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Abstract The androgen receptor (AR) is a promising thera-
peutic target for a subset of triple-negative breast cancers
(TNBCs) in which AR is expressed. However, the mechanis-
tic action of AR and the degree to which primary and meta-
static tumors depend on AR, both before and after conven-
tional treatment, remain to be defined. We discuss preclinical
and clinical data for AR+ TNBC, the difficulties in monitoring
AR protein levels, new methods for determining AR status,
the influence of AR on Bstemness^ in the context of TNBC,
the role of combined inhibition of sex steroid production and
AR, and the role of AR in regulation of the immune system.
Although the exact role of AR in subsets of TNBC is still
being characterized, new therapies that target AR and the pro-
duction of androgens may provide additional options for pa-
tients with TNBC for whom chemotherapy is currently the
sole treatment option.

Introduction

The androgen receptor (AR) is widely expressed in breast
cancer (BC) [1]. It is expressed in up to half of triple-
negative BC (TNBC) tumors [2], which, by definition, lack
estrogen and progesterone receptors (ER and PR) as well as
amplification of the human epidermal growth factor receptor 2
(HER2). Preclinical and clinical data suggest that AR is a
promising therapeutic target for a subset of BC and perhaps
should be the fourth receptor to be routinely examined. In this
review, we discuss the roles of AR in TNBC, methods for
detecting AR status, the influence of AR on Bstemness^ in
the context of TNBC, inhibition of AR and/or sex steroid
production, and AR in the immune system. Our goal is to
describe the current state of research that underlies the devel-
opment of novel-targeted therapy for the treatment of AR-
expressing (AR+) TNBC.

The Role of Androgen Receptor Signaling in Breast
Cancer

Targeted treatment for BC has historically focused on ER and
HER2; however, AR is emerging as another promising thera-
peutic target since it is evenmore widely expressed in BC than
ER and PR [3]. In a study of 2171 invasive BCs in women,
AR protein was expressed in 77% overall, but expression
varied by BC subtype, with 88% of ER+ BC, 59% of
HER2+ BC, and 32% of TNBC positive for AR protein by
immunohistochemistry (IHC) [1, 4]. In a study of 32men with
breast cancer, AR was expressed in 65% of all BCs and in
85% of ER+ tumors [5]. However, the mechanistic action of
AR in the clinically defined BC subtypes and the manner and
degree to which primary and metastatic tumors of different
subtypes rely on AR, both prior to treatment and after
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conventional therapy, are still actively being determined in
preclinical models and clinical trials.

As with PR, AR expression has been associated with a
more favorable prognosis and prolonged survival in patients
with ER+ breast cancer [6–9]. The prognostic value of AR is
less clear for BC tumor types that are not ER+ [10]. Although
AR positivity is indicative of a more well-differentiated tumor
and therefore has a better prognosis [11–13], among the
TNBC subtypes, the luminal AR TNBC subtype that ex-
presses high AR levels had a lower pathological complete
response (pCR) to neoadjuvant chemotherapy than other
TNBC subtypes [14]. Recent preclinical studies suggest that
AR can drive growth and survival in ER+, HER2+, and
TNBC cell lines [4, 15–22]. In ER+ BC, AR becomes partic-
ularly important in the context of resistance to anti-estrogen or
aromatase inhibitor therapy, where tumor cells can evolve to
become growth-dependent on androgens and AR under con-
ditions of ER inhibition or estrogen deprivation [4, 17,
23–25]. A high ratio of AR:ER protein is associated with an
increased risk of recurrence while on tamoxifen and decreased
likelihood of disease-specific and overall survival [4]. In ad-
dition, the AR inhibitor enzalutamide blocked both androgen-
and estrogen-stimulated tumor growth in AR+/ER+ BC xeno-
graft and PDX preclinical models [4, 17]. In ER+ BC cell
lines, complex interactions between AR and ER lead to tran-
scriptional activity that affects the expression of genes in-
volved in BC growth and survival [17].

AR is also significantly associated with HER2 amplifica-
tion and promotes cell proliferation following treatment with
the androgen dihydrotestosterone (DHT) or other synthetic
androgens [20, 26–28]. Based on studies in the HER2-
enriched BC cell line MDA-MB-453 (ER−/HER2+/AR+),
AR induces an increase in HER3 via the Wnt signaling path-
way to promote HER2 signaling [10, 20]. Another positive
feedback loop that may feed into HER2-mediated cell prolif-
eration exists in the AR and ERK pathways [29]. Synergistic
inhibition of proliferation was observed in vitro and in vivo
with combined mTOR inhibition and anti-androgens in mul-
tiple HER2+ and TNBC cell lines containing activating
PIK3CA mutations [21]. Depending on the cell line, DHT
induced an increase in either phosphorylated HER2
(pHER2), phosphorylated HER3 (pHER3), or both, that was
attenuated by AR inhibition. Conversely, inhibition of the
mTOR pathway caused an increase in total AR, pHER2, and
pHER3, and these effects were abrogated by enzalutamide
and seviteronel [21].

Interestingly, in a rat model of obesity-associated postmen-
opausal mammary carcinoma, nuclear AR was higher in tu-
mors that progressed after ovariectomy compared to tumors
that regressed. Administration of enzalutamide blocked tumor
progression in rats after ovariectomy and prevented new tu-
mor formation [30]. IL-6, which was higher in plasma of
obese versus lean rats, sensitized BC cells to low levels of

testosterone [30], providing an example of how obesity-
associated cytokines and growth factors can affect how tumors
respond to steroid hormones and hormonal therapy in all sub-
types of BC.

AR regulates growth factors such as the EGFR ligand
amphiregulin (AREG) in TNBC cell lines in vitro and
in vivo, and AR activation and inhibition significantly affect-
ed levels of AREG [16] and other factors such as JAG1 (a
ligand for Notch receptors and target of the canonical Wnt
signaling pathway in progenitor cells), chitinase (CHI3L1/
YKL40), and growth/differentiation factor (GDF)-15 [22].
Perhaps future studies will identify the key AR-regulated pro-
teins most indicative of AR dependence, but these may differ
with BC subtype, disease progression, and prior treatment.

Androgen Receptor Inhibition in Triple-Negative
Breast Cancer

TNBC comprises approximately 15 to 20% of newly diag-
nosed BCs [31]. TNBC is an aggressive BC subtype with a
risk of recurrence that peaks around 3 years after diagnosis
[31, 32]. Because TNBC lacks the most common therapeutic
targets ER, PR, and HER2, chemotherapy is the only available
therapeutic option [15]. There are, as yet, no U.S. Food and
Drug Administration (FDA)-approved targeted therapies
available for chemoresistant TNBC disease (although the
PARP [poly ADP ribose polymerase] inhibitor olaparib is an-
ticipated to be approved for germline BRCA-mutated BC in
the near future), but one avenue of current research is focused
on the therapeutic inhibition of AR (Fig. 1).

Gene expression profiling has revealed four subtypes of
TNBC: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal-
like (ML), and luminal androgen receptor (LAR), each with
distinct gene signatures [19, 33]. The LAR subtype, which
expresses high AR, is of particular interest because it closely
resembles the previously described molecular apocrine tumors
[26, 34] and has a gene expression profile and chromatin-
binding pattern similar to luminal, ER+ BC despite being ER-
negative [19, 26, 34–36]. Recent studies found up to half of
TNBC to be AR+ (defined as > 10% of tumor cells staining
positive for AR), irrespective of TNBC subtype [37].While the
function of AR in TNBC is not well known, preclinical data
suggest that AR drives tumor growth and survival, even in cells
that express relatively low levels of AR. Consequently, AR is
currently under investigation as a potential therapeutic target
for TNBC tumors [4, 16, 19, 22, 37].

High AR and its regulation of classically ER-controlled
genes make the LAR TNBC subtype more luminal (hence
the designation) [19] and slower growing. A comparison of
the clinical relevance of the subtype classification of TNBC
reported that the BL2 and LAR subtypes had the lowest path-
ological complete response rates following neoadjuvant
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chemotherapy (0 and 10%, respectively) [14]. While meta-
analysis of 13 studies (N = 2826 TNBC patients) indicated
that AR+ TNBC patients had lower grade tumors
(P < 0.001) and prolonged disease-free survival (hazard ratio
[HR], 0.809; 95% confidence interval [CI], 0.659–0.995,
P < 0.05), these patients also had a higher incidence of lymph
nodemetastases (P < 0.01) [6]. Thus, while LARmay bemore
indolent than the other TNBC molecular subtypes, it may
benefit less from chemotherapy (likely because it is less pro-
liferative). Consequently, LAR represents a subtype for which
targeted therapy is feasible, given the many drugs either al-
ready approved or in development for targeting AR or andro-
gen synthesis in prostate cancer.

Preclinical research on AR in TNBC initially focused on
the LAR subtype and high expression of downstream targets
of AR signaling [19, 38]. MDA-MB-453 and other LAR cell
lines are AR-driven and are sensitive to the early-generation
AR antagonist bicalutamide [4, 19]. Additional studies from
the Richer Laboratory at the University of Colorado have

demonstrated that AR inhibition with enzalutamide in four
TNBC cell lines representing three non-LARTNBC subtypes
(BL2, ML, and MSL [mesenchymal stem-like, a TNBC sub-
type later reclassified [19, 33]]) increased apoptosis and de-
creased baseline tumor cell proliferation, migration, invasion,
and anchorage-independent growth [16]. Furthermore, the
predominately nuclear expression of AR in TNBC primary
tumors suggests that AR is transcriptionally active [16, 37].
These results suggest that even TNBC subtypes with low AR
expression can still critically depend on AR and that it may be
the less proliferative AR+ cells that persist and recur. Indeed,
in a preclinical model, AR inhibition (enzalutamide) com-
bined with paclitaxel was strikingly more effective at
preventing recurrence than paclitaxel alone [22].

While detailed analyses are not yet available, preclinical
and clinical results indicate that even TNBC with low AR
expression may benefit from AR inhibition. AR pathway ac-
tivation is likely critical, and in the enzalutamide trial in
TNBC, a 35% clinical benefit rate (CBR; the proportion of

Fig. 1 AR signaling and therapeutic interventions in TNBC. Androgen
synthesis is catalyzed by the enzyme CYP17. Binding of androgens to
AR causes dissociation from HSP and AR dimerization. AR dimers
translocate to the nucleus, associate with coregulatory proteins, and
initiate transcription. In TNBC, AR signaling promotes cancer
progression, and this can be blocked at various stages with
pharmacological inhibitors (yellow). Cross-talk between AR and other
signaling pathways is being used to establish rational drug combinations
that are currently being explored for their effectiveness. Interconnecting

lines are indicative of overall effects, positive or negative, on pathway
activation. AKT protein kinase B, AR androgen receptor, CREB cAMP
response element-binding protein, CYP17 cytochrome P450 17, EMT
epithelial-to-mesenchymal transition, ERK extracellular signal-regulated
kinase, HSP heat shock protein, JAK Janus kinase, PI3K
phosphatidylinositide 3-kinase, mTOR mechanistic target of rapamycin,
STAT signal transducer and activator of transcription, TNBC triple-
negative breast cancer
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patients who experienced a complete response, partial re-
sponse, or stable disease at 16 weeks of therapy) was observed
in patients who had a certain, presumably androgen-driven,
gene signature [39, 40] more predictive of response than de-
gree of AR positivity by IHC. This is not terribly surprising,
however, since the same is true of ER, where even patients
whose tumors express down to 1% ER positivity can receive
benefit from anti-estrogen and estrogen deprivation therapies,
and ER activity readouts such as PR status, MammaPrint, and
Oncotype DX are indicators of the degree of ER dependence.
To date, the precise AR-regulated genes essential to TNBC
biology remain to be determined and validated as predictive
biomarkers of therapeutic benefit.

Androgen Receptor Mutations and Splice Variants
in Triple-Negative Breast Cancer

Very few mutations have been found in AR in TNBC com-
pared to castration-resistant prostate cancer (CRPC).
Sequencing data in The Cancer Genome Atlas (TCGA) from
93 analyzed TNBCs identified two patients with single mis-
sense mutation (described by Barton et al. [15]). The AR
mutational status may increase under selective pressure if
AR-targeted agents become more commonplace in BC
treatment.

AR splice variants that affect AR function are relatively
more common in BC than AR mutations [41–44]. One splice
variant (Δ3AR) has a deletion of exon 3 and was predicted to
lack the second zinc finger within the DNA-binding domain
and have reduced or no ability to bind to androgen response
elements and activate transcription [41]. In some BC tissues,
this AR variant had relatively high expression compared to the
full-length protein, indicating a potential role in regulating the
growth of these tumors. Another splice variant, AR45, has
low expression levels in normal breast tissue [42]. This splice
variant lacks exon 1 and is preceded by a novel 7–amino acid
long N-terminal extension that inhibits AR function [43].
AR45 and another AR splice variant, AR-V7 (formerly
known as AR3), are found in the TNBC cell lines MDA-
MB-453 and MDA-MB-231 [44]. Although AR splice vari-
ants have been identified in BC cell lines, further studies are
needed to characterize AR splice variant expression in TNBC
specimens, particularly after the selective pressure of anti-
androgen therapy.

The AR-V7 splice variant is of particular interest since it is
associated with resistance to anti-androgen therapy in CRPC
[45, 46]. This isoform of AR produces a protein product that
lacks the C-terminal ligand-binding domain but retains the
transcriptionally active N-terminal domain. Although it is un-
able to bind ligand, AR-V7 is constitutively active in a ligand-
independent manner and is capable of promoting activation of
target genes. Research on the AR-V7 splice variant in CRPC

using circulating tumor cells (CTCs) demonstrates that the
presence of AR-V7 is associated with poorer outcomes (pros-
tate-specific antigen [PSA] response, PSA progression-free
survival [PFS], clinical or radiographic PFS, and overall sur-
vival [OS]) [45–47]. In addition, AR-V7 is associated with
better OS with chemotherapy (taxane) than anti-androgen
therapy (abiratone, enzalutamide, or apalutamide) [48].
Whether AR-V7 has similar effects in TNBC remains to be
seen.

Measurement of Androgen Receptor Protein
Expression by Immunohistochemistry

All staining procedures must be standardized and validated
cl inical ly and Clinica l Laboratory Improvement
Amendments (CLIA)-certified in order to be utilized for clin-
ical treatment decisions. IHC methods are well established for
clinical use for certain proteins such as ER andHER2 in breast
cancer [49], both of which are used as predictive biomarkers
when evaluating targeted treatment. The current pathological
characterization of AR expression levels in BC is largely
based on IHC results using formalin-fixed, paraffin-
embedded (FFPE) tissue samples obtained from primary or
metastatic tumor biopsies [28] and is not routine or standard-
ized. The detection of AR has improved as more sensitive and
specific antibodies to AR have been developed; over time, this
has resulted in an increased percentage of TNBC study sam-
ples reported as AR+.

In addition to considerations regarding the technical as-
pects of AR IHC, including the validation and standardization
currently underway for BC, tumor biology must also be con-
sidered for appropriate interpretation of IHC results.
Characterizing AR expression in TNBC accurately can be
difficult, in part due to tumor heterogeneity. While tumor het-
erogeneity is not unique to TNBC, the extent of heterogeneity
in TNBC between molecular subtypes and even intratumoral
genomic heterogeneity makes defining common features of
this type of BC particularly challenging [37]. Another impor-
tant consideration is whether the patient received prior treat-
ment, and if so, what type of treatment. Certain therapies, such
as aromatase inhibitors, increase circulating androgen levels
[50–55]. AR protein is stabilized and translocated to the nu-
cleus in breast cancer upon binding to androgens [56, 57], and
this effect is abrogated by the new-generation anti-androgen
enzalutamide (Fig. 2). The effect was observed in ER+MCF7
cells and the LAR BC cell line MDA-MB-453 grown as xe-
nografts in mice treated with estradiol versus DHT [4].
Likewise, in the non-LAR but AR+ SUM159PT TNBC cell
line grown in cycling mice, AR was nuclear and decreased
with anti-androgen [16]. In two patient-derived xenografts
(PDX) originally low for nuclear AR by IHC, AR increased
in mice given DHT versus cellulose control (Fig. 2),
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indicating that even TNBCs that have low AR have the ca-
pacity to respond to androgen agonists and antagonists.
Currently, there are insufficient data to ascertain how well
AR IHC results will correlate with measures of AR dependen-
cy and clinical outcome, as well as the minimum percentage of
cells positive for nuclear AR that should be considered as
AR+, and predictors of response to anti-androgen therapy.

Finally, regarding AR status, it is also important to
consider the influence of AR splice variants on staining
results. In an overview of AR splice variants found in
prostate cancer, the authors noted that several of these
variants lack the C-terminal ligand-binding domain [58].
AR signaling is constitutively active in such variants, po-
tentially contributing to resistance to androgen deprivation
therapy (ADT) [58–61]. Additionally, AR has many phos-
phorylation sites, although the contribution of these sites
to transcriptional activity is not yet as clear as it is for
ER, where there clearly are sites phosphorylated upon ad-
dition of ligand that affect receptor activity and turnover.

New Methods for Determining Androgen Receptor
Status

Alternative approaches to clinical characterization of AR+ BC
are currently in the early stages of development. Given the
long-term understanding of the role of androgens in prostate
cancer pathogenesis, several novel approaches are being in-
vestigated, including blood-based methods using CTCs, cir-
culating tumor DNA (ctDNA), and exosomes [62]. These
blood-based approaches allow for more frequent and less in-
vasive assessments, which are helpful for diseases like CRPC
and TNBC, where AR status can change over the course of
disease progression [45, 46]. The less invasive approaches of
liquid biopsies are especially useful for difficult to biopsy
lesions, as described below in a case study.

In prostate cancer, CTCs can be used to identify mutations
in AR, AR expression and function, and response to therapy
[63–66]. In one study of progressive metastatic CRPC, eval-
uation of CTCs revealed that AR expression and nuclear

Fig. 2 Two TNBC patient-derived xenografts grown in mice had low
AR, but nuclear AR increased upon exposure of mice to DHT and this
effect was reduced by subsequent treatment with the anti-androgen
enzalutamide. Mice were implanted with silastic tubing containing either
cellulose only (10 mg) or a mixture of cellulose and DHT (2 and 8 mg,
respectively) at the time of placement of TNBC PDX tumor pieces into
the mammary glands. When tumors reached an average of 55 mm3 in

size, mice were either continued on DHT alone or given DHT + Enza in
chow fed ad libitum for a target dose of 50 mg/kg/day for 3.5 weeks.
FFPE tumors (PDX 3561 and PDX PK49) were stained for AR (SP107,
CellMarque, ×40 magnification). AR androgen receptor, DHT dihydro-
testosterone, Enza enzalutamide, PDX patient-derived xenografts, TNBC
triple-negative breast cancer, FFPE formalin-fixed paraffin-embedded
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localization varied both within and between patients, suggest-
ing that a molecularly diverse, AR-centric pathobiology un-
derlies castration resistance [66]. In another study of CRPC,
CTC-based assays were used to track AR expression in real
time in patients treated with enzalutamide and abiraterone,
another inhibitor of androgen synthesis [67]. For BC, a pre-
sentation at the 2016 annual meeting of the American
Association of Cancer Research reported characterization of
AR expression and heterogeneity in CTCs of patients with
metastatic BC [68].

Similarly, ctDNA has been used to identify AR mutations
in CRPC. Two studies have examined a missense mutation in
the ligand-binding domain of AR that conferred resistance to
the second-generation anti-androgens enzalutamide and
apalutamide (ARN-509) [69, 70]. There is growing use of
ctDNA techniques in BC in place of traditional tumor biopsies
[71], and similar to CRPC, it could be a valuable tool to de-
termine AR status.

In addition, research on prostate cancer suggests that
exosomes may serve as potential biomarkers of AR status as
well as predictors of therapeutic response. Exosomes act as
mediators of cell-to-cell communication in the local tumor
microenvironment and play a role in cancer progression and
metastasis [72, 73]. One study demonstrated that AR is pres-
ent in prostate cancer-related exosomes [74]. Furthermore,
patients with aggressive prostate cancer exhibited higher
levels of prostate cancer-related exosomes in the blood than
prostate cancer patients without metastases or healthy volun-
teers [74]. In another study, plasma-derived exosomal RNA
was used to detect the presence of an AR splice variant and
predict resistance to hormonal therapy in metastatic CRPC
patients [75]. Future experiments will determine if similar
results are observed in BC patients.

As an example, a case study in which a blood-based meth-
od was used to determine a breast cancer patient’s AR status is
presented below.

Case Study of Liquid Biopsy Analysis to Determine
Current AR Status in a TNBC Patient
with an Inaccessible Lesion

AR expression in TNBCs is likely to be indicative of a tumor
that may respond to AR-targeted therapy. However, for a va-
riety of reasons, it is likely that archival FFPE tumor samples
may not be indicative of the current AR expression level, and
patients with metastatic disease may not have accessible tu-
mor for reassessment. It is crucial to identify biomarkers pre-
dictive of response to anti-androgens in TNBC. This patient
vignette illustrates how peripheral blood, which is easily ac-
cessible, can be used to quantify AR utilizing a digital assay
that counts copies of AR mRNA. Not only can this assay
provide a potential predictive biomarker for AR-targeted

therapy, it can also dynamically follow the level of AR in a
patient during the course of their therapy.

The subject was a 63-year-old female initially diagnosed
with TNBC in June 2011 who underwent a left breast mastec-
tomy. She was disease-free until 2014; upon disease recur-
rence, she was treated with capecitabine from May to
December 2014, followed by nab-paclitaxel plus carboplatin
combination therapy from December 2014 to May 2015 and
then nab-paclitaxel as a single agent from June 2015 to
January 2016. The subject had progressive visceral (lung)
disease and was enrolled into the phase 1 portion of
CLARITY-01, the phase 1/2 study of seviteronel, in
February 2016. She was considered AR− at study entry based
on IHC of an archival FFPE sample from a metastatic lymph
node biopsy obtained in 2014. Eastern Cooperative Oncology
Group (ECOG) performance status at screening was 1.

The subject began seviteronel dosing at 450 mg once daily
in 28-day continuous dosing cycles and responded to treat-
ment with radiographic stable disease for almost six 28-day
cycles. To better understand the AR status of her current dis-
ease state, the subject was scheduled to have a lung metastasis
biopsy, but the procedure was considered unfeasible due to the
tumor location. Instead, peripheral blood was collected in a
PAXgene tube for RNA stabilization, and a sensitive, digital
assay for AR mRNA using the droplet digital PCR (ddPCR)
platform demonstrated a high level of AR positivity. This
provided a real-time, minimally invasive assessment of the
cancer cell AR status in a patient who met the criteria for
clinical activity (complete response, partial response, or stable
disease at 16 weeks of therapy) in the clinical study.

To establish the assay, AR full-length and AR-V7 splice-
variant mRNA copy numbers were determined by ddPCR
analysis of peripheral blood drawn into PAXgene blood
RNA tubes. Cutoffs were established by comparison with
healthy controls and patients with localized prostate cancer,
stage D0 prostate cancer, andmetastatic prostate cancer. These
studies allowed development of an AR-V7 cutoff that corre-
lated with metastatic disease. Previous studies have utilized
mononuclear cells isolated from peripheral blood and ddPCR
analysis [76] or whole blood collected in PAXgene blood
RNA tubes and quantitative PCR analysis [77].

Androgen Receptor and Epithelial-to-Mesenchymal
Transition

Epithelial-to-mesenchymal transition (EMT) is a process
through which normal or carcinoma cells can lose cell-cell
junctions/polarity and develop a more migratory, stem cell-like
phenotype [78]. While this process is critical during embryonic
development, it has also been implicated at certain steps in the
metastatic cascade [79]. In BC, AR contributes to EMT and
metastasis in several ways. Loss of E-cadherin, an epithelial
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marker, is a common EMT event that helps promote metastasis
[80]. In ER+ BC, AR activation causes a decrease in E-cadherin
and an increase in stem cell-like properties and EMT-related
gene expression as well as an increase in metastasis [81, 82].
These results are supported by recent evidence linking activated
AR to acquisition of a stem-like phenotype in TNBC cells and
increased MDA-MB-231 xenograft growth [83]. In TNBC, AR
promotes survival in anchorage-independent conditions and
maintains a CSC-like tumor-initiating population [22].
Correspondingly, in TNBC PDX models, AR mRNA was
among the transcripts upregulated in CTCs and micrometastases
as compared to primary tumors [18]. Furthermore, in a mouse
mammary tumor virus-polyomamiddle tumor antigen (MMTV-
PyMT) model, ER and PR proteins are absent but AR protein is
abundant in lung metastases and AR inhibition significantly de-
creased cancer cell invasion and anchorage-independent growth
in vitro [84]. Together, these data suggest that AR may facilitate
BC metastasis by protecting against apoptosis in an anchorage-
independent tumor cell population with EMT or stem cell-like
properties.

The association between AR and EMT has important clin-
ical implications. While a large percentage of TNBC patients
responds favorably to chemotherapy, many will relapse with
chemoresistant disease since chemotherapy often fails to tar-
get the slower growing population of cells (that are either
CSC-like or more epithelial, as in the case of LAR TNBC).
If AR promotes EMT and stemness, then the combination of
AR inhibitors and chemotherapy may be a rational and im-
pactful drug combination for patients. Preclinical data in a
TNBC xenograft model support this hypothesis, demonstrat-
ing that the combination of paclitaxel and enzalutamide given
simultaneously significantly decreased tumor growth and re-
currence when compared to paclitaxel alone [22].

The Influence of Androgen Receptor on Immune
Oncology

AR expression in cells within the tumor microenvironment
could have significant effects on tumor growth and progres-
sion. AR is expressed in a number of immune cells, both
innate and adaptive, and knockout of AR can have profound
effects on immune cell maturation and function [85–88]. In
particular, AR activation alters T cell immunity by suppress-
ing T cell (CD4 and CD8) proliferation and inhibiting CD4 T-
helper differentiation [89, 90]. Given that T cells play a prom-
inent role in anti-tumor immunity and that T cell infiltration is
a predictive marker in TNBC [91–93], the systemic use of
anti-androgens (or androgen agonists) could have significant
effects on anti-tumor immune activity. It was previously re-
ported that androgen deprivation in prostate cancer patients
leads to an increase in T cell infiltration into the prostate
[94]. More recent studies investigated the effects of anti-

androgens on CD8 T cell anti-tumor activity in both prostate
cancer and BC [59, 95–97]. To date, however, it remains un-
clear how long-term AR targeting therapies will affect the
immune system and whether they will boost or be detrimental
to anti-tumor immunity. It would be particularly beneficial if
endocrine therapy proved useful in combination with targeted
immunotherapies such as PD-L1 (programmed death ligand
1) interfering antibodies [98, 99].

Targeted Agent Activity Alone and in Combination
for Treatment of AR+ Triple-Negative Breast Cancer

With AR possibly playing a central role in AR+ TNBC tu-
morigenesis, AR-targeted agents, such as androgen biosynthe-
sis inhibitors (eg, cytochrome P450 C17a [CYP17] inhibitors)
and inhibitors of AR activation (eg, AR antagonists), are being
examined in clinical trials [100] (Table 1). To date, data are
available from studies of bicalutamide, enzalutamide,
seviteronel, and abiraterone acetate, and a study of orteronel
(TAK-700) is in progress [101].

The first trial of an anti-androgen in BC was a phase 2 trial
of bicalutamide in AR+/ER− metastatic BC. Bicalutamide,
long used to treat prostate cancer, is a competitive antagonist
that permits AR nuclear translocation and binding to DNA but
in an inactive form [102]. In a phase 2 trial, 5 of 26 patients
with AR+/ER−/PR− BC treated with bicalutamide had stable
disease for at least 6 months, resulting in a 24-week CBR of
19% [103]. AR expression in the 5 patients was varied: 10
−20% (1 patient), > 50% (1 patient), > 80% (2 patients), and >
90% (1 patient). Median PFS was 12 weeks (95% CI, 11–
22 weeks), and the most common drug-related adverse events
(AEs) were fatigue, hot flashes, limb edema, and aspartate
aminotransferase or alkaline aminotransferase elevations.
This was the first clinical trial to establish the activity of
anti-AR therapy in advanced BC and the potential of targeting
AR in AR-dependent, ER-independent BC [103]. However,
while disease stabilization in 5 patients with AR+/ER– meta-
static BC is indicative of AR inhibition, it is also possible that
these 5 patients had more indolent disease since LARTNBCs
are less proliferative than other subtypes of TNBC.

The next trial of an AR inhibitor in TNBC was with
enzalutamide, a newer-generation AR competitive inhibitor
approved by the FDA to treat men with metastatic CRPC
[57]. Enzalutamide, like bicalutamide, directly binds to AR
and is a competitive antagonist but has a > fivefold higher
binding affinity than bicalutamide and, in contrast to
bicalutamide, impairs AR nuclear translocation, inhibits AR-
DNA binding and gene regulation, and consequently has no
partial agonist activity [56, 104, 105]. In a phase 2 study of
enzalutamide in advanced AR+ TNBC, 26 (35%) of 75
evaluable patients demonstrated a 16-week CBR, and 22
(29%) demonstrated a 24-week CBR [39]. Of the 26 patients
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who had CBR at 16 weeks, 2 had a complete response and 5
patients had a partial response. Median PFS was 14 weeks
(95% CI, 8–19 weeks). The most common therapy-related
AEs were fatigue, nausea, decreased appetite, diarrhea, and
hot flush.

The non-steroidal CYP17 inhibitor orteronel (TAK-700)
was initially being developed for the treatment of CRPC but
failed in phase 3. It is currently being investigated in women
with AR+ TNBC [101].

A phase 2 trial investigated the efficacy of abiraterone ac-
etate—an irreversible and potent inhibitor of CYP17—with
prednisone in women with metastatic or inoperable locally
advanced AR+ TNBC [106]. Of 30 patients who were eligible
and evaluable for the primary endpoint, 6 (20%) had a CBR at
6 months. Of these 6 patients, 1 had a complete response and 5
had stable disease. However, this proportion of patients
achieving clinical benefit was insufficient to meet predefined
criteria to reject the null hypothesis. The most common drug-
related AEs were fatigue, hypertension, hypokalemia, and
nausea, with the majority being grade 1 or 2.

In addition, the clinical benefit of seviteronel, a non-
steroidal selective CYP17 17,20 lyase and AR inhibitor that

blocks both testosterone and estradiol production and inhibits
AR activation, was recently reported from an ongoing phase
1/2 study that includes a separate cohort of women with
unresectable locally advanced or metastatic AR+ TNBC in
addition to ER+/HER2− BC [107]. The 16-week CBR for
AR+ TNBC was 2 of 6 patients (33%), allowing full stage 2
accrual. Declines in CTCs were observed in 7 of 10 evaluable
patients (AR+ TNBC and ER+ BC patients), including all
patients who met clinical benefit criteria across both cohorts.
The most common AEs were fatigue, dizziness, nausea, and
decreased appetite, all grade 1 or 2.

The first-generation AR antagonist bicalutamide and the
next-generation AR antagonist enzalutamide have both
demonstrated clinical activity in patients with AR+
TNBC, as discussed above. Seviteronel, with a dual mech-
anism of action of selective CYP17 lyase inhibition and
AR antagonism, also has demonstrated initial clinical ac-
tivity and full phase 2 clinical development is ongoing in
women with AR+ TNBC in addition to other types of
male and female BC [108]. Thus, a strategy of combined
targeting of androgen biosynthesis and AR inhibition ap-
pears promising for the treatment of AR+ TNBC.

Table 1 Clinical trials of AR-targeted therapies in TNBC

NCT no. Phase Patient population Treatment Treatment type Start date Status note

NCT00468715 II Metastatic AR+ TNBC Bicalutamide AR antagonist Mar 2007

NCT02348281 II Advanced AR+ TNBC; PM Bicalutamide AR antagonist Jan 2015 Terminated

NCT03055312 III Metastatic AR+ TNBC Bicalutamide AR antagonist Dec 2016

NCT02605486 I/II Metastatic AR+ BC Bicalutamide +
palbociclib

AR antagonist + CDK4/6 inhibitor Nov 2015

NCT03090165 I/II Advanced AR+ TNBC Bicalutamide + ribociclib AR antagonist + CDK4/6 inhibitor Mar 2017

NCT01889238 II Advanced AR+ TNBC Enzalutamide AR antagonist June 2013

NCT02750358 II Early stage AR+ TNBC;
adjuvant

Enzalutamide AR antagonist May 2016

NCT02676986 II AR+ BC; neoadjuvant Enzalutamide
(± exemestane)

AR antagonist (±AI) Aug 2015

NCT02689427 IIB AR+ TNBC; neoadjuvant Enzalutamide ± paclitaxel AR antagonist ± chemotherapy Sep 2016

NCT02929576 III Advanced AR+ TNBC Enzalutamide ± paclitaxel AR antagonist ± chemotherapy Sep 2016 Withdrawn

NCT02457910 I/II Advanced AR+ TNBC; PM Enzalutamide ± taselisib AR antagonist ± PI3K inhibitor June 2015

NCT03207529 I Metastatic AR+ BC; PTEN+ Enzalutamide ± alpelisib AR antagonist ± PI3K inhibitor Dec 2017

NCT01842321 II Advanced AR+ TNBC Abiraterone + prednisone CYP17 inhibitor + corticosteroid July 2013

NCT01990209 II Metastatic AR+ BC Orteronel CYP17 inhibitor Mar 2014

NCT02580448 I/II Advanced AR+ BC; ER+/HER2−
and TNBC

Seviteronel CYP17 inhibitor/AR antagonist Aug 2015

NCT02067741 II Metastatic AR+BC; ER+/HER2−
and TNBC

CR1447
(4-OH-testosterone)

AR agonist May 2016

NCT02000375 II Metastatic AR+ BC; ER+ and
TNBC, PM

DHEA AR agonist Mar 2013 Terminated

NCT02368691 II Advanced AR+ TNBC GTx-024 Selective AR modulator June 2015 Terminated

NCT02971761 II Advanced AR+ TNBC GTx-024 +
pembrolizumab

Selective ARmodulator + anti-PD-1 June 2017

AI aromatase inhibitor, AR androgen receptor, BC breast cancer, CDK cyclin-dependent kinase, CYP17 cytochrome P450 17, DHEA dehydroepian-
drosterone, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, NCT national clinical trial, PD-1 programmed cell death protein 1,
PI3K phosphoinositide 3-kinase, PM postmenopausal, PTEN phosphatase and tensin homolog, TNBC triple-negative breast cancer
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Other combination strategies utilizing AR-targeted agents
with non-endocrine agents are also under clinical investigation
in AR+ TNBC. For example, AR antagonism in AR+ TNBC
is being explored in combination with a cell cycle cyclin-
dependent kinase CDK4 and CDK6 inhibitor (bicalutamide
+ palbociclib) [109] and with a phosphoinositide 3-kinase
(PI3K) inhibitor (enzalutamide + taselisib) [110]. The combi-
nation of AR antagonists and taxanes is also being investigat-
ed [111] since taxanes have been shown to inhibit the translo-
cation of the AR from the cytoplasm to the nucleus in prostate
cancer [112] and were effective together in preventing recur-
rent disease in a preclinical model of TNBC [22]. Further
work is needed to develop rational combinations that utilize
AR-targeted agents in AR+ TNBC.

Conclusion

Most types of BC, including TNBC, can be driven in part by
activated, ligand-bound AR. While IHC using FFPE samples
is the traditional means of measuring AR expression in tu-
mors, new blood-based approaches may provide improved
real-time AR assessment. Several novel drugs are currently
in development that target AR and/or androgen production
that may provide additional options for patients with AR+
TNBC for whom chemotherapy is the only current treatment
option.

As preclinical research strives to better model the clinical
situation, varied approaches are being taken, such as utiliza-
tion of patient-derived xenografts and mouse mammary car-
cinoma models with intact immune systems derived from ge-
netically engineered transgenic models, spontaneous arising
tumors, or chemically induced tumor models to examine the
effects of AR inhibition on both the anti-tumor immune re-
sponse and the immune system in general. There remains
much to be learned regarding how to leverage the impact of
endocrine therapy (even in TNBC) on host anti-tumor immu-
nity and develop optimal combination regimens with other
therapies for TNBC. There is also evidence that anti-
androgens may have off-target effects [97], and research into
these alternative mechanisms of action is ongoing. In conclu-
sion, modeling various clinically relevant physiological states
such as pre- or postmenopause, postpartum pregnancy-
associated BC, and obesity in immune-intact animals is an
important direction for future research and will address con-
temporary questions.
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