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Abstract

Motivation: Many approaches have been proposed for the protein identification problem based on tandem mass spectrom-
etry (MS/MS) data. In these experiments, proteins are digested into peptides and the resulting peptide mixture is subjected
to mass spectrometry. Some interesting putative peptide features (peaks) are selected from the mass spectra. Following
that, the precursor ions undergo fragmentation and are analyzed by MS/MS. The process of identification of peptides from
the mass spectra and the constituent proteins in the sample is called protein identification from MS/MS data. There are
many two-step protein identification procedures, reviewed in the literature, which first attempt to identify the peptidesin a
separate process and then use these results to infer the proteins. However, in recent years, there have been attempts to
provide a one-step solution to protein identification, which simultaneously identifies the proteins and the peptides in the

sample.

Results: In this review, we briefly introduce the most popular two-step protein identification procedure, PeptideProphet
coupled with ProteinProphet. Following that, we describe the difficulties with two-step procedures and review some re-
cently introduced one-step protein/peptide identification procedures that do not suffer from these issues. The focus of this
review is on one-step procedures that are based on statistical likelihood-based models, but some discussion of other one-
step procedures is also included. We report comparative performances of one-step and two-step methods, which support
the overall superiorities of one-step procedures. We also cover some recent efforts to improve protein identification by

incorporating other molecular data along with MS/MS data.
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Introduction

Identification of sensitive biomarker proteins from solid tissues
and complex biological fluids such as saliva, urine, blood or
serum plays a significant role in early detection of complex dis-
eases such as cancer. Though mass spectrometry (MS) is one of
the most widely used platforms for the discovery of biomarker
proteins, there are several issues associated with protein

identification and inference through this technique. There has
been a lack of sufficient attention to determining proper statis-
tical methods used in analyzing the data obtained from an MS
experiment [1].

In a typical tandem mass spectrometry (MS/MS) experiment,
the first step is to digest the mixture of proteins into smaller
peptides, often by the enzyme trypsin. Each of these proteins
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Proteins: P,,P,,P;

P

l Protease digestion

Peptides: py, pz, P31, P4, Ps, Ps
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Figure 1. A cartoon explaining the protein identification process and the sources of errors from an MS/MS experiment (adapted from Shen et al. [11]). P1, P, and P are
parent proteins, which generates the peptides p;,p,,p;, P4, Ps and pg. The MS/MS spectra of the two peptides ps and p, incorrectly identify the peptides p, andp,,
resulting in the incorrect identifications of the proteins Py and Py. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

can be digested into more than one peptide. As a result, peptide
mixtures are usually more complex than protein mixtures. The
sample peptides are then ionized and subjected to MS.
Following that, the precursor ions undergo fragmentation and
are then analyzed by MS/MS. The mass-to-charge ratios (m/z) of
these smaller fragmented ion pieces and their relative abun-
dances (intensities) are recorded as MS/MS spectra. These
observed MS/MS spectra are matched against theoretical spec-
tra predicted from individual peptides from a protein database
using algorithms such as the SEQUEST scoring scheme [2] to
identify the associated peptides. This is called the database
search method. The peptides with the highest scores are con-
sidered as proper peptide identifications, which are further
used for protein identifications. Modifications to SEQUEST that
improve the speed of the process have been proposed in [3] and
[4]. Other popular database search programs include X!TANDEM
[5], Mascot [6], MS-Tag [7] and MS-GF+ [8, 9] available through
Percolator [10]. The overall steps of a typical MS/MS experiment
are illustrated in Figure 1. There are other methods of peptide
identifications such as de novo sequencing and hybrid
approaches.

Peptide and protein identifications from an MS/MS experi-
ment are highly error-prone owing to experimental errors and
lack of adequate search algorithms. In absence of proper filter-
ing, even 80-90% of identified peptides may be incorrect [12, 13].
However, in recent years, there have been significant improve-
ments in both of these areas. Several efforts have been made for
developing powerful scoring mechanisms to identify the pep-
tides accurately. These include scoring systems based on the
number of shared peaks [2], incorporating stochastic modeling
of the fragmentation process [14], the peak intensity [15], a
Bayesian approach [16], Mowse scores [6], modeling the distri-
bution of hits to the m/z values of a spectrum using the
Hypergeometric distribution [17, 18], the Poisson distribution
[17, 19] and regression models [20]. See Nesvizhskii et al. [21] for
a detailed account of peptide identification processes. Also see

[22] and [23] for other important reviews of two-step methods of
protein identification following peptide scoring. Despite these
diverse approaches, peptide and the subsequent protein identi-
fication is still not an easy task. This clearly indicates a need for
statistical evaluation of the peptide and protein inferences.

In this review, we first describe two-step protein identifica-
tion processes with a focus on the PeptideProphet and
ProteinProphet combination. Following that, we explain the po-
tential shortcomings of a two-step procedure. Next, we focus on
more recently developed one-step procedures, which attempt
to alleviate problems associated with two-step identification of
peptides and proteins. We include summaries of results from
analyses of various data sets in the literature, which compare
one or more of the one-step procedures with the two-step pro-
cedure based on PeptideProphet and ProteinProphet combin-
ation and demonstrate that the one-step procedures that
simultaneously identify the peptides and proteins generally
perform better. Finally, we review recent methods of protein
identification, which integrate data from other platforms out-
side the MS/MS experiment in an attempt to improve the per-
formance of methods based only on the MS/MS experiment.

Methods for protein identifications
Two-step processes

Several statistical two-step procedures have been proposed,
which first provide confidence to the peptide identifications fol-
lowed by confidence measures for protein identifications. These
measures include P-value or E-value [6, 17, 18, 24] or false dis-
covery rate (FDR) [25-30]. Among these, the most popular
method is PeptideProphet [28] coupled with ProteinProphet [29].
In the sequel, we will refer to this combined (two-step) proced-
ure as ProteinProphet. To our knowledge, ProteinProphet is a
highly regarded procedure in this field and the first protein
identification method that is probabilistically motivated. Thus,


http://bib.oxfordjournals.org/

264 | Sikdaretal.

ProteinProphet is a two-step process where peptides are identi-
fied first through PeptideProphet [28] and their corresponding
confidences are estimated. The second step involves the esti-
mation of probabilities for protein presence, assuming the as-
signments of the peptides to the observed spectra are correct.
PeptideProphet is based on the expectation-maximization (EM)
algorithm, which generates a probability-based mixture model
of correct and incorrect peptide identifications from the data.
The observed data, denoted by D, includes scores, number of
tryptic termini, number of missed cleavages and the mass dif-
ference of the observed precursor ion mass and the weight of
the theoretical peptide. This information, in the observed
data D, is used to separate the correct (denoted by '+') from the
incorrect (denoted by '—’) peptide assignments. The probability
of correct peptide assignment to a spectrum, given the data D,
is estimated using Bayes’ theorem:

~ pD@lp(+)
PCHD) = oD p(+) + pO)p()

where p(+) and p(—) are the proportions of correct and incor-
rect peptide assignments to an observed spectra in the popula-
tion, respectively. The probabilities that a peptide, assigned to a
spectrum, have information D among correctly and incorrectly
assigned peptides are denoted by p(D|+) and p(D|-), respect-
ively. It is to be noted that PeptideProphet assumes each peptide
to spectrum matches (PSM) for MS/MS data in the context of the
whole population of correct and incorrect PSMs. The other PSMs
in the data set that identify the same peptide sequence are not
taken into account. So, the statistical unit of posterior probabil-
ity of PSM and the peptide sequence is the same in
PeptideProphet. PeptideProphet calculates this posterior prob-
ability individually for each search engine output. Opposed to
that, procedures such as iProphet [31] uses the evidence from
multiple PSM database search engines and computes peptide-
based probability by introducing grouping variables such as
number of sibling searches, replicate spectra, sibling experi-
ments, sibling ions and sibling modifications. For a detailed de-
scription of the iProphet procedure, please refer to Figure 1 of
the above mentioned paper.

The identified peptides, along with their confidences from
PeptideProphet, are then further used in ProteinProphet to esti-
mate the protein confidences, assuming that the peptide as-
signments are correct. The probability that a protein is present
in the sample is estimated by

P=1-]] (1-maxp(+ID))

where i is the index for the peptide corresponding to the pro-
tein of interest and j is the index for the assignment of peptide
i to a spectrum. The probability that the j" assignment of the
it" peptide to a spectrum is correct is denoted by p(+\D}) and
the product in the expression for P is computed assuming the
independence of the accuracy of the assignments for all pep-
tides. Note that, while estimating the protein probabilities,
this method considers only the maximum assignment score
for each peptide instead of all assignment scores.
ProteinProphet also incorporates grouping information of all
assigned peptides according to their corresponding proteins in
the database, under the assumption that correct peptide as-
signments are more likely to correspond to ‘multihit’ proteins
than the incorrect peptide assignments. Applying iProphet
along with the initial PeptideProphet results produces

adjusted PSM probabilities at the unique peptide level, and
applying ProteinProphet on this modified PSM probabilities
with the additional adjustment of number of sibling peptides
gives the final protein probabilities. It has been shown in [31]
that the protein probabilities computed with the help of
iProphet are more accurate than the standard PeptideProphet/
ProteinProphet probabilities.

Although ProteinProphet is one of the most widely used
methods for protein identifications, it has certain issues that
need attention. Firstly, the fact that ProteinProphet considers
the maximum assignment score for each peptide while estimat-
ing the protein probabilities may be overoptimistic as an incor-
rect peptide may, by chance, have a high score if it is assigned
more than once. Also, in reality, the spectra are often subjected
to noise, which may lead to incorrect peptide identifications
and thus incorrect protein identifications. This problem with a
two-step process is clear from Figure 1. Here, there are three
parent proteins, namely, P1,P, and P3;, which generate the pep-
tides p1,p2.ps3,pa,ps and ps. The MS/MS spectra of the two pep-
tides ps and p; incorrectly identify the peptides px and py,
resulting in the incorrect identifications of the proteins Py
and Py. The situation is more complicated when there is a pres-
ence of degenerate peptides, that is, the peptides that are gener-
ated by more than one protein. Additionally, from Figure 1 it is
clear that if we know that peptide ps is present, then we know
that protein P, is present and it will increase the likelihood of
the presence of peptide ps. So, there is an indirect feedback
from peptide p; to ps. It is clear that knowing the presence/
absence of a peptide/protein influences the likelihood of the
presence/absence of other peptides/proteins. Thus, a two-step
process is inefficient in protein identifications in these situ-
ations, and construction of joint likelihood of peptides/proteins
and identifying the uncertainties in both peptides/proteins in
one step seems to be a logical step.

One-step processes

One-step methods involve simultaneous identification of which
proteins are present and which peptides are identified correctly
in a single step as opposed to the two-step process in
ProteinProphet. One-step models incorporate a feedback loop
between the proteins and their constituent peptides. The differ-
ence between a one-step process and a two-step process is
shown graphically in Figure 2. As evident from Figure 2, in a
two-step process there is no way of going back to update the
peptide list (probabilities) after obtaining the protein list (proba-
bilities). But, in a one-step process the peptide and protein lists
are updated simultaneously through the feedback loop. Hence,
unlike a two-step process, a one-step process can take into ac-
count the fact that the presence/absence of a peptide/protein
can influence the likelihood of the presence/absence of other
peptides/proteins.

In the current literature, there are only two published papers
on one-step methods incorporating rigorous statistical joint
likelihood models for the presence of proteins and peptides,
namely, the hierarchical statistical model (HSM) by Shen et al.
[11] and the nested mixture model (NMM) by Li et al. [32].
Additionally, our group is currently working on a one-step pro-
tein identification process using a Bayesian hierarchical model
(BHM) and we have received some encouraging initial results.
We include some of the results here.

There are other important one-step protein identification
procedures, which follow different methodologies. For ex-
ample, [33] proposes a two-dimensional target decoy method
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Figure 2. A cartoon showing the algorithms of a two-step process and a one-step process. In a two-step process, there is no way of going back to update the peptide list
(probabilities) after obtaining the protein list (probabilities). But, in a one-step process the peptide and protein lists are updated simultaneously.

called ProteinsFirst, which can control the FDR of protein and
peptide-to-spectrum match (PSM) levels simultaneously. They
modify the PSM score depending on the confidence of the pro-
tein identification score (feedback). This algorithm and other
such algorithms mentioned in [33] fall into the category of
‘protein-centric’ approaches. ProteinsFirst [33] provides com-
parative performances of ProteinsFirst with similar ‘protein-
centric’ methods. However, no comparison is provided with
ProteinProphet. Another approach is proposed in [34] using a
Barista model, which represents the protein identification
problem as a single optimization procedure of a tripartite
graph with three different layers corresponding to the spec-
trum, peptide and protein levels using machine learning tech-
niques. This method is compared with ProteinProphet at a
wide range of fixed FDR levels using six data sets; for each
data set, it identifies more true proteins than ProteinProphet
(Figure 2 of [34]). Like any supervised learning method, the
Barista model requires discrimination of training and test data
to avoid overfitting, so the choice of the training set for real
data may be a problem if suitable reference data is unavail-
able. Furthermore, a couple of methods [35, 36] have been pro-
posed, which consider feedback from high-confidence
proteins to the selection of peptides. The method proposed in
[35] considers an iterative process to compute peptide and pro-
tein probabilities simultaneously. Unlike the other one-step
methods described herein, it uses peptide confidence results

from PeptideProphet as input. The method outperforms
ProteinProphet in experimental results presented in [35].
However, this method may need more computational time
and cost compared with the other one-step methods, as the it-
eration stops only if the protein list converges. Also, the
method in [35] has not been tested on any real complex data
set, and the authors have advised against direct implementa-
tion of this method for practical purposes. The method in [36]
uses a feedback loop in a different way; it starts with peptide
identification results from database search mechanisms to get
an initial list of proteins, which in turn is used to derive a pep-
tide adjacency matrix. This adjacency matrix is used to com-
pute regularized scores of peptides, which are further used to
calculate peptide identification probabilities through a logistic
regression model. These peptide probabilities are then used to
update the protein list and consequently the adjacency matrix
between the peptides. Although the authors claimed that the
feedback loop converged to a stable list of proteins in a few
number of steps for the data they analyzed, no justification
has been given for the guarantee of convergence or estimate of
convergence time in general. Experimental results are pre-
sented in [36] to compare their proposed method with
ProteinProphet. Overall, the method from [36] has more cover-
age in protein identification and produces better results in
terms of identifying the number of true and false peptides/
proteins at a given level of false positive rate.
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The joint likelihood-based models of one-step protein iden-
tification are the main focus of this manuscript. As indicated
earlier, the above one-step methods [33-36] do not exactly fall
into the category of the joint likelihood modeling of the peptides
and proteins unlike [11] and [32]. The HSM by Shen et al. [11]
assumes that a protein can generate multiple peptides and a
peptide can be generated by multiple proteins. Using this inter-
dependence, HSM fits a hierarchical statistical model that con-
sists of four connected layers that models the uncertainty of the
identified peptides and proteins, given the peptide matching
scores for all the peptides from MS/MS data. The joint likelihood
of the data is then used to estimate the parameters of the model
and find the protein-identification probability through an
Empirical-Bayes [37] framework. To briefly describe the four
connected layers, the following notations are introduced: Y; is
an indicator (binary) variable denoting the presence (given
by Y; = 1) or absence (given by Y; = 0) status of the i protein. Z;
is an indicator variable denoting the presence (given by Z; = 1)
or absence (given by Z; = 0) status of the peptide j in the sam-
ple. Next, Wj, is another binary variable taking value 1 (if the k™
assignment of peptide j is correct) or 0O (otherwise), with Sj, as
the corresponding matching score. Also, N is denoted as the
number of proteins with at least one peptide hit and M as the
number of peptides assigned to at least one spectrum. These
notations are used to define the following marginal/conditional
models. In the first layer, the marginal distribution of Y; is
assumed to be Bernoulli(p), with p being the proportion of truly
identified proteins. The second layer consists of the conditional
distribution of Z;, given Y = {Y;}, which is denoted as [Z]Y].
Given Z, W and Y are assumed to be independent. So, the con-
ditional distribution of W, given Z is considered in the third
layer, denoted by [Wj,|Z;]. The fourth layer consists of the condi-
tional probability density of scores S, given W, denoted
as [Sj|Wj]. The likelihood of the presence of protein is also af-
fected by the number of peptide hits involved. This fact leads to
the modeling of the number of peptide hits through a binary
random variable V; for protein i, indicating whether the number
of peptide hits is beyond a threshold. The conditional distribu-
tion of V;, given Yj, is denoted by [V;|Y;]. Finally, the joint likeli-
hood is obtained by integrating all the marginal and conditional
models and is given by:

N N M M T
( [Yi]> (H[WW) (H[%‘M) ( H[ij\zj][sjklek]>
i1 i1 1 1 ket

Here, [] denotes the distribution (density/probability) of the
variable involved. HSM uses the EM algorithm to estimate the
parameters involved in the joint likelihood. So, if 0 denotes
the vector containing all the model parameters, then the
confidences of peptides and proteins are estimated by Pr[Z; = 1|
S,V;0] and Pr[Y; = 1|S, V; 0], respectively.

The NMM [32] considers the nested structure owing to the
fact that there is a subsequence relationship between lower-
level elements (peptides) and higher-level elements (pro-
teins), whereas the lower-level elements (peptides) are the
ones that are usually observed. NMM incorporates the evi-
dence feedback from proteins to peptides, as in HSM. This fea-
ture helps in the distinction of correctly identified peptides
with low scores from incorrectly identified peptides with high
scores. To describe the model, the following notations are
introduced: Ty is an indicator variable taking value 1 (or 0) if
the k" protein is present (or absent) in the sample. P, ; s are
also indicator variables taking values 1 or 0 depending on

whether the peptide i on protein k is correctly assigned.
Assuming that there are N protein identifications, = is
defined as Pr(Ty =j) where j can be 0 or 1 and k=1,...,N.
Also, it is assumed that there are n, peptide identifications
corresponding to protein k, along with a score vec-
tor Xp = (Xg1,....Xgn, ). NMM assumes that given the protein
indicators, the peptide indicators are independent and identi-
cally distributed. Also, it is assumed that if the protein is ab-
sent in the sample, all its constituent peptides are incorrectly
identified, while, if a protein is present, some of its constitu-
ent peptides may be correctly identified. NMM also models the
number of peptide hits to a protein and scores for identified
peptides. Based on all the assumptions, the joint likelihood
for the proposed NMM is given by

—=

[P(Tre = O) Xk M, The = O] [nge|Tie = O] + P(Tie = 1)[Xe [N, Tre = 1][1g|Tie = 1]]

~
Il
-

As before, [] denotes the distribution (density/probability) of
the variable involved. Let y denote the vector containing all of
the model parameters. Then y is estimated by maximizing the
likelihood using the EM algorithm, and the estimated param-
eters are used to obtain the confidences of peptide and protein
identifications.

Although HSM and NMM both model the uncertainties of
peptides and proteins simultaneously, these two methods differ
in several aspects. HSM handles the issue of degeneracy (when
a peptide is generated by multiple proteins or a protein gener-
ates multiple peptides) by assuming that a peptide will be pre-
sent in the sample, provided at least one of the proteins
containing that peptide generates it, and by assuming that the
generation of the peptides are independent events. But the
NMM admittedly did not account for degeneracy, which is an
important consideration for estimating the protein confidences,
especially, in high-level organisms. There are many other subtle
differences in the assumptions of the two models, which we
skip for the brevity of this review.

In our full Bayesian approach (BHM), we consider the fact
that the proteins in the same biological pathway or in the same
subcellular locations may not be independent. But both [11] and
[32] assume independence of the proteins in the sample. In
BHM, we incorporate the prior information by grouping func-
tionally related proteins. Moreover, both [11] and [32] use the
EM algorithm for the estimation of the peptide and protein con-
fidences from the joint likelihood, which does not have any
guarantee of convergence. In the BHM, the peptides and pro-
teins are modeled simultaneously in the joint likelihood, and
full posterior inference is carried out by applying a Gibbs sam-
pling scheme.

Evaluations of HSM, NMM and BHM

These three models fall into the same category of statistical
modeling and so they are collectively evaluated in this section.
A comparison between the two-step process ProteinProphet
and one-step processes (HSM and NMM) is given in [32], by
applying all the methods on a standard protein mixture [38].
This data set consists of MS/MS spectra generated from a sam-
ple of stand-alone peptides and trypsin-digested proteins.
SEQUEST is used to match the generated MS/MS spectra against
a database containing both the sample peptides/proteins and
proteins from Shewanella oneidensis as a decoy data set. A com-
parison between the empirical FDR and the estimated FDR at
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Figure 3. Comparative performances of ProteinProphet, PeptideProphet, HSM
and NMM based on FDR estimates for peptide identifications using a standard
protein mixture (adapted from Li et al. [32]). The solid diagonal line represents a
perfect method. A colour version of this figure is available at BIB online: http:/
bib.oxfordjournals.org.
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Figure 4. Comparisons among ProteinProphet, PeptideProphet, HSM and NMM
using a standard protein mixture, based on ROC curves for peptide identifica-
tions (adapted from Li et al. [32]). A colour version of this figure is available at BIB
online: http://bib.oxfordjournals.org.

the peptide level, using all the methods, is shown in Figure 3. It
should be noted that for PeptideProphet, FDR refers to the FDR
of peptide identification, whereas for the rest it refers to the
FDR of protein identification. As seen from this figure,
PeptideProphet, ProteinProphet and HSM underestimate the
FDR at lower values of the FDR, whereas NMM is conservative in
estimating the FDR in the entire range.

Figure 4 compares the discriminating powers of all the
methods at the peptide level through the receiver operating
characteristic (ROC) curves using the same data. It can be seen
from Figure 4 that at a given level of specificity, the one-step
processes (HSM and NMM) have higher sensitivity compared
with that of the two-step process ProteinProphet, with NMM
showing the maximum discriminating power. Thus, overall,
these figures show that both the one-step processes are per-
forming better than ProteinProphet in terms of peptide identifi-
cations for these data.

As we are currently working on the full Bayesian model
(BHM), we compared the performances of HSM and NMM with
BHM using a yeast proteomics experiment where the true pro-
teins are assumed to be known. The spectra scores of the yeast
peptide fragments are obtained from a QSTAR mass spectrom-
eter as done in [39]. The generated MS/MS spectra are matched,
using SEQUEST, against a combined search database that
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Figure 5. Comparisons among BHM, NMM and HSM using a ‘Yeast’ proteomics
experiment. The number of true detected proteins against false positives is plot-
ted at a fixed posterior threshold. A colour version of this figure is available at
BIB online: http://bib.oxfordjournals.org.
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Figure 6. Comparisons among BHM, NMM and ProteinProphet using H. influenzae
data. The number of true detected proteins against false positives is plotted at a
given posterior threshold. A colour version of this figure is available at BIB
online: http://bib.oxfordjournals.org.

contains both yeast proteins and proteins from Caenorhabditis
elegans as a decoy data set. The number of true detected pro-
teins against false positives is plotted at a fixed posterior
threshold for the three one-step methods, which is shown in
Figure 5. It is evident from Figure 5 that BHM picks up more true
positives than HSM and NMM at each fixed number of false
positives. Thus, a full Bayesian approach appears to perform
better than the other two one-step processes in identifying the
proteins from MS/MS data if we allow the number of false posi-
tives to go beyond eight.

We have also analyzed one more data set of Haemophilus
influenzae (Hinf_Hum) data originally analyzed in [29] and com-
pared the performances of NMM, BHM and ProteinProphet in
Figure 6. Overall, BHM in this case performs better than
ProteinProphet and NMM.
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Integration of other platforms

Protein identification methods described so far only use MS/MS
data and database search. Recently, efforts have been made to
improve protein identification using additional data outside the
MS/MS experiment. The method proposed by Shanmugan et al.
[40] uses external information [RNA-seq transcript abundances
and/or Global Proteome Machine Database (GPMDB) [41] identi-
fication frequencies] to adjust the estimated protein identifica-
tion probabilities via Bayes’ theorem. Specifically, positive
protein identification is made when the corresponding probabil-
ity exceeds a specified FDR threshold; the FDRs are estimated
using a target-decoy approach [42] with reverse decoy
sequences.

Some other information used for protein identification in
addition to just MS/MS data are microarray data [43], protein—
protein interaction network data [44], gene functional network
data [45] and RNA-seq abundance information [46]. This add-
itional information is especially useful for samples with low to
moderate proteome coverage. The values of the external vari-
ables for the decoy proteins must be carefully simulated from
the distribution of proteins with lengths similar to the decoy
protein, and conditional probabilities of bins of possible values
for the external variable are computed, given the type of protein
(decoy or forward identification). This method was applied to
real MS/MS data from a human prostate cancer cell line VCaP
[47], which included RNA-seq data obtained from the same lab
as well as from MS/MS data on a human embryonic kidney cell
line HEK?293 [48, 49], which included RNA-seq data from a differ-
ent source [50]. When applied to each full data set, a large num-
ber of positive protein identifications were obtained at 1% FDR,
so subsets were sampled to assess the performance of the
method under various levels of proteome coverage. It was found
that the method is most effective at improving the percentage
of positive protein identifications when there is low to moder-
ate proteomic coverage. Each MS/MS data set was also analyzed
with GPMDB frequencies instead of with RNA-seq abundances,
and similar results were obtained, demonstrating that the
method can be applied in the absence of matching RNA-seq
data. In summary, including additional information from exter-
nal sources along with the traditional protein identification pro-
cess using MS/MS data can improve the sensitivity of the
process especially for the low to medium coverage proteins.

Conclusion

This review summarizes the recent improvements on protein
identification from MS/MS data. In particular, we promote the
idea of using one-step protein identification. We echo the same
sentiment as [34] that peptide- and protein-level tasks are co-
operative and the optimal identification solution has to be
made using both peptide- and protein-level information simul-
taneously. We provide performance comparisons of one-step
methods with the best two-step procedure, ProteinProphet,
when available. The Barista model [34] clearly demonstrates su-
periority over ProteinProphet in all the six data sets that they
had analyzed. The other three one-step procedures with joint
likelihood modeling ([11, 32] and work in progress in BHM) vary
in terms of model complexities such as incorporation of degen-
eracies and dependencies of proteins and peptides. This partly
explains why the performance of any one of them is not always
uniformly better than the other two. In many situations they
perform better than ProteinProphet (Fig 3-6). However, it really
depends on the tuning parameters of the models and the

complexity of the data set. We anticipate that these one-step
models can be improved further to make them uniformly better
than the two-step procedures. Additionally, incorporation of
data from other platforms also will improve the task of protein
identification. Generally speaking, availability of more and
more complex real and simulated protein-mixture data and
transparent software will lead to progressively accurate protein
identification procedures using MS/MS data. We hope that this
review will inspire other researchers to delve into this area of
proteomics research for better protein identification from com-
plex mixtures of proteins using MS/MS experiments.

Key Points

* Protein identification from MS/MS data is still a fertile
area of research.

* One-step protein-identification processes generally
perform better than two-step processes.

* Incorporating additional molecular information along
with the MS/MS data may provide better protein
identification.
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