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Abstract

Oxidative stress has been implicated in a number of neurodegenerative diseases spanning various 

fields of research. Reactive oxygen species can be beneficial or harmful, depending on their 

concentration. High levels of reactive oxygen species can lead to oxidative stress, which is an 

imbalance between free radicals and antioxidants. Increased oxidative stress can result in cell loss. 

Interestingly, sex differences have been observed in oxidative stress generation, which may 

underlie sex differences observed in neurodegenerative disorders. An enhanced knowledge of the 

role of sex hormones on oxidative stress signaling and cell loss can yield valuable information, 

leading to sex-based mechanistic approaches to neurodegeneration.
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Oxidative Stress Generation

Oxygen is required by many living organisms for survival. Inefficient oxygen metabolism 

can be damaging and lead to oxidative stress [1]. Oxidative stress occurs when a biological 

system is overwhelmed by reactive oxygen species (ROS) due to its inability to counteract 

these free radicals [2]. Free radicals include peroxides, superoxides, hydroxyl radicals, and 

singlet oxygen [3, 4]. They are extremely unstable, reacting quickly with many biological 

products. Under normal homeostatic conditions, ROS plays a role in immunity, homeostasis, 

and signal transduction pathways [5, 6]. However, when antioxidants are inadequate to 

balance free radicals and ROS, oxidative stress occurs. These free radicals can trigger lipid 

peroxidation reactions [7], as well oxidative stress DNA mutations [8]. As the imbalance 

continues, oxidative stress can induce apoptosis, programmed cell death [9, 10].
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Sex differences in oxidative stress have been observed in numerous basic and clinical 

studies, wherein males exhibit higher oxidative stress than females [11–17]. Interestingly, 

sex differences have been observed in the enzyme NADPH oxidase (NOX) [11, 13, 18–20], 

which is a major oxidative stress generator in cells [21]. NOX is a multi-subunit enzyme, 

consisting of membrane bound catalytic subunits and cytosolic regulatory subunits. The 

catalytic subunits are gp91phox and p22phox, while the regulatory subunits are p40phox, 

p47phox, p67phox, and Rac. The regulatory complex translocates to the membrane upon 

p47phox phosphorylation, leading to subsequent activation of the enzyme [22]. The activated 

NOX complex catalyzes the transfer of electrons from NADPH to an oxygen molecule, 

resulting in the formation of reactive intermediates [23]. In different cell types, increased 

NOX has been observed in males compared to females. For example, using mesenteric 

arterioles microvessels, Dantas et.al found increased NOX subunits (p47phox, p22phox, 

p67phox, and gp91phox) in young adult male rats compared to females [11]. Similarly, young 

healthy male rats have increased oxidative stress and NOX expression in aortic and cerebral 

arterial cells compared to young healthy female rats [19, 20].

Oxidative stress can be influenced by homocysteine. Homocysteine, a non-protein α-amino 

acid, is an indicator of low folate and B-12 status [24], and has been used as a marker for 

oxidative stress [25, 26]. Studies have found homocysteine can increase NOX-mediated 

superoxide production, and this increase in superoxide production can be blocked by the 

NOX inhibitor, apocynin [18]. Similar to NOX, sex differences in homocysteine levels have 

been observed. Homocysteine levels are higher in men than women [14, 26–32]. Sex 

hormones can also influence homocysteine levels. In young healthy transsexuals 

homocysteine levels were influenced sex hormones. Specifically, male to female 

transsexuals receiving estrogen hormone therapy experienced decreased homocysteine, 

whereas female to male transsexuals receiving androgen hormone therapy had increased 

homocysteine levels [33]. These studies indicate sex hormones may underlie the observed 

sex differences in oxidative stress generation.

Although males generally have higher oxidative stress than females, oxidative stress is not 

always damaging. ROS can play a role in homeostasis, such as preconditioning. 

Preconditioning is a protective process, wherein exposure to a small insult allows the cells to 

better withstand a subsequent larger insult. This process has been observed in several types 

of cells (e.g. astrocytes, neurons, fibroblasts, muscle) [34–40]. In our basic science studies, 

physiological levels of testosterone can increase oxidative stress and be neuroprotective by 

preconditioning the cell against damage from subsequent exposures to oxidative stress [41, 

42]. However, there appears to be a limit in testosterone’s preconditioning capabilities. If 

oxidative stress is too high, then testosterone can be damaging.

Oxidative Stress and Aging

Oxidative stress has been linked with aging [43, 44]. Indeed, one of the major theories of 

aging is the Free Radical Theory of Aging. This theory proposes oxidative damage to cells, 

due to a buildup of free radicals in a biological system over a time period, results in aging 

and aging-associated diseases [45–47]. Sex differences in oxidative stress persist and worsen 

with aging in both animal and clinical samples, wherein males continue to have higher 
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oxidative stress than females [48–50]. Aging, specifically menopause, plays a significant 

role in oxidative stress status in females. Menopause is a period characterized by a dramatic 

decline of estrogens, which normally occurs around 50–52 years of age in Caucasian women 

and 48–50 years of age in African-American and Hispanic women [51–57].

As expected, homocysteine increases with age [14, 26–32, 58], indicating elevated oxidative 

stress [25, 26]. Homocysteine levels further increase with menopause [59–63]. An elegant 

study by Hak et.al. used aged-matched post- and pre-menopausal women (46–55 years of 

age) and found homocysteine levels were significantly elevated after menopause [64]. 

Although other studies have not find this association [65, 66], it could be due a lack of 

adjusting for age. Similar findings have been observed in animal models, in which 

downstream targets of homocysteine, such as NOX [18], increased with aging, in general, 

and in female rats that have undergone ovariectomy, an experimental animal model for 

menopause [67, 68].

Our laboratory examined the role of aging and homocysteine levels using plasma samples 

from healthy Caucasian men (n = 700) and women (n = 1,061) over the age of 50 from the 

Texas Alzheimer’s Research Care and Consortium (TARCC) funded by the state of Texas 

(Table 1). Our data showed homocysteine, used as a marker for oxidative stress, significantly 

increased with age in both men and women. No differences in homocysteine levels were 

found between the men and women (Figure 1), which is consistent with prior studies 

indicating menopause increases homocysteine levels in healthy women to levels observed in 

healthy men [59–63]. Although hormone manipulations were not examined in the TARCC 

cohort, estrogen hormone replacement can decrease homocysteine levels in post-menopausal 

women [69–72]. Interestingly, estrogen hormone replacement therapy in post-menopausal 

women is associated with decreased testosterone, along with the expected increased estradiol 

[71, 73, 74]. Generally, menopause is associated with the loss of estrogen, but testosterone 

levels are maintained [75–78]. The effects of testosterone on menopause are understudied. 

Since estrogen hormone replacement therapy decreased testosterone levels in post-

menopausal women and our prior studies showed that testosterone increased oxidative stress 

[41, 42], it is possible testosterone may mediate the elevation of homocysteine in post-

menopausal women.

In 2001, approximately 40% of post-menopausal women were on some form of hormone 

replacement therapy [79]. Since there were not any conclusive trial data about the risks and 

benefits of hormone replacement therapy in post-menopausal women, the National Institutes 

Health (NIH) sponsored a large randomized, placebo controlled, double blind clinical trial 

called the Women’s Health Initiative (WHI). Participants were post-menopausal women 

between the age of 50–79 years old at intake. This trial consisted of two arms: estrogen only 

replacement for post-menopausal women with a prior hysterectomy (n = 10,739) and 

estrogen + progesterone replacement for post-menopausal women with intact uteri (n = 

16,608). Outcomes examined included stroke, venous thromboembolism, cancer, 

osteoporosis, and coronary heart disease [80]. Results from both arms found no protective 

effects of either estrogen only or estrogen + progesterone hormone replacement therapy, 

whereas adverse effects on cardiovascular disease (e.g. pulmonary embolism, deep vein 

thrombosis, and ischemic stroke) were observed [81]. Due to these negative effects, the WHI 
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study was terminated early [82]. Based on these results, use of hormone replacement therapy 

in post-menopausal women drastically declined [83].

Within the past few years, data from the WHI study have been reassessed. Researchers 

found 83% of the WHI participants were women several years from menopause. 

Furthermore, the average of age of participants was 63 years old, which is 12–13 years past 

menopause [84]. When the study outcomes were stratified by age of the participants, the 

results showed decreased cardiovascular risk and total mortality in younger women with 

hormone replacement therapy compared to the older women [85, 86]. No evidence of 

increased stroke was found in women 50–59 years of age in the estrogen only hormone 

replacement therapy group [87]. Thus, both a women’s age and years from menopause are 

important factors for determining the impact of hormone replacement therapy. These factors 

are used to determine the “window of opportunity” for hormone replacement therapy in 

women, wherein the benefit/risk ratio is more protective in women less than 10 years from 

menopause [88].

Oxidative stress has been proposed as one mechanism underlying the “window of 

opportunity” for hormone replacement therapy. Several studies found estrogen can decrease 

oxidative stress [89–91]. However, estrogen’s protective effects were found to be conditional 

[90, 92]. Based on these conditional effects of estrogen, Dr. Roberta Brinton coined the term 

“Healthy Cell Bias of Estrogen Action.” Estrogen exposure to healthy cells results in 

estrogen being protective against subsequent insults, such as oxidative stress. However, this 

protective effect is not observed with estrogen exposure in unhealthy cells [90]. Indeed, we 

have found similar effects with testosterone in our in vitro studies [41], indicating the 

“Healthy Cell Bias” theory applies to all sex hormones in oxidative stress environments. 

Similarly, clinical studies examining the impact of testosterone replacement therapy found 

conditional effects of testosterone, in which testosterone replacement therapy was associated 

with adverse effects in aged men (mean age is 74 years old) with chronic diseases [93, 94].

Oxidative Stress and Neurodegenerative Diseases

Oxidative stress has been implicated in several age-associated neurodegenerative diseases, 

including Alzheimer’s disease [95], Parkinson’s disease [96], and non-neurodegenerative 

diseases (e.g. cancers, sickle cell disease, cardiovascular diseases, and diabetes) [97–100]. 

Age is one of the greatest risk factors for both Alzheimer’s and Parkinson’s diseases. 

Furthermore, oxidative stress is a key feature in these progressive neurodegenerative 

disorders [96, 101]. Increased oxidative stress has been shown to be involved in cell loss in 

key brain regions (e.g. substantia nigra, cortex, and hippocampus) involved in the clinical 

manifestations of Alzheimer’s and Parkinson’s diseases [96, 102]. Interestingly, sex 

differences have been observed in both disorders.

Sex Differences in Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which affects millions 

of people universally. It has been recorded as the second most common neurological disease 

[103]. One characteristic feature of PD is neuronal death in the substantia nigra of the brain, 
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specifically dopaminergic neurons. Mechanisms underlying this cell death include oxidative 

stress and inflammation [41, 104]. This results in the established symptoms of PD relating to 

the motor system, which include tremor, rigidity, bradykinesia and postural instability [105]. 

Generally, these symptoms manifest when 80% of the dopaminergic cells within the 

substantia nigra are lost [106]. The etiology of PD still remains elusive [107]. Aging is one 

of the principal risk factors for the development of idiopathic Parkinson’s disease [108]. 

Along with aging, sex-related differences in PD have also been recognized [109]. Therefore, 

it is probable sex hormones play a vital role in this phenomenon, especially as men are 1.5–2 

times more at risk of developing PD than women [110–112].

Several studies propose estrogen underlies this sex bias in PD. Women displayed a less 

severe PD phenotype than men at presentation. Indeed, studies found PD symptoms worsen 

for pre-menopausal women during menstruation, when estrogen levels are low [113]. 

Unsurprisingly, severity of PD increases in post-menopausal women compared to pre-

menopausal women, due to the loss of estrogen during menopause. Clinical studies found 

estrogen hormone replacement can diminish the severity of early PD manifestations [114–

116]. Therefore, estrogen was proposed to be neuroprotective for dopaminergic neurons in 

the substantia nigra, and can help mitigate PD progression [117–119].

Contrary to these reports, some studies were unable to find estrogen neuroprotection [120, 

121], indicating another mechanism may be mediating this sex difference in PD. One 

possibility could be testosterone. Currently, the role of testosterone in neurodegeneration is 

understudied. Few studies have examined the impact of testosterone on PD, compared to 

studies on estrogen protection. Only one clinical study has been conducted on aged men 

with PD and treated with L-DOPA, and the results showed testosterone replacement therapy 

did not impact motor or non-motor PD features [122]. Further, this group observed no 

interactions between PD medications and testosterone levels [123]. Although this is an 

understudied area, basic science studies have yielded more information. Increased oxidative 

stress, via NOX, in the substantia nigral dopaminergic neurons has been reported in male 

rats compared to female rats [124]. Studies from our lab found testosterone is an oxidative 

stressor in dopaminergic neurons, and its actions may be involved in this oxidative stress sex 

difference [41, 42]. In other studies using a 6-OHDA rat model, we observed testosterone 

can exacerbate oxidative stress damage, resulting in motor impairments [125]. It is possible 

testosterone may play a role in the increased PD incidence in post-menopausal women 

compared to pre-menopausal women [112], especially as post-menopausal women are more 

androgenic than estrogenic [126, 127]. Further research needs to be conducted on 

testosterone and PD.

Sex Differences in Alzheimer’s disease

Oxidative stress plays a key role in the pathogenesis of Alzheimer’s disease (AD) [128–

130]. Indeed, increased NOX activity has been linked with AD progression and individuals 

converting from cognitively intact to dementia status [130–132]. Furthermore, associations 

between homocysteine and AD have been reported. Elevated homocysteine has been shown 

to contribute to dementia and AD progression [133–141]. Homocysteine can increase 

oxidative stress and cell loss in the hippocampus (one of the major brain regions affected in 
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AD) [142]. AD risk is doubled in patients that have greater than 14 umol/L homocysteine, 

and thus homocysteine has been indicated as a potential AD risk factor [134, 140].

Sex differences have been reported in AD, wherein AD disproportionally affects women 

more than men in both prevalence and severity [121]. Based on this sex difference, several 

studies have examined the influence of estrogen on AD. In both in vivo and in vitro models 

estrogen protected cells from AD-associated insults [143–149], such as β-amyloid and APP 

oxidative stress insults [150–152]. Furthermore, estrogen had a positive impact on cognition 

in surgically menopausal women [153, 154] and post-menopausal women [155–158]. 

Supporting the role of estrogen in neuroprotection, AD risk increases in post-menopausal 

women [152]. These studies indicate estrogen can act as a neuroprotectant in AD.

Interestingly, estrogen hormone replacement therapy on cognition in post-menopausal 

women is equivocal. Subsequent studies based on the WHI included the Women’s Health 

Initiative Memory Study (WHIMS). The effects of hormone replacement therapy on 

cognition in post-menopausal women were assessed. Unlike the WHI study, the WHIMS 

study participants were at least 65 years old [92, 159]. Initial results indicated that hormone 

therapy had a negative impact on cognition. Specifically, estrogen + progesterone was linked 

with increased dementia and decreased verbal memory [92, 159–161]. Decline in verbal 

memory is one of the earliest predictors of AD [162, 163]. However, subsequent clinical 

studies that used peri-menopausal women, instead of post-menopausal women, found 

estrogen hormone therapy decreased dementia and AD risk [164, 165]. These studies 

indicate the beneficial effects of estrogen are conditional and may be biased toward 

protection of healthy cells [90].

Similar to estrogen, studies have indicated androgens can have protective and negative 

effects on AD. However, it appears testosterone effects are dependent on the cellular 

environment. One such variable that can result in androgens negatively impacting cells is 

oxidative stress [41, 166]. Using plasma samples from TARCC participants diagnosed with 

AD, we found oxidative stress increased with age in both men and women (Figure 2), 

consistent with other studies [167]. Interestingly, we observed men with AD have higher 

levels of homocysteine, used as a marker for oxidative stress, than women with AD (Figure 

2). In this cohort, hypertension and hyperlipidemia were more prevalent in men with AD 

than women with AD compared to cognitively intact men and women, respectively. 

Specifically, 61% (chi-squared p < 0.05) of men with AD had hyperlipidemia, unlike women 

with AD (50%; chi-squared p = 0.967). In addition, 58% (chi-squared p < 0.05) of men with 

AD had hypertension, whereas hypertension was present in 51% (chi-squared p = 0.579) of 

women with AD. Both hypertension and hyperlipidemia can increase oxidative stress [11, 

168–171], which may increase the oxidative load enough to switch testosterone from a 

protective hormone to a damaging hormone. Indeed, our prior studies using the TARCC 

cohort showed endogenous testosterone levels were only associated with cognitive 

impairment under high oxidative stress (homocysteine levels >12 μmol/L) [172]. This effect 

of testosterone on cognition was lost when the cohort was not stratified based on oxidative 

stress, similar to findings in a recent study showing no effects of testosterone replacement 

therapy on age-associated memory impairment. This study by Resnick et.al. was a large, 

multi-site, clinical study, in which participants were men over 65 years of age (n = 788) and 
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exposed to testosterone replacement therapy for one year. Regardless if the men were 

cognitively intact or impaired prior to hormone replacement therapy, no effects of 

testosterone were found [173]. No measures of oxidative stress were assayed in this study. 

Interestingly, majority of the participants in this study were on antihypertensives and 

phosphodiesterase inhibitors, which decrease oxidative stress [174–180]. Therefore, it is 

quite plausible testosterone replacement therapy affects cognition in men with elevated 

levels of oxidative stress.

Conclusion

Sex differences have been observed in oxidative stress and its related diseases. Estrogen and 

testosterone have been reported to contribute to sex differences in neurodegenerative 

diseases [181]. Elucidating sex hormone pathways in neurons may provide therapeutic 

targets to slow down the progression of neurodegenerative disorders by providing sex-based 

mechanistic approaches. Not only do studies indicate that sex is an important variable in 

oxidative stress and neurodegeneration, oxidative stress may be a key factor in determining 

how sex hormones impact neuronal function as either a neuroprotective or neurodamaging 

agent.
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Figure 1. 
Homocysteine levels (oxidative stress) increased with age in cognitively intact participants, 

regardless of sex. A significant regression equation was found (F (2, 248) = 3.821, p < 0.05), 

with an R2 of 0.030. TARCC participants’ homocysteine levels are equal to 7.455 + 0.086 

(age) − 0.495 (sex), where age is measured in years and sex is coded as men and women. 

Cognitively intact participants’ homocysteine levels increased 0.086 umol/L for every year 

and men had higher (0.495 umol/L) homocysteine (non-significant) than women. Only age 

was a significant predictor of homocysteine levels. Specific methods for sample collection 

are available in our prior publication [26]. Serum total homocysteine was assayed in the 

Atherosclerosis Clinical Research Laboratory at Baylor College of Medicine.
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Figure 2. 
Homocysteine levels increased with age in both men and women with AD, with men have 

significantly higher homocysteine levels (oxidative stress) than women. A linear regression 

was calculated to homocysteine levels based on age and sex. A significant regression 

equation was found (F (2, 95) = 11.220, p < 0.05), with an R2 of 0.191. TARCC participants’ 

homocysteine levels are equal to -5.525 + 0.348 (age) − 3.788 (sex), where age is measured 

in years and sex is coded as men and women. AD participants’ homocysteine levels 

increased 0.348 umol/L for every year and men had higher (3.788 umol/L) homocysteine 

than women. Both age and sex were significant predictors of homocysteine levels.
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