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Abstract
Animals are routinely colonized by microorganisms. Despite many studies documenting the microbial taxa associated with
animals, the pattern and ecological determinants of among-animal variation in microbial communities are poorly understood.
This study quantified the bacterial communities associated with natural populations of Drosophila melanogaster. Across five
collections, each fly bore 16–78 OTUs, predominantly of the Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae.
Positive relationships, mostly among related OTUs, dominated both the significant co-occurrences and co-association
networks among bacteria, and OTUs with important network positions were generally of intermediate abundance and
prevalence. The prevalence of most OTUs was well predicted by a neutral model suggesting that ecological drift and passive
dispersal contribute significantly to microbiome composition. However, some Acetobacteraceae and Lactobacillaceae were
present in more flies than predicted, indicative of superior among-fly dispersal. These taxa may be well-adapted to the
Drosophila habitat from the perspective of dispersal as the principal benefit of the association to the microbial partners.
Taken together, these patterns indicate that both stochastic processes and deterministic processes relating to the differential
capacity for persistence in the host habitat and transmission between hosts contribute to bacterial community assembly in
Drosophila melanogaster.

Introduction

It is well-established that the microbial communities in
the guts of animals influence host health and fitness,
and numerous studies have attempted to understand how
such communities are assembled. Research to date
has tended to focus on characterizing the most common
members of such host-associated communities (i.e., the core
microbiome) and the role of selective processes, which
result from relative fitness differences among taxa [1],
in determining microbiome composition. However, the
composition of gut microbial communities often varies

significantly among individual host organisms and in
a single host over time [2–5]. In addition, several
studies have demonstrated that neutral processes, which
are independent of species traits, may play an important role
in shaping the composition of the gut microbiota [6–9].
Here we investigate microbiota composition in
natural populations of D. melanogaster and use these
patterns to identify the microbial taxa and underlying
ecological processes that contribute to the assembly of these
communities.

The fruit fly D. melanogaster is an excellent system to
study community assembly of animal microbiomes. The gut
microbiota of D. melanogaster is of low diversity, with
positive and negative interactions between Acetobacter and
Lactobacillus species that dominate the gut microbiota in
the laboratory [10, 11]. Furthermore, microbiota variation
among lines and individual flies maintained under uniform
laboratory conditions [12, 13] suggests that stochastic pro-
cesses contribute to community assembly, as investigated
by Obadia et al. [14]. However, the gut communities in
natural D. melanogaster populations are different and more
diverse than in laboratory stocks [11, 15, 16], and the
ecological processes shaping community composition in the
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laboratory may not be representative of the conditions
encountered by natural populations.

Building on our previous research on gut microbiome
assembly in mycophagous Drosophila species [17], we
quantified the microbiome in individual flies from
natural populations of the fruit fly D. melanogaster col-
lected from kitchens. To our knowledge, all
published studies to date on the microbiota of wild D.
melanogaster have relied on pooled samples. We
sequenced bacterial 16S rRNA gene amplicons of whole
flies as a proxy for the microbial communities in the gut,
following evidence, first, that > 95% of the reads in iso-
lated gut metagenomes of D. melanogaster are of bacterial
origin (the remainder is predominantly fungal) (Bost,
Adair & Douglas, unpublished); and, second, that the D.
melanogaster microbiota comprises two or three distinct
communities: (i) the gut microbiota, (ii) the surface
microbiota which is similar in composition to the gut
microbiota though 10–100-fold lower in abundance and
reduced further by washing the flies [18], and (iii) in some
individuals, intracellular Wolbachia localized to the
ovaries of females and various other organs, varying with
multiple factors, including Drosophila and Wolbachia
genotypes [19].

We surveyed the bacterial communities in 79
individual D. melanogaster collected from multiple
sites to address three aims. First, we investigated the
relative contributions of variation among flies
within and among sites to the overall variation in com-
position of the bacterial communities in D. melanogaster.
Second, we determined the co-occurrence patterns
and co-association networks among the bacterial taxa, to
gain insight into the nature of potential interactions and
highlight the network roles of specific taxa within
the gut microbiota community [20, 21]. Finally, we
quantified the fit of microbiota composition at each site to
the expectations of a neutral model, enabling us to assess
the number and identity of taxa whose distribution was
well-predicted by the neutral model as well as discordant
taxa for which selective processes may be particularly
important.

Materials and methods

Collections of Drosophila melanogaster from natural
populations

Five collections of adult Drosophila melanogaster were
made from compost bins or other food waste in domestic
kitchens in Ithaca, NY, USA in August-September 2015
(Table 1). One kitchen was sampled twice (Collection-A
and, 15 days later, Collection-B) and three kitchens were
sampled once (Collection-C to Collection-E). The flies were
starved for 2 h to ensure that any food in their guts was
egested, and then frozen at −20 °C.

DNA extraction, library preparation and sequencing

The frozen flies from each collection were transferred to a 9
cm Petri dish on ice for rapid separation of the sexes. The
males were washed in 0.3% sodium hypochlorite in
phosphate-buffered saline (PBS) and rinsed three times with
sterile PBS. Washing solutions were ice-cold to anesthetize
flies. Flies were transferred individually to sterile 2 ml
screw-cap tubes containing zirconia/silica beads (250 μl of
0.1 mm diam. to disrupt fly tissue and 30 μl of 1 mm diam.
to lyse bacterial cells) (BioSpec Products, Bartlesville, OK,
USA), 678 μl cell lysis buffer (108 mM Tris-HCl, pH 8.0;
1.5 M NaCl; 21.6 mM EDTA), and 16 units proteinase K
for DNA extraction. Females were discarded because our
study site is within the range of D. simulans, and female D.
melanogaster and D. simulans cannot be distinguished by
external features. Each fly was homogenized at 4 m/s for 30
s with a FastPrep®-24 instrument (MP Biomedicals, Santa
Ana, California, USA), incubated at 56 °C for 2 h, then 35
units RNaseA were added and incubated at 37 °C overnight.
DNA was extracted with 750 μl phenol:chloroform:isoamyl
alcohol (25:24:1). After centrifuging at 8000×g for 15 min
at 4 °C, 500 μl aqueous phase was transferred to a new tube.
To precipitate DNA, 37.5 μl 3 M sodium acetate and 500 μl
isopropanol was added and samples were incubated at −20
°C overnight. Following centrifugation at 8000×g for 15
min at 4 °C, the pellet was washed in 750 μl cold 75%

Table 1 Diversity of bacterial
communities in the collections
of male D. melanogaster

Collection Collection
date (2015)

Number of
individuals

Number of
OTUs in the
collection

Number of
OTUs per fly
mean (sd)

Shannon
index mean
(sd)

Inverse
Simpson
index mean
(sd)

A (site 1) 2 August 23 176 34.6 (15.6) 1.55 (0.84) 4.04 (3.75)

B (site 1) 17 August 19 156 53.3 (14.2) 2.33 (0.48) 6.50 (2.96)

C (site 2) 9 September 8 102 41.1 (8.4) 2.19 (0.57) 6.51 (3.56)

D (site 3) 29 August 14 116 37.9 (8.1) 2.12 (0.43) 5.51 (2.60)

E (site 4) 8 September 15 137 39.2 (10.6) 2.18 (0.44) 5.89 (2.06)
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ethanol, air-dried, resuspended in 50 μl sterile
endonuclease-free water and stored at −20 °C.

A dual-indexing strategy modified from Kozich et al.
[22] was used to generate amplicons of the V3 and V4
regions of bacterial 16 S rRNA genes. Indexed primers
included the primer sequences 341 f (5′-CCTACGG-
GAGGCAGCAG-3′) and 806r (5′-GGAC-
TACHVGGGTWTCTAAT-3′). Amplicons were generated
in PCR reactions containing 1× buffer, 1.5 mM MgCl2, 0.2
mM dNTPs, 0.2 μM each primer, and 2 units Platinum Taq
(Invitrogen, Carlsbad, California, USA) with: 94 °C for 30
s, 30 amplification cycles of 94 °C for 30 s, 55 °C for 60 s,
and 68 °C for 90 s, with 5 min final extension at 68 °C. PCR
products were purified using Agencourt Ampure XP beads
(Beckman Coulter, Indianapolis, Indiana, USA), con-
centrations assayed by Qubit 2.0 fluorimeter (Invitrogen),
and the samples were pooled to equimolar concentrations.
Library quality was assessed with a Fragment Analyzer
(Advanced Analytical Technologies, Ames, IA, USA).
Libraries were subjected to 250 bp paired-end sequencing
on MiSeq instrument (Illumina, San Diego, CA, USA).
Sequence data are available at NCBI Short Read Archive
under Bioproject PRJNA381755.

Sequence processing

The sequences were processed with Qiime 1.9.1 [23].
Paired-end reads were joined with fastq-join [24], demul-
tiplexed and quality filtered with default parameters.
Potentially chimeric sequences, identified by de novo chi-
mera detection with USEARCH6.1 [25], and low coverage
samples (<4670 reads) were removed, yielding
4,642,853 sequences with 409 bp average length. Sequen-
ces were assigned to operational taxonomic units (OTUs) at
97% sequence similarity via open-reference OTU picking
[26]. The resultant OTU table (Supplementary Dataset 1a)
was then filtered to exclude OTUs with <100 reads across
all samples, generating a dataset of 251 bacterial OTUs
across 101 flies (Supplementary Dataset 1b). Seven OTUs
were assigned to the genus Wolbachia and they were
excluded from all analyses. Samples with >95% Wolbachia
reads were also removed because sequence coverage curves
of non-Wolbachia reads indicated that their coverage was
insufficient to represent the diversity present in these sam-
ples (Supplementary Figure 1). For the remaining 79 sam-
ples, non-Wolbachia reads were evenly subsampled to 1200
reads per sample. The saturation of OTU counts against
read number in the sequence coverage plots indicated that
this depth accounted for the bacterial diversity in these
samples (Supplementary Figure 2). The non-Wolbachia
OTUs for these 79 samples (Supplementary Dataset 1c)
were used for analysis of bacterial diversity and
composition.

Statistical analyses

All statistical analyses were conducted using R [27]. To
generate sequence coverage plots, reads were subsampled at
evenly spaced intervals and the number of OTUs detected at
each step was calculated with the iNEXT package [28].
Bacterial diversity in each fly was calculated as the number
of OTUs (OTU richness) and the Shannon-Weaver (H′) and
inverse Simpson (1/D) diversity indices. To assess the
variation in diversity measures among collections, random
effects models were run with the lme function in the nlme
package [29]. For each model, we calculated the intraclass
correlation coefficient, which is the ratio of variance among
collections to the total variance. The statistical significance
of variation in diversity indices among collections was
assessed by likelihood ratio tests comparing each model
with collection as a random effect to the corresponding
intercept-only model that did not include the random effect
[30]. Analysis of deviance tested for differences in diversity
among collections. The relationships between Wolbachia
infection and diversity indices were determined by com-
paring mixed effects models that included proportion of
Wolbachia reads as a fixed effect to collection-only models
with likelihood ratio tests. Models used to test fixed effects
were fitted using maximum likelihood. The strength and
significance of relationships between proportion of Wolba-
chia reads and the relative abundance of bacterial orders and
genera were assessed with Spearman correlations, using P-
values adjusted for multiple tests.

Multivariate relationships among the microbiota of
individual flies were visualized with principal coordinates
analysis (PCoA) ordination plots of Jaccard indices (for the
presence/absence data) and Bray–Curtis dissimilarities (for
relative abundance data). The influence of collection and
proportion of Wolbachia reads on these distance matrices
was determined with distance-based redundancy analyses
[31, 32] and significance assessed with permutation tests
[33], using the dbrda and anova.cca functions in the vegan
package [34].

Two approaches were taken to assess relationships
among members of the D. melanogaster microbiota. First,
co-occurrence patterns among pairs of bacterial OTUs
based on presence/absence data were assessed with the
probabilistic approach of Veech [35] with the “cooccur”
package [36]. When the probability that two OTUs would
co-occur more or less frequently than observed, if dis-
tributed randomly, was < 0.05, that OTU pair was con-
sidered to have significant positive or negative co-
occurrence, respectively. Second, a co-association network
was inferred from the read counts for bacterial OTUs with
the sparse inverse covariance estimation for ecological
association inference (SPIEC-EASI) method, which is
robust to the challenges of compositional data and low
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sample number relative to OTUs [37]. The spiec.easi
function was run with the ‘MB’ method applying the
neighborhood selection framework in Meinshausen and
Bühlmann [38]. The “igraph” package [39] was used to
generate network plots, calculate node attributes, and
determine community membership (modules) from edge
betweenness. Co-occurrence and co-association patterns
could potentially be biased by bacterial OTUs restricted to
specific collections, so only OTUs present in ≥ 3 collections
were used (Supplementary Dataset 1d). To verify that our
conclusions were not unique to the OTU prevalence cutoff,
we also conducted the co-occurrence and co-association
analyses for the OTUs present in at least 37% of samples
(following [37]) and found that the results did not differ
between the two prevalence thresholds (data not shown).

The contribution of neutral processes to fly microbiota
assembly was assessed for each collection separately with
the neutral community model of Sloan et al. [40], using the
R code of Burns et al. [8]. This model predicts that less
abundant taxa will be lost from individual flies due to
ecological drift, while more abundant taxa are more likely
to be dispersed by chance and therefore present in more
individuals. Observed OTU distributions and mean relative
abundances were fit to the neutral model by the parameter

m, which estimates migration rate [40]. The fit of m for each
collection was assessed with a generalized R-squared Burns
et al. [8]. Neutral model fits were compared to the fit of
binomial models with Akaike information criterion (AIC)
scores. To distinguish bacterial taxa that were well-
predicted by, or deviated from, the neutral model, we
identified OTUs that fell within, above or below the 95%
confidence interval around the neutral model prediction as
per Burns et al. [8]. We considered taxa present exclusively
within the 95% neutral model confidence intervals to be
well-predicted by the neutral model. To test for differences
in the composition of above and below neutral model par-
titions, distance-based redundancy analysis was conducted
on Jaccard indices. Logistic regressions were run with the
presence/absence of taxa and partition type to identify taxa
indicative of above or below partitions.

Results

Composition and diversity of the microbiota

The 16S rRNA gene amplicons generated from individual
male D. melanogaster were dominated by three orders of

α - Proteobacteri

β - Proteobacteri

γ - Proteobacteri

Fig. 1 Composition and
diversity of the microbiota of
individual D. melanogaster.
(a) Relative abundance of
bacterial orders present in
individual male D. melanogaster
grouped by collection. The low
abundance category includes all
orders that contributed <5% of
the reads in that individual. The
number of OTUs (b) and genera
(c) detected across each evenly
subsampled collection (gray
bars) and the mean number of
taxa (with standard deviation) in
the eight randomly chosen
individuals (white bars)
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Table 2 Abundant and prevalent bacterial OTUs in male D. melanogaster. The OTUs listed are present in at least 50% of individuals or contribute
to at least 2% of the reads averaged across all individuals. To obtain the nearest named isolate, the representative sequence for each OTU was
compared to the GreenGenes database [66] and its taxonomic classification was generated with the Ribosomal Database Project (RDP) Classifier
[67]. OTU IDs refer to Supplementary Dataset 1c

OTU
ID

Mean relative abundance
(sd)

% of
individuals

Nearest named isolates (identity)a Taxonomic classification (confidence)

161 12.1 (13.8) 100 Acetobacter fabarum (100%) Acetobacteraceae (100%), Acetobacter (96%)

Acetobacter lovaniensis (100%)

10 11.0 (23.3) 72 Enterococcus termitis (99%) Enterococcaceae (100%), Enterococcus (60%)

49 9.7 (16.9) 81 Gluconobacter sp. (100%) Acetobacteraceae (100%)

124 6.4 (7.8) 97 Gluconobacter oxydans (100%) Acetobacteraceae (100%), Gluconobacter (100%)

Gluconobacter frateurii (100%)

Gluconobacter cerinus (100%)

235 5.0 (14.3) 51 Gluconobacter sp. (97%) Acetobacteraceae (100%)

167 4.8 (10.0) 76 Pantoea punctata (100%)b Enterobacteriaceae (100%), Tatumella (98%)

231c 4.3 (8.6) 68 Enterobacterium str. (90%) Orbaceae (85%)

61 4.2 (8.3) 59 Providencia sneebia (100%) Enterobacteriaceae (100%), Providencia (100%)

111 3.8 (5.0) 91 Leuconostoc mesenteroides (100%) Leuconostocaceae (100%), Leuconostoc (100%)

Leuconostoc pseudomesenteroides
(100%)

64 3.6 (9.9) 30 Lactobacillus mali (100%) Lactobacillaceae (100%), Lactobacillus (100%)

242 3.1 (12.8) 25 Pseudomonas tuomuerensis (93%) Pseudomonadaceae (100%)

179 3.0 (9.7) 81 Pantoea agglomerans (99%) Enterobacteriaceae (100%), Pantoea (98%)

Pantoea vagens (99%)

15 2.6 (4.7) 61 Stenotrophomonas maltophilia (100%) Xanthomonadaceae (100%), Stenotrophomonas
(100%)

Xanthomonas sp. (100%)

Pseudomonas geniculate (100%)

Pseudomonas hibiscicola (100%)

32 2.5 (3.4) 95 Gluconobacter oxydans (100%) Acetobacteraceae (100%), Gluconobacter (100%)

Gluconobacter krungthepensis (100%)

96 1.1 (1.5) 76 Leuconostoc citreum (100%) Leuconostocaceae (100%), Leuconostoc (100%)

Leuconostoc mesenteroides (100%)

101 0.9 (1.6) 66 Acetobacter syzygii (98%) Acetobacteraceae (100%), Acetobacter (95%)

Acetobacter fabarum (98%)

Acetobacter lovaniensis (98%)

142 0.9 (1.3) 70 Acetobacter indonesiensis (99%) Acetobacteraceae (100%), Acetobacter (100%)

Acetobacter cibinongensis (99%)

108 0.8 (2.2) 63 Kluyvera intermedia (98%) Enterobacteriaceae (100%)

222 0.2 (0.3) 62 Gluconobacter cerinus (98%) Acetobacteraceae (100%), Gluconobacter (82%)

aSome OTUs had the same sequence identity to multiple named isolates, and all the isolates are shown
bThese species have been assigned to the genus Tatumella [65]
cThe taxonomy of this OTU is not settled. It is assigned to family Enterobacteriaceae (of order Enterobacteriales) by Greengenes (see Table), order
Pasteurellales by QIIME, and the family Orbaceae (of order Orbales) by RDP
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bacteria: lactic acid bacteria (Lactobacillales, phylum
Firmicutes), acetic acid bacteria (Rhodospirillales,
α-Proteobacteria), and enteric bacteria (Enterobacteriales,
γ-Proteobacteria) (Fig. 1a). In total, 19 OTUs of these
orders were either prevalent or abundant (Table 2). Four of
the five most abundant OTUs were Acetobacter and Glu-
conobacter (family Acetobacteraceae in the Rhodospir-
illales), and these genera were also detected in at least 95%
of the flies (Table 2). Other abundant or prevalent OTUs
included Leuconostoc, Lactobacillus, and Enterococcus
(Lactobacillales); and Tatumella, Providencia, Pantoea and
Kluyvera (Enterobacteriales), and Stenotrophomonas
(Xanthomonadales) within the γ-Proteobacteria (Table 2).

Overall, 244 non-Wolbachia bacterial OTUs and 87
genera were detected across the 79 flies, with 16–78 OTUs
and 13–62 genera per fly. To investigate the relationship
between the diversity in individual flies and collections, we
randomly selected eight individuals from each collection
(the number of flies in the smallest collection) and calcu-
lated the total number of OTUs and genera in the eight
individuals (the pooled diversity). On average, the micro-
biota of an individual fly contained 25–40% of the OTUs
(Fig. 1b) and 40–60% of the genera (Fig. 1c) in the pool.

The composition of the microbiota is variable

We then quantified among-fly variation in bacterial
diversity (summary statistics in Table 1) and composition
that could be attributed to collection. Intraclass
correlation coefficients showed that collection explained
~22% of the variation in the number of OTUs detected in
an individual fly (Likelihood ratio= 12.03, p < 0.0005)
and ~18% of the variation in Shannon diversity indices
(Likelihood ratio= 9.73, p= 0.0018). Collection
explained only ~6% of the variation in the inverse

Simpson diversity index and its effect was not significant
(Likelihood ratio= 1.80, p= 0.1795). We also
compared bacterial diversity between individuals from
Collection-A and Collection-B at the same site 15 days
apart (Table 1). For all indices tested, bacterial diversity
differed significantly between these two collections (OTU
richness, F1,40= 22.01, p < 0.001; Shannon index, F1,40=
24.88, p < 0.001; inverse Simpson index F1,40= 18.19, p
< 0.001), indicating that diversity of the microbiota can
vary over relatively short timescales, as well as between
different sites.

We assessed variation in the composition of the gut
microbiota based on the presence/absence and relative
abundance of bacterial OTUs (Fig. 2). Principal coordi-
nates analysis ordinations show some clustering of indi-
viduals by collection, more distinctly for the OTU
presence/absence (Fig. 2a) than relative abundance
(Fig. 2b). Permutation tests of distance-based redundancy
analyses (dbRDA) confirmed that collection significantly
influenced the composition of the microbiota (presence/
absence: F4,74= 7.03, p < 0.001; relative abundance: F4,74

= 7.10, p < 0.001), explaining ~27% of the variation in
both cases. Microbiota composition differed significantly
between flies from Collection-A and Collection-B (made
at the same site but 15 days apart) (presence/absence: F1,40

= 6.62, p < 0.001, relative abundance: F1,40= 7.40, p <
0.001).

Wolbachia abundance does not affect the
composition of the microbiota

Finally, we considered the relationship between the bac-
terial community and Wolbachia infection. We adopted the
proportion of total reads from OTUs assigned to Wolbachia
(Supplementary Dataset 1b) as an estimate of infection.

Fig. 2 Principal coordinates
analysis (PCoA) ordinations of
pairwise Jaccard distances based
on the presence/absence of
bacterial OTUs (a) and
Bray–Curtis distances based on
relative abundance of bacterial
OTUs (b) between samples.
Collections are represented by
different shapes. The variation
explained by the PCoA axes is
listed in parentheses

964 K. L. Adair et al.



Including the proportion of Wolbachia reads in the analysis
did not significantly improve upon models that excluded
Wolbachia for OTU richness (χ22= 3.53, p= 0.171), but
significantly affected microbiota composition (presence/
absence: R2= 0.02, F1,77= 1.82, p= 0.017, relative abun-
dance: R2= 0.03, F1,77= 2.52, p= 0.004). However,
incorporating the Wolbachia reads into the dbRDA models
increased the explained variation by only 1–2%. The rela-
tionships between the proportion of Wolbachia reads and
relative abundance of bacterial orders or OTUs in the
dataset that omitted Wolbachia reads were all non-
significant (p> 0.05). Taken together, this analysis reveals
no substantive biological relationship between Wolbachia
abundance and the diversity or composition of the gut
microbiota.

Microbial co-occurrences are predominantly random

Our analysis of relationships among bacterial taxa in Dro-
sophila was conducted on OTUs detected in at least three
collections (46 of the 244 OTUs in the dataset, Supple-
mentary Dataset 1d). Just 196 (19%) of the 1035 pair-wise
comparisons yielded statistically significant co-occurrence,
comprising 155 (15%) positive and 41(4%) negative rela-
tionships (Fig. 3). Most bacterial taxa were not involved in
either predominantly positively or negatively co-occurring
pairs; exceptionally, the Xanthomonadaceae had an excess
of positive correlations and Enterococcus OTU#26 and
Staphylococcus aureus OTU#11 had an excess of negative
correlations (Supplementary Table 1). Positively co-
occurring pairs of OTUs were from the same bacterial

Fig. 3 Pairwise co-occurrence
patterns between the most
prevalent bacterial OTUs. Each
tick on the x- and y-axes refers to
an OTU, ordered by family,
order and phylum
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family significantly more often than negatively co-occurring
pairs: 52 (34%) of 155 pairs of significant positive corre-
lations and one (2.5%) of 41 significant negative correla-
tions were between OTUs of the same family (χ21= 15.9, p
< 0.001).

Co-associations among microbial OTUs are
predominantly positive

As a second approach to investigate co-association patterns
in the microbiota, networks were inferred from read counts
for bacterial OTUs in individual flies using the sparse
inverse covariance estimation for ecological association
inference (SPIEC-EASI) method [37]. Nodes correspond to
OTUs and edges represent significant co-association
between the two OTUs. Similar to co-occurrence patterns
generated from the presence/absence data, the co-
association network revealed more positive than negative
co-associations (Fig. 4a). The abundant bacterial orders

(Rhodospirillales, Enterobacteriales, Lactobacillales)
showed distinct co-association patterns. The acetic acid
bacteria (Rhodospirillales) and enteric bacteria (Enter-
obacteriales) tended to have more central roles in the net-
work than the lactic acid bacteria (Lactobacillales),
particularly OTUs from the Leuconostocaceae and Enter-
ococaceae, which were peripheral and were not co-
associated with other taxa (Fig. 4a). The modularity of the
network was 0.67, and modules were dominated by OTUs
from single bacterial families (Fig. 4b). The OTUs that were
most highly connected (nodes with high degree) and that
connect different parts of the network (nodes with high
betweenness centrality) were Gluconobacter OTU#36,
Staphylococcus aureus OTU#11, Providencia OTU#61 and
Enterobacteriaceae OTU#212 (Fig. 4), only one of which
(OTU#61) is among the 19 most abundant and prevalent
OTUs in Table 2. These data suggest that the dominant taxa
are not necessarily the most important in structuring the co-
association network.

Fig. 4 Co-association network
of bacterial OTUs in the gut
microbiota of individual male D.
melanogaster. Nodes represent
the 46 OTUs that are present in
at least three collections. For all
plots, gray edges indicate
positive co-associations, red
edges represent negative co-
associations, and edge thickness
corresponds to confidence in the
association. (a) Node color
represents bacterial family and
node labels refer to OTU IDs
from Supplementary Dataset 1d.
(b) Modules based on edge
betweenness are represented
with convex hulls. (c) Intensity
of blue color indicates greater
node degree and increasing size
indicates higher betweenness
centrality. (d) Intensity of green
color indicates greater OTU
prevalence and increasing size
indicates higher mean relative
abundance across all individuals
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Most OTUs fit to predictions of the neutral model

We investigated the contribution of neutral processes to the
assembly of the fly microbiota. As indicated by lower AIC
scores, the neutral model predicted the relationship between
OTU distribution and mean relative abundance better than the
binomial distribution for all collections (Fig. 5a), suggesting
that the processes of ecological drift and passive dispersal may
play a role in community assembly. We found that the dis-
tributions of 68–84% of the OTUs in a collection were pre-
dicted by the neutral model (Fig. 5b). For Collection-A and
Collection-D, nearly twice as many OTUs fell above the
neutral model prediction as below, while similar proportions
(~7–8%) were above and below the neutral model for the other
three collections. Taxa found exclusively within the 95%
confidence limits and present in at least three collections
included the phyla Verrucomicrobia and TM7, orders Pas-
teurellales, Sphingomonadales and Sphingobacteriales, several
families of Actinomycetales and the genera Achromobacter
and Comamonas (family Burkholderiales) (Supplementary
Table 2), with the implication that the distribution of these taxa
can be explained by neutral processes. The OTUs in the above-
and below- partitions beyond the 95% confidence limits of
each neutral model separated on a PCoA plot (Fig. 5c) and
differed significantly (F1,9= 2.44, p< 0.01). The Comamona-
daceae (order Burkholderiales) and Holosporaceae (order
Rickettsiales) occurred significantly more often in the below
partition meaning they were present in fewer individuals than
predicted by the neutral model, while Acetobacter, Glucono-
bacter, and Leuconostoc occurred significantly more often in
the above partition as they were present in more individuals
than predicted by the neutral model (p< 0.05) (Fig. 6).

Discussion

Drosophila melanogaster has a cosmopolitan distribution
and is found in a wide diversity of habitats, many created or
strongly influenced by human activities, e.g., composters,
wineries, fruit orchards [41], and the bacterial communities
in the fly gut have been investigated in natural populations
of D. melanogaster from multiple habitats ([11, 15, 16, 42];
this study). A common conclusion from these studies is that
the composition of the bacterial communities can vary
widely at the level of OTU or species, but tends to be
dominated by three higher-order taxa, the Acetobacteraceae,
Enterobacteriaceae and Lactobacillales. To our knowledge,
all previous studies of the microbiota of wild D. melano-
gaster have relied on pooled samples. This first analysis of
individual flies from natural populations reveals that,
although the OTU composition of the microbiota varies
significantly among fly populations sampled from different
locations or at different times, the greater part of the total

Fig. 5 Characteristics of neutral models for collections of D. mela-
nogaster. (a) Akaike information criterion (AIC) scores comparing
neutral model fit to fit of a binomial model. (b) The percent of OTUs
from each collection that fall above, below and within neutral model
prediction. (c) Principal coordinates analysis plot of partitions above
and below neutral model predictions based on Jaccard index calculated
from the presence/absence of OTUs
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Fig. 6 Fit of neutral model for Collection-A (a), Collection-B (b),
Collection-C (c), Collection-D (d), and Collection-E (e). The predicted
occurrence frequency is shown as a solid gray line and dashed lines
indicate the 95% confidence interval around the neutral model

prediction. Each point represents an OTU and taxa whose presence
differs significantly between above and below neutral model partitions
are highlighted
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variation is among individual hosts from a single sample.
The high individual variation cannot be attributed simply to
variation in microbial composition of recently-ingested food
because all analyses were conducted on flies that had been
starved for longer than the food transit time through the gut
(see methods). More generally, our finding of substantial
among-individual variation is consistent with data on gut
microbiota composition in natural populations of other
animals, including mycophagous Drosophila species [17],
mosquitoes [3], fish [4], horses [5] and apes [2], as well as
humans [43]. Insight into the processes contributing to
among-host variation in microbiota composition can be
gained from analysis of the co-occurrence and co-
association patterns of different taxa in individual hosts
[44, 45] and by accounting for neutral, in addition to
selective, processes [7–9].

A striking feature of the bacterial communities in D. mel-
anogaster studied here is the small number of significant co-
occurrence relationships among pairs of bacterial OTUs and
also the paucity of significant edges, resulting in a weakly
structured co-association network. Furthermore, the co-
occurrence patterns that are significant are predominantly
positive, as are the edges in the co-association network. The
lack of co-occurrence and co-associations suggests a lack of
interaction among members of the D. melanogaster gut
microbiota, a pattern also observed by Rivett et al. [46] in
aquatic microcosms. Positive associations are open to two
alternative explanations: niche overlap, usually among related
bacterial taxa; and mutualistic interactions, including meta-
bolic cross-feeding [47, 48], usually (but not invaraibly)
between phylogenetically-distant taxa ([49], but see refs. [50,
51]). Our finding that many of the co-occurring pairs of OTUs
and network modules in the D. melanogaster communities
comprised bacteria of the same family is indicative niche
overlap among members of the gut microbiota; and this
hypothesis can be tested by experimental study. This analysis
should consider processes operating both in the Drosophila
gut and in the food on which the insect feeds, in the light of
evidence from laboratory studies that the Drosophila gut
microbiota can drive the microbial composition of the food
[52] and vice versa [53]. Interestingly, co-association networks
in the human gut microbiota also tend to show associations
between phylogenetically related taxa [37]. Further research is
required to assess the generality of these patterns and whether
they are underpinned by similar processes across host taxa.

We additionally investigated the relationship between the
composition and diversity of bacterial communities and the
relative abundance of Wolbachia. Our rationale was that,
although direct interactions between gut bacteria and Wol-
bachia are most unlikely because the gut microorganisms
are restricted to the gut lumen andWolbachia is intracellular
[19], indirect interactions are possible, mediated for

example by microbial effects on the immunological func-
tion or nutrition of the Drosophila host. However, we
obtained no strong correspondence between microbiota
composition and Wolbachia infection in this study of wild
D. melanogaster. This result is consistent with the absence
of significant differences in gut microbiota composition
between laboratory D. melanogaster lines that bear and lack
Wolbachia [54].

Inspection of the co-association network of bacterial
OTUs reveals that the most abundant and prevalent bacterial
OTUs are not necessarily the most connected. In particular,
the lactic acid bacteria, which are common members of the
D. melanogaster gut microbiota [11, 15, 42, 52], are per-
ipheral to the co-association network suggesting that they
are not sensitive to the composition of the rest of the
microbiota. The finding that Gluconobacter OTU#36, with
a mean relative abundance across individuals of just 0.15%,
and several potentially pathogenic taxa (Providencia,
Erwinia, and Staphylococcus) are particularly well-
connected is consistent with previous studies demonstrat-
ing that low abundance taxa can hold key network positions
and that pathogens can play an important role in shaping
microbial community networks [45, 55–57]. Furthermore,
our analysis excluded eukaryotic members of the microbiota
[58–60]. Although these taxa are much less abundant than
bacteria in Drosophila, their community assembly is of
intrinsic interest and may interact with bacterial members of
the microbiome [61, 62].

Complementary insights into the processes shaping
bacterial community assembly in D. melanogaster come
from the fit of the bacterial communities to predictions of
the neutral model. For the many OTUs that conform to the
neutral model, the processes of ecological drift and passive
dispersal, which are independent of bacterial functional
traits, define abundance in individual flies and distribution
across the host population. The taxa that deviate from the
neutral model may be indicative of ability to proliferate
within and disperse among hosts. Specifically, representa-
tives of the Comamonadaceae and Holosporaceae are
detected in fewer individual flies than would be predicted
by their abundance, while the several members of the
Acetobacteraceae and Lactobacilli, which have a dis-
proportionately high occurrence frequency, may be adapted
for dispersal among host individuals. The latter finding is
consistent with the hypothesis that fly-mediated dispersal is
the key the benefit of associating with Drosophila for
Acetobacter and Lactobacilli, suggesting that these bacteria
may possess specific adaptations that promote fecal-oral
cycling by the Drosophila host [17]. The nature of these
adaptations is an interesting area for future research.

In summary, the patterns of abundance and distribution
of bacterial taxa associated with wild populations of
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Drosophila reported in this study builds on laboratory
evidence that the Drosophila gut-microbial association is
permissive [11, 14, 63], revealing considerable among-host
variation in microbiota composition, generally weak pat-
terns of among-taxon co-association, and many taxa with
prevalence that can be explained by neutral processes
independent of their phenotypic traits. The important
implication of these results is that microbiota community
composition is not shaped entirely by the traits of the
individual microbial taxa or their current host, but also by
ecological processes of microbial ecological drift and pas-
sive dispersal, as well as the population biology of the host.
A quantitative understanding of these ecological processes
is a priority to establish the determinants of community
assembly of host-associated microorganisms. The excep-
tions to these generalities are also important because they
likely include taxa that interact strongly with other members
of the microbial community and the host. In particular, the
relative importance of niche and among-microbe interac-
tions in shaping the positive associations between different
bacteria, especially related taxa, is an unresolved issue. A
further open question is whether bacterial taxa with higher
occurrence frequency in hosts than predicted by neutral
models have superior dispersal capabilities and derive fit-
ness benefits from these traits. The evidence for elevated
frequency of motility in bacteria associated with wild
Drosophila than laboratory Drosophila (the latter impose
minimal barriers to among-host transmission) [64] provides
an excellent starting point to address the significance of
dispersal to the ecology and fitness of Drosophila-asso-
ciated microorganisms. Because the Drosophila-gut
microbiota system is amenable to study in both the
laboratory and field conditions, it offers a superb model to
investigate the ecological principles governing microbial
community assembly in animals.
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