utilize O2 and α-ketoglutarate as substrates. Reduction of Fe(III) to 

Fe(II) in the catalytic center by ascorbate is required for a subsequent catalytic cycle. The 

observed reduction in hydroxylase activity under hypoxic has been proposed to be due to 

substrate (O2) limitation (Epstein et al., 2001, Chua et al., 2010) and/or by an increase in 

mitochondrial production of ROS that may oxidize Fe(II) and inactivate the PHDs (Brunelle 

et al., 2005, Guzy et al., 2005, Mansfield et al., 2005). Thus, hypoxia can lead to PDHs 

deactivation and HIF-1 stabilization via a direct effect of either low oxygen, or also ROS on 

PDHs (Figure 3). Importantly, at least in the acute phase, the generation of ROS appears to 

be a necessary step in the process of PH under hypoxia (Waypa et al., 2013).

3.2.2 HIF-1 mediates hypoxia-driven pulmonary hypertension—Seminal work by 

Shimoda and coworkers (Shimoda et al., 2001) established the effects of chronic hypoxia 

(CH) on heterozygous mice lacking one copy of the HIF-1 gene (homozygous animals could 

not be used due to intrauterine lethality). Compared with wild-type control animals, 

heterozygous HIF-1a mice demonstrated impaired lung vascular remodeling in chronic 

hypoxia and attenuated RV hypertrophic responses (Shimoda et al., 2001, Kline et al., 2002, 

Yu et al., 1999, Shimoda et al., 2006). This was associated with lower level of vascular 

smooth muscle hypertrophy, attenuated up-regulation of transient potential receptor proteins 

and Na+/H+ exchanger-isoform 1, and failure to suppress the expression of plasma 

membrane K1 channels during CH (Shimoda et al., 2001). Recently, using a Cre/loxP 

system smooth muscle-specific conditional deletion of HIF-1, Ball et al demonstrated that 

HIF-1 is critical as a mediator of pulmonary arterial remodeling under hypoxia. 

Interestingly, they also found that loss of HIF-1 function in smooth muscle did not affect 

hypoxic cardiac remodeling (Ball et al., 2014); suggesting that the cardiac hypertrophy 

response is not directly coupled to the increase in pulmonary artery pressure (Figure 3). This 

last finding challenges the “hemodynamic dogma” that states that the right ventricular 

hypertrophy and eventual failure depend purely on pressure overload due to increase of 

pulmonary vascular resistance and suggests that ventricular and vascular remodeling are 
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distinct and somewhat independent processes. Similar challenges are emerging regarding the 

left ventricular remodeling in connection to systemic hypertension (Popov et al., 2014).

3.2.3 Mechanisms of HIF1-driven vascular wall remodeling—Chronic hypoxia 

induces functional and structural changes in the endothelial and smooth muscle cells, and 

fibroblasts that make up the intima, media, and adventitia of pulmonary arterial wall thus 

contributing to pulmonary hypertension (Morrell et al., 2009). The effect of hypoxia on 

vascular remodeling has been mostly studied in PASMC. Acute hypoxia leads to an increase 

in intracellular calcium [Ca2+]i that is reversible upon reoxygenation. In contrast, chronic 

hypoxia causes a sustained increase on [Ca2+]i which remains elevated even after return to 

normoxia (Shimoda et al., 2000). This effect is mediated by store-operated Ca2+ channels, 

which are activated by depletion of intracellular Ca2+ stores during chronic hypoxia (Wang 

et al., 2006). These channels are composed of transient receptor potential (TRP) proteins, 

which are under the control of HIF-1 (Wang et al., 2006). Indeed, infection with an 

adenovirus encoding a constitutively active form of HIF-1α increases TRPC1 and TRPC6 

expression under non-hypoxic conditions.

Hypoxia inhibits opening of voltage-gated K+ channels Kv1.5 and Kv2.1, which contributes 

to PASMC depolarization (Archer et al., 1998). The expression of these channels is also 

decreased in PASMCs subjected to chronic hypoxia in vivo or ex vivo (Reeve et al., 2001, 

Yuan et al., 1998), and these changes in gene expression are also HIF-1α dependent (Bonnet 

et al., 2006). In addition to increased [Ca2+]i, chronic hypoxia also results in increased 

intracellular pH (pHi) in PASMCs, an effect that is due to HIF-1-dependent expression of 

the sodium-hydrogen exchanger NHE1 (Shimoda et al., 2006). Increased [Ca2+]i and pHi 

contribute to the activation of signal transduction pathways that promote PASMC 

hypertrophy and hyperplasia, which leads to the medial thickening of pulmonary arterioles, 

which is the pathological hallmark of hypoxia-induced PAH. Indeed, exposure of WT but 

not Hif-1−/− mice to chronic hypoxia induces PASMC alkalinization and hypertrophy 

(Shimoda et al., 2006, Shimoda et al., 2001).

The demonstration that mice partially deficient in HIF-1α expression are protected against 

the development of PAH suggests that pharmacological inhibition of HIF-1 may be of 

therapeutic benefit in this clinical context. This hypothesis was tested by the daily 

administration of digoxin, a cardiac glycoside that has been used to treat congestive heart 

failure and cardiac arrhythmias for decades, which inhibits the synthesis of HIF-1α protein 

(Zhang et al., 2008). Treatment with digoxin attenuated the development of right ventricular 

hypertrophy and prevented the changes in pulmonary vascular [Ca2+]i and pHi, remodeling, 

and pressure that occur in mice exposed to chronic hypoxia (Abud et al., 2012).

The role of HIF-1 in the pathogenesis of PH is not restricted to hypoxia-induced PH. The 

spontaneous development of PAH in fawn-hooded rats is associated with increased HIF-1α 
expression, HIF-dependent reductions in K+ currents and Kv1.5 expression, increased PDK1 

expression, and a switch from oxidative to glycolytic metabolism in pulmonary artery 

smooth muscle cells (Bonnet et al., 2006). These metabolic changes appear to play a critical 

role in the pathogenesis of PAH because treatment of animals with dichloroacetate, an 

inhibitor of PDK1, leads to regression of PAH (Michelakis et al., 2002).
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4. Conclusion

Dysregulation in NO and ROS production have been established in the context of PH 

including hypoxia/disease-induced PH and there is now sufficient evidence to indicate that 

decreased NO bioavailability and increased mitochondrial-derived O2
.−/H2O2 production are 

central to the pathogenesis of PH. Whether these two arms of redox biology converge on 

common molecular pathways and pathologies is still debatable and will require additional 

investigation. What is clear is that the elucidation of the signaling pathways downstream of 

NO and ROS and their pathophysiological alterations will continue to provide a foundation 

for the rational design and clinical implementation of new therapies targeting PH.
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Fig. 1. Biological chemistry of nitric oxide relevant to pulmonary hypertension
Important sources of nitric oxide (NO) include nitric oxide synthase (NOS) activity and 

nitrite (NO2
−)-reduction under hypoxia and in acidic environments. NO reacts with 

superoxide (O2
. −) to form peroxynitrite (ONOO−). Superoxide may be derived from 

multiple sources including mitochondrial and NADPH oxidase (NOX) activities. 

Peroxynitrite - upon protonation or combination with carbon dioxide (CO2) – yields a 

number of free radicals, including nitrogen dioxide (.NO2), and the hydroxyl (.OH) and 

carbonate CO3
. −) radicals. NO reacts with metals such as iron (FeII) to form a metal-

nitrosyls (FeIINO) such as the one found in soluble guanylate cyclase. Nitric oxide also 

reacts with molecular oxygen to form nitrogen dioxide and dinitrogen trioxide (N2O3). All 

together these species may be involved in oxidative (such as thiol oxidation), nitrosation 

(thiol nitrosation, RSNO), and nitration (tyrosine nitration, NO2Tyr) reactions with 

biological targets. See Text for details.
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Fig. 2. Mechanism of action of NO in the vasculature and therapeutic targets
Nitric oxide (NO) is generated from the oxidation of L-arginine to L-citrulline by 

endothelium Nitric Oxide Synthase (eNOS). NO diffuses into target cells such as smooth 

muscle cells to bind and activate soluble guanylate cyclase (sGC), which in turn generates 

cyclic GMP (cGMP) from GTP to promote vasodilation, and inhibit cell migration and 

proliferation. The signal is turned off upon cGMP hydrolysis to GMP by phosphodiesterase 

5 (PDE5). Inhibition of this pathway is thought to contribute to the pathogenesis of 

pulmonary hypertension (PH). Increase NO biovailability through nitrite or nitrate delivery, 

stimulating sGC with Riociguat, or inhibiting PDE5 with Tadalafil all provides therapeutic 

means for the treatment of certain type of PH. See Text for details.

Jaitovich and Jourd’heuil Page 14

Adv Exp Med Biol. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Potential mechanisms of hypoxia-induced pulmonary hypertension
1: hypoxia causes cells to release superoxide (O2

.−) which is converted to hydrogen peroxide 

(H2O2). 2: Both low oxygen and ROS production cause a reduction in hydroxylase activity 

of PHDs. 3: Lower PHDs activity causes a reduction of HIF-1α proline-402 and proline-564 

hydroxylation, which leads to dissociation from VHL and stabilization of the transcriptional 

activity of HIF-1α. 4: Increase in the transcriptional activity of HIF-1α causes pulmonary 

vascular remodeling. 5: Increased pulmonary vascular resistance leads to right ventricle 
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failure. 6: Hypoxia could also contribute to right ventricle remodeling and failure 

independent of HIF-1α (see Ball et.al.).
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