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Abstract

The precision of estimates in many statistical models can be expressed by a confidence interval 

(CI). CIs based on standard errors (SE) are common in practice, but likelihood-based CIs are 

worth consideration. In comparison to SEs, likelihood-based CIs are typically more difficult to 

estimate, but are more robust to model (re)parameterization. In latent variable models, some 

parameters may take on values outside of their interpretable range. Therefore, it is desirable to 

place a bound to keep the parameter interpretable. For likelihood-based CI, a correction is needed 

when a parameter is bounded. The correction is known (Wu & Neale, 2012), but is difficult to 

implement in practice. A novel automatic implementation that is simple for an applied researcher 

to use is introduced. A simulation study demonstrates the accuracy of the correction using a latent 

growth curve model and the method is illustrated with a multilevel confirmatory factor analysis.
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Introduction

Once a model is fit to data, it is routine practice to examine the precision of the parameter 

estimates. An approximation of this information is found in the parameter covariance matrix 

V, and in summary form, as standard errors,  (Wald, 1943). Standard errors 

(SE) can be used for null hypothesis significance testing, but the information is better 

communicated by confidence intervals (CIs; Wilkinson, 1999), which may not be 
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symmetric. A CI is constructed by finding the set of values that cannot be rejected by the 

test; the exact method depends on the particular significance test.

SE-based CIs are widely used and easy to compute, often simply the parameter estimate 

±1.96 times the SE. However, SE-based CIs are not parameterization-invariant. For example, 

the upper and lower limits of a CI constructed for a variance are usually not the squares of 

those of a CI for the corresponding standard deviation (Neale, Heath, Hewitt, Eaves, & 

Fulker, 1989). The accuracy of SE-based CIs depends on whether the Wald statistic is close 

to normally distributed. For example, Fisher’s z transformation of a correlation usually 

requires a smaller sample size to achieve asymptotic normality than does the original 

correlation parameter. Hence, the CI coverage of the z transformed value is usually closer to 

the nominal level than the CI coverage of the original value.

To avoid the problem of parameterization sensitivity, Neale and Miller (1997) implemented 

a likelihood-based CI constructed by inverting the likelihood ratio test (LRT; Wilks, 1938). 

Since the LRT is parametrization-invariant, the resultant CIs are as well. Likelihood-based 

CIs are accurate in many cases, but do not always perform well near certain parameter space 

boundaries.

Natural and attainable boundaries can be distinguished. A natural boundary is a boundary of 

the model distribution beyond which the distribution is invalid or degenerate. For example, a 

binomial parameter p outside the interval (0, 1) does not define a valid binomial distribution, 

and similarly, a population correlation between observed variables cannot be outside of the 

interval (−1, 1). In contrast, an attainable boundary separates the interpretable part of a 

distribution from the uninterpretable part. For example, in factor analysis, an uninterpretable 

correlation (e.g., |r| > 1) between latent variables may still generate a valid positive-definite 

expected multivariate normal distribution given sufficiently large variable-specific residual 

variances. The values ±1 are attainable boundaries of such a latent correlation parameter.

Figure 1 exhibits a latent growth curve model. In this model, the variance of the slope has a 

natural boundary near −0.1 instead of 0. Since negative variances are not interpretable in this 

context, it is desirable to place an attainable lower bound at 0. An adjustment has been 

developed to produce likelihood-based CIs for this situation (Wu & Neale, 2012). The 

adjusted CIs are exhibited in Figure 2. Formerly, bound-adjusted CIs were not trivial to 

compute. A decision tree is involved and, in some cases, the original model needs to be 

augmented with 3 non-linear constraints and carefully optimized to obtain the adjusted 

limits. Here we report that OpenMx v2.7 and later versions automatically compute bound-

adjusted CIs of parameters when either an upper or lower bound is set. OpenMx (Neale et 

al., 2016) is a free and open-source software originally designed for structural equation 

modeling (SEM). OpenMx runs inside the R statistical programming environment (R Core 

Team, 2014) in most popular computer operating systems.

Likelihood-based CIs

We describe issues common to likelihood-based CIs and then describe the implementation of 

bound adjusted CIs. Let ξ = (θ, ζ)′ be the parameter vector in a model where θ is the single 
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parameter of interest and ζ is the set of other parameters. Let f(ξ) be the −2 log likelihood 

(deviance) function of our model and  the maximum likelihood estimates (MLE). For a 

single parameter, under certain regularity conditions (Steiger, Shapiro, & Browne, 1985), the 

difference between model deviance is χ2 distributed with a single degree of freedom. Let za 

be the 1 − a quantile of the standard normal distribution such that . Given 

false positive rate α, a 100(1 − α)% CI of θ is the set of all test values such that the 

statistical test does not reject the null hypothesis at level α.

Profile likelihood confidence intervals have only one theoretical definition, but there are at 

least four distinct ways to communicate how to locate these limits to an optimization 

algorithm. Throughout, we will take the point of view of deviance minimization even though 

the MLE is customarily regarded as the likelihood maximum. Two equivalent formulations 

to find the lower limit of θ are:

(1)

(2)

These two search regions are described geometrically in Figure 3. In addition to a choice of 

geometry, there is a choice in how to communicate the constraints to an optimizer. Some 

optimization algorithms are specially tailored to handle non-linear constraints (e.g., Birgin & 

Martínez, 2008; Luenberger & Ye, 2008). However, constraints can also be expressed as the 

sum of a fit function and penalty term. The unconstrained functions are typically of the 

form,

(3)

(4)

These composite functions are minimized as a whole. Equations 3 and 4 correspond to 

Equations 1 and 2, respectively.

The concern with the unconstrained formulations is that units of θ are equated with the 

deviance units of the penalty function. Due to this fungibility, the optimizer will accept some 

constraint violation if the change in θ is large relative to the change in the penalty function. 

The constrained version of the problem provides to the optimizer more information so it can 

potentially do a better job. In addition, the constrained version often has no performance 

disadvantage. When searching for limits of a parameter, evaluation of the two versions of the 
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problem take the same amount of time because the gradient of the fit function is known in 

the constrained version of the problem.

The MLE is identified as long as there is a global minimum deviance. Likelihood-based 

confidence intervals require a much stronger condition for identification: that deviance 

values within  units of the MLE  are close to the MLE. Figure 4 exhibits the 

problem geometrically. The analyst ought to examine the parameter vector at the lower 

bound ξL and decide whether it looks reasonable. One way to check the CI is to compare it 

to the Wald SE. If a CI interval is much wider or narrower than the Wald SE then additional 

scrutiny is warranted. An important CI diagnostic is to examine the value of the other 

parameters ζ at the limits of the parameter of interest θ. This information is readily available 

from OpenMx using the “verbose=TRUE” option to the summary function.

For example, consider the model in Figure 1 and with  set to 0.03 and sample size 150. 

Assume there is no sampling error; we set the covariance data equal to the model implied 

distribution. If we find CIs for  then output from the summary function includes:

##  parameter value side fit residual vari vars    method

## 1  vars 0.066 upper 1057  0.96 1.00 0.066 neale-miller-1997

## 2  vars 0.005 lower 1056  1.05 0.98 0.005  wu-neale-2012

## diagnostic statusCode

## 1  success   OK

## 2  success   OK

The first column parameter gives the parameter name vars. This corresponds to . The 

second column value gives the limits. The column side indicates whether it is an upper or 

lower limit of the CI. The column fit is the deviance value at the CI. For unbounded 

parameters, the fit should be the MLE plus . The next three columns (residual, vari, and 

vars) give the parameter values at the CI limit. The method column describes which 

algorithm was used. If the algorithm fails, the diagnostic and statusCode columns give some 

idea of why.

If CIs seem suspicious then it is important to check whether the model is locally identified 

and search for a better deviance minima. To address these needs, OpenMx offers 

mxCheckIdentification (in part based on Bollen & Bauldry, 2010) and mxTryHard, 

respectively. The mxTryHard algorithm repeatedly perturbs starting values and optimizes 

the model in an effort to find the best minimum. For models that include ordinal data, a 

variation, mxTryHardOrdinal, is available.

Implementation

OpenMx implements likelihood-based confidence intervals for a parameter with an 

attainable upper or lower bound (i.e., Wu & Neale, 2012, Section 3.3). For the purpose of 

exposition, instead of regarding the confidence limits as upper and lower, the limits will be 

Pritikin et al. Page 4

Struct Equ Modeling. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identified by their relative closeness to the attainable parameter bound θb. The algorithm for 

the far limit θF then the near limit θN will be described. Whether θ or −θ is minimized 

depends on whether the far or near limit corresponds to the upper or lower limit. This 

algorithm can commence after model optimization has completed. Let  be the MLE 

obtained during model optimization. Be aware that determination of the CIs may require 

additional optimizations. The MLE of these optimizations will be notated with a hat and 

suitable subscript to distinguish them from . Let ε > 0 be some small threshold that will be 

used to compare whether values are close enough to be considered equal.

For the far limit θF, if  then the parameter bound is irrelevant and the standard 

Neale and Miller (1997) algorithm is used. Otherwise, the MLE with the attainable bound on 

the parameter removed is found, . Recall that the bound θb is attainable, and likely, 

values somewhat beyond the bound define a valid model distribution. For example, if θ is a 

latent variance with an attainable bound at zero (θb = 0) then  may obtain some small 

negative value. Once  is found, the following optimization is performed,

(5)

(6)

(7)

(8)

where

(9)

(10)

and Φ is the standard normal cumulative distribution function.
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If  then the near limit θN is immediately set at the parameter bound θb. 

Otherwise, the MLE with the parameter fixed to its bound is found, . For example, if 

the parameter is a latent variance with a lower bound θb at 0 then an optimization is 

performed to obtain the MLE  with θ fixed at 0 and ζ free. Let d0 be the square root of the 

distance between the MLE at the parameter bound and the original MLE, . 

If d0 < zα then θN is set to the parameter bound and we are done. If  then the 

parameter bound is irrelevant and the standard Neale and Miller (1997) algorithm is used. 

Otherwise, with  and dU ≡ min(d0, z0.5α) the following optimization is 

performed,

(11)

(12)

(13)

where

(14)

and Φ is the standard normal cumulative distribution function.

Establishing both the near and far limit can involve one or more optimizations. If an 

optimization terminates with violated constraints then optimization is re-attempted with 

perturbed starting values. Optimization failure is not uncommon, but is often resolved by 

slightly different starting values (e.g., Shanno, 1985).

Estimation of bound-adjusted far and near limits involve three non-linear constraints. While 

it is possible to formulate these searches as unconstrained problems, penalty fungibility 

seems to result in frequent failures to satisfy constraints. Constrained optimization seems to 

perform better. At the time of writing, OpenMx offers three different optimizers: NPSOL 

(Gill, Murray, Saunders, & Wright, 1986), SLSQP (Johnson, n.d.; Kraft, 1994), and 

CSOLNP (Zahery, Gillespie, & Neale, 2014). Both NPSOL and CSOLNP have difficulty 

with constrained optimization. NPSOL is proprietary and is unlikely to be fixed. CSOLNP is 
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in development. In contrast, SLSQP performs well on constrained problems and was used 

exclusively throughout this report. SLSQP uses a Broyden family algorithm with a gradient 

approximated by finite differences (Gilbert & Varadhan, 2012; Richardson, 1911).

Simulation study

In spite of the possible peril of treacherously flat deviance functions (e.g., Figure 4) and 

constrained optimization difficulties, adjusted CIs often work well. A simulation study was 

conducted using a latent growth model (Figure 1) with and without the attainable lower 

bound at zero and data generated with . For each 

condition, 25 thousand replications were completed. For each replication, data were 

generated, the model fit to the data, and 95% CIs found (false positive rate α = .05). All 

optimizations converged. The percentages of CIs that did not cover the true  are 

exhibited in Table 1.

Example

CIs were estimated for a multilevel confirmatory factor analysis (CFA) of affect. Sixty two 

undergraduate students reported on current affect three times per day for seven days using a 

smartphone-based app. Affect was assessed using the nine item scale developed by Diener 

and Emmons (1984). Participants completed the study for course credit; the study was 

approved by the institutional review board of St. Joseph’s University, where the data were 

collected. Separate latent factors were assigned to positive (e.g., “pleased”) and negative 

affect items (e.g., “frustrated”). Additionally, a variance was included to account for 

common measurement error or the variance with respect to time (Maydeu-Olivares & 

Coffman, 2006). CFA models may use a multilevel structure to account for nesting of 

observations within person. The present analysis focused on the intraindividual affect. For 

this reason, interindividual (i.e. level 2) variance in affect was fit with a saturated model and 

was not interpreted. Model fit for intraindividual variation in affect (i.e. level 1) was 

estimated using partially saturated model fit indices (Ryu & West, 2009).

Participants showed high compliance with the method; 59 participants (95.16%) completed 

at least 80% of the measurement occasions. The 2-factor model with a random intercept 

showed reasonable fit, χ2(25) = 137.68, p < 0.0001, RMSEAlevel1 = 0.06. Path estimates 

indicated the appropriateness of a two factor solution for intraindividual variation in affect 

(see Figure 5). Likelihood-based CIs were computed for the variance with respect to time 

and intraindividual correlation between negative and positive affect both with and without 

bounds. For interpretability, a variance needs an attainable lower bound at 0 and a 

correlation needs attainable bounds at ±1. However, OpenMx needs to know whether to 

adjust the CI with respect to the upper or lower bound. Since the estimate of the correlation 

was negative, the attainable lower bound at −1 was retained and the attainable upper bound 

at 1 was omitted. CIs with and without bounds are presented in Table 2. With the adjustment 

for attainable bounds, the lower CI of the variance with respect to time was very close to but 

statistically different from 0.

Pritikin et al. Page 7

Struct Equ Modeling. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The pros and cons of likelihood-based CIs in comparison to Wald-based CIs are reviewed 

with a particular emphasis on a recent refinement to likelihood-based CIs that make an 

adjustment for the presence of an upper or lower bound. Two kinds of parameter bounds can 

be distinguished: natural and attainable. A natural boundary is a boundary of the model 

distribution beyond which the distribution is invalid or degenerate. For example, a 

correlation between manifest variables has natural boundaries (−1, 1). In contrast, attainable 

boundaries separate the interpretable part of a distribution from the uninterpretable part. For 

example, a latent correlation may have natural boundaries at absolute values greater than 1. 

However, attainable boundaries of (−1, 1) are desirable for interpretability. It must be 

stressed that the attainable bound adjustment for likelihood-based CIs (Wu & Neale, 2012) 

is only applicable when the boundary of concern is actually attainable and not a natural 

boundary.

OpenMx, a free and open-source software originally designed for structural equation 

modeling, has implemented likelihood-based CIs since version 1.0 and recently added 

automatic support for the attainable boundary adjustment. While the theoretical definition of 

CIs is neat and tidy, a number of implementation decisions influence performance. The 

applied analyst is relieved from the need to attend to these details by our novel, fully 

automatic implementation. Given current tools, the CI problem seems best formulated with 

constrained optimization using OpenMx’s SLSQP optimizer. Once CIs are estimated, a 

number of diagnostic should be taken into account. Likelihood-based CI widths should be 

compared to Wald-based CI widths. When CIs are suspect, the model can be checked for 

local identification, the likelihood space searched for better minima, and the other 

parameters at the CI limits inspected.

At the time of writing, OpenMx uses finite differences to approximate the gradient of the 

deviance function during optimization. The finite differences algorithm is easy to 

implement, but is not as accurate as analytic derivatives or automatic differentiation (e.g. 

Griewank, 1989). It seems likely that optimization could be performed more quickly and 

with greater accuracy if higher accuracy gradients were available.

The boundary adjusted CI procedure is only valid when the parameter of interest is the only 

one close to a boundary. Since the sampling distributions of the LRT statistics are affected 

by boundary conditions of all parameters, the proposed CIs may not produce desired 

coverage if a parameter not being considered is close to its boundary or the parameter of 

interest is subject to additional boundary conditions. However, in such cases, it is still 

advisable to use the proposed adjustments instead of a CI that neglects all boundary 

conditions. This is because the current approach still includes partial boundary information 

of the parameter space in such cases and is expected to produce CIs whose coverage 

probabilities are closer to the nominal ones (Wu & Neale, 2012). Unfortunately, it appears 

difficult to generalize the boundary adjustment to more complex cases. For example, similar 

adjustments for a bivariate ACE model are drastically more complex (Wu & Neale, 2013).
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To conduct inference, likelihood-based CIs are an important tool. Applied researchers often 

do not have time to carefully program an intricate adjustment for parameters with bounds. 

Our novel, fully automatic implementation makes more precise inference available to 

applied researchers in a manner that is easy for them to enjoy.
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Figure 1. 
Latent growth curve model used to illustrate the confidence interval adjustment when a 

lower bound of 0 is placed on . The natural lower bound of  is near −0.1. 

Simulated values are shown. Indicator residual and latent variances were freely estimated. 

The intercept-slope covariance was fixed at zero and not estimated.
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Figure 2. 

Adjusted CI of  (shaded) with unadjusted CI indicated by dashed lines. The model used 

is shown in Figure 1 with a sample size of 150. Only  is manipulated. The unadjusted 

CIs do not use a lower bound and extend below the figure. The adjusted CIs narrow from 

0.025 to 0.05, and smoothly transition from a two-sided to one-sided interval from 0 to 

−0.05.
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Figure 3. 

Search region for upper θU and lower θL limits of . An equality constraint (Equation 1) 

guides the optimizer to search on the θL↔θU line segment. An inequality constraint 

(Equation 2) guides the optimizer to search in the region bounded below by f and above by 

the θL ↔ θU line segment. Both formulations of the problem are equivalent, but may obtain 

somewhat different results depending on the optimization algorithm.
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Figure 4. 
More than one point can satisfy the lower bound θL in a sufficiently flat deviance space. The 

lowest lower bound can be much further away from  than might be expected from its Wald 

standard error.
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Figure 5. 
Lower level of a 2-level confirmatory factor analysis. RI accounts for common measurement 

error or the variance with respect to time. Variances NA and PA are fixed to 1. Upper level 

(not shown) is a fully saturated covariance matrix of the manifest variables.
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Table 1

Percentage chance that the true  is outside the confidence limits with false positive rate α set to 5%. 

These results represent 25 thousand Monte Carlo replications.

lower upper total

0.0 2.364 2.840 5.204

unadjusted 0.3 2.248 2.672 4.920

0.6 2.244 2.696 4.940

0.0 4.780 0.000 4.780

adjusted 0.3 2.248 2.672 4.920

0.6 2.244 2.696 4.940
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