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Abstract: Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation
in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health
support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory
cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living
animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular
disorders. UTMD, which binds microbubbles with DNA or RINA carriers into the shell and destroys the
located microbubbles with low frequency and high mechanical index ultrasound can release target agents
to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other
effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance.
Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy

which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic

cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
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Introduction

Greater incidence of cardiovascular diseases (CVDs)
globally, is associated with the increase in mortality
and morbidity rate every passing year (1). Despite the
recent progress in diagnosis and health support, multiple
limitations for cardiac pharmacologic therapy still remain,
including intolerance, individual variation in effectiveness,
side effects and high cost (2). Gene therapy tends to
be a promising therapeutic tool and may be beneficial
in refractory cardiac disease after raising insight into
the molecular mechanisms of CVDs (3,4). However,
experimental methods are not yet ready for clinical
applications in terms of efficient delivery to the target tissue
and sustained expression of transgenes.

© Journal of Thoracic Disease. All rights reserved.

jtd.amegroups.com

Ultrasound targeted microbubble destruction (UTMD)
is a novel therapy to deliver the objective gene to organs of
living animals. It has been proven to bind non-invasively
microbubbles (MBs) with DNA or RNA carriers (assemble
adenoviral, plasmid or nanoparticles) into the shell and
destroy the located MBs with low frequency and high
mechanical index ultrasound, releasing target agents into
peculiar organs (5-7). Not only can UTMD improve the
transfection efficiency by several orders of magnitude, but
also achieve specific target markedly (8). Due to its less
invasive method and highly specific gene delivery system,
UTMD is considered a promising strategy for gene therapy.

For our study the criteria and keywords of “ultrasound

targeted microbubble destruction”, “gene therapy”,

F Thorac Dis 2018;10(2):1099-1111



1100

Qian et al. UTMD in preclinical studies of cardiac gene therapy

Ultrasound

Microbubble

Targeted gene

Figure 1 Therapeutic gene is released to the target cell after the microbubbles are destroyed at the site of the target tissue.

“cardiovascular diseases” was used in PubMed. All cited
studies have received informed consent from each study
participant and protocol approval by the ethics committee
and institutional review board. This paper briefly reviews
the current applications of UTMD in cardiac gene therapy
and suggests avenues for further studies.

Mechanisms of UTMD

UTMD has proven to elevate the gene transfection efficiency
by various preclinical studies iz vitro and in vivo (9-11), as
a potential target specific gene delivery tool. MBs, made of
lipids, saccharide, albumin, biocompatible polymers and other
materials (12-14), are considered as a promising approach for
gene delivery vectors, which expands and contracts through
sonoporation, cavitation and other effects.

Sonoporation, based on the specific response of the
MBs upon exposure to ultrasound, is the mechanism of
transferring gene into cells effectively. When exposed to
ultrasound, MBs oscillate and then rupture (Figure I). Not
only can UTMD improve the transfection efficiency by
several orders of magnitude, but also achieve specific target
markedly. The nuclear membrane in the cell membrane
have temporary and reversible holes (about 50 nm in
diameter), allowing a molecular (weigh 10-30 KD) to get
through (15). Figure 2 shows the process of UTMD gene
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delivery in tissue (16), which demonstrates the key role in
augmentation of transfection efficiency (17).

Cavitation effect is another physical basis of ultrasound
targeted microbubble therapy. Cell membrane permeability
change is a prerequisite for gene transfection. The cavitation
and mechanical effect can enhance the permeability of
cell membrane, especially the cavitation effect which can
be divided into; steady state and transient cavitation. The
latter is a kind of strong biological effect, which can cause
cell apoptosis and necrosis at the same time (18-20). It has
been reported that ultrasonic cavitation effect can widen
the gap between capillary endothelial cells and increase cell
membrane permeability, so the microbubble or gene that is
released can enter the blood vessel wall and tissue space, so
as to increase the effect of targeted gene therapy.

In addition, Meijering et al. (21) proposed the MBs
rupture resulted in hydrogen peroxide generation under
ultrasound irradiation. At the same time, it caused Ca®™
influx and Ca’*-dependent K channel opening in adjacent
cell membrane, thereby causing local membrane potential
hyperpolarization. The ultrasound microbubble gets into
the cell by the mechanism of endocytosis and pinocytosis.
‘Tran ez al. (22) reported, the pressure generated by the MBs
rupture induced the formation of a mechanical stimulation,
activating specific channels (stretch activated channels) and
non-specific ion channels, causing the exogenous molecules
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Figure 2 UTMD gene delivery in tissue. The ultrasound application leads to holes in cell membrane and capillary, which facilitates the
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uptake of therapeutic GFP-mark gene (16). UTMD, ultrasound targeted microbubble destruction.

(such as MBs containing transfection gene or drugs) to
enter cells and play a role.

Gene delivery system in UTMD

Viral vector with high efficiency of transfection and sustained
expression is the primary choice of transferring genes to the
target cells in UTMD. Pre-clinical studies have proven that
UTMD has synergy to combine with viral vectors and offers
many benefits (23,24). First of all, transgenic expression
was enhanced in the heart tissue associated with adenoviral
DNA (25,26). Secondly, after injection of MBs in targeted
objects loaded with the expressing luciferase or EGFP, the
MBs released the site-specific strength through ultrasound
irradiation that improved gene transfection efficiency (27).
Also, the microbubble allows intravenous injection as delivery
method as it can reduce the degradation rate of viruses by the
immune system, simultaneously imposing restriction on the
immune response to the viruses thus allowing intravascular
administration and repetitive injections (28). Danialou ez 4. (29)
investigated a 3-fold transfection of the gene and a 22-fold
increase in level of expression was noted in animals treated
using UTMD therapies.

Compared with viral vectors, non-viral carrier systems
are potentially safer and more convenient, which can
be used not only for gene application but also for direct
delivery of exogenous protein. Plasmids, siRNA, miRNA
and PiggyBac are common non-viral transposons for
UTMD. Table 1 shows the studies in which non-viral
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vectors worked as the delivery vectors. A highly specific and
minimally invasive non-viral gene delivery system is the
new direction for future therapeutic procedures.

Applications of UTMD in ischemic heart disease
Myocardial infarction (MI)

Despite the stenting or bypassing of the infarcted artery,
ventricular dysfunction may still progress after an extensive
MI (40). Novel gene therapies may improve cardiac function
by regulating gene expression, promoting tissue regeneration
and regional perfusion in the infarcted myocardium (41,42).
UTMD, non-invasively and selectively delivers genes to
the infarct via microbubble carriers and can help to release
plasmid DNA when they are targeted with an ultrasound
beam. Intravenously administered lipid MBs have been
proven mature in clinical evaluation of myocardial perfusion
and pre-clinical cardiac gene delivery (25,43). Recently,
previous pre-clinical studies have proven the potential
advantages of UTMD, however it warrants pragmatic
studies that still needs separate optimized protocols for
different diseases. In rats, promising strategies were provided
to realize the localized delivery of shRNA against PHD?2
(44,45), G-CSF (46), S100A6 (47), MMP2 (31), TATp (48),
SCE, SDF-1a (30) and bFGF (49) to protect the heart from
acute MI via cationic MBs. Besides, ultrasound microbubble
was suggested as an effective vector for VEGF (12), SCF (13)
and GDF11 (50) delivery in mice, CD151 (51) and Ang-1 (32)
in rabbit, microRINA-21 (34) in swine and HGF (52) in dog.
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Table 1 Non-viral carrier systems in UTMD

Vector Study Target gene
Plasmids Fuijii et al. 2009 (12) VEGF, SCF
Fuijii et al. 2011 (30) SCF, SDF-1a
Yan et al. 2014 (31) MMP2
Deng et al. 2015 (32) Ang-1
miRNA Kopechek et al. 2015 (33) miR-23a
Su et al. 2015 (34) microRNA-21
Liu et al. 2015 (35) microRNA-21
PiggyBac Chen et al. 2016 (36) ANGPTLs
Chen et al. 2015 (37) GLP-1
Chen et al. 2013 (38) TB4
siRNA Huang et al. 2016 (39) GRK4

UTMD, ultrasound targeted microbubble destruction; Ang-1,
angiopoietin-1; MMP2, matrix metalloproteinase 2; VEGF,
vascular endothelial growth factor; TB4, thymosin beta 4; GRK4,
G protein-coupled receptor kinase type 4.

The therapeutic value of UTMD mediated gene transfer
into the infarcted heart was enhanced by these pre-clinical
treatments (12,30-32,34,44-52).

Regeneration

Approximately 10% of MI patients will die, typically from
ventricular arrhythmias, pump failure or myocardial rupture
as reported (53). Developing strategies for regeneration of
cardiomyocytes and blood vessels in the damaged area of
the heart, rather than stenting or bypassing the infarcted
artery has been the major goal of therapy for acute MI.
Novel strategies, particularly non-invasive approaches
that induce stem cell homing to the damaged heart for
myocardial regeneration includes embryonic stem cells,
induced pluripotent stem cells and bone marrow stem cells,
which have been studied in recent years (54-56). Moreover,
resident cardiac progenitor cells were discovered in the
adult mammalian heart. They are self-renewing, clonogenic
and multipotent, and can be differentiated into three major
cardiac lineages; cardiac muscle cells, vascular smooth
muscle cells and endothelial cells theoretically (57-62),
despite being sparse in number. Genes such as SDF-1 (35),
SDF-1/CXCR4 (63) and TB4 (38) in rat, MSC (64,65)
in dog, MSC (66) in rabbit and BMSC (67) in swine were
delivered directly to the heart in order to stimulate resident
cardiac progenitor cells. Cardiac progenitor cells proliferate
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and differentiate into three intact cardiac cell lineages after
UTMD therapies. However, whether adult cardiac muscle
cells can be formed from these resident progenitor cells
in vivo still remains controversial.

Ischemia/reperfusion injury (I/R)

I/R injury is one of the main risks of heart failure, and
the regenerative capacity of intrinsic stem cells plays an
important role in tissue repair after injury. However, stem
cells in ageing individuals have reduced regenerative potential
and their tissues lack the capacity to renew. TRAF3IP2
(68), GDF11 (69), Antagomir (70), VEGF-a, IGF-1 and
Cav-3 (71) in mice as well as bone marrow cell (BMC) (72),
MMP2 (31) and Aktl (73) in rat undergoing multiple
application via UTMD can rejuvenate the aged heart and
protect it from I/R injury.

Applications of UTMD in hypertension

Cardiac hypertrophy is induced by hypertension in pre-
clinical models, but clinical translation is limited by lack of
target cardiac delivery systems. Kopechek et a/. (33) founded
that UTMD mediated delivery of anti-miR-23a can suppress
cardiomyocyte hypertrophy and culture cardiomyocytes in
rats, laying the groundwork for future iz vivo translational
studies, which leads to targeted clinical strategies to
therapeutically modulate miRINA activity in the human heart.
In addition, Huang ez a/. (39) discovered the downregulation
of renal GRK4 expression via UTMD lowers blood pressure
in spontaneously hypertensive rats. UTMD offers a novel
strategy for gene therapy in hypertension.

Applications of UTMD in cardiomyopathies
Diabetic cardiomyopathy (DCM)

DCM, one of the serious chronic complications of diabetes,
is the leading cause of morbidity and mortality (74).
It results in cardiac functional and structural changes,
independent of hypertension, coronary artery disease, or
any other known cardiac disease. The structural changes
include fibrosis, apoptosis, hypertrophy of myocytes and the
functional changes include systolic and diastolic dysfunction
(75-80). Previous studies have confirmed the progress of
cardiac dysfunction after DCM could be effectively inhibited
and even reversed by gene of aFGF (81,82), bFGF (83,84)
and FGF-1 (85) in rat combined with the UTMD technique.

F Thorac Dis 2018;10(2):1099-1111



Journal of Thoracic Disease, Vol 10, No 2 February 2018

It provides a promising strategy for DCM-targeted therapy.

Adriamycin cardiomyopathy

Adriamycin cardiomyopathy is an established lethal disease.
Approximately 50% of mortality every year is figured out
to be capable of maintaining heart function by stimulating
adult cardiac progenitor cells to initiate myocardial
regeneration when congestive heart failure develops.
Lee et al. (86) revealed surviving gene therapy attenuates
left ventricular systolic dysfunction in doxorubicin
cardiomyopathy by reducing apoptosis and fibrosis, which
specifically targeted the underlying biological processes in
heart failure. Additionally, Chen et 4/. employed UTMD
to deliver PiggyBac transposon plasmids encoding the
intranuclear myocardial gene of ANGPTLS (36) and
GLP-1 (37) to rat hearts with adriamycin cardiomyopathy,
which results in stimulating myocardial regeneration
respectively.

To summarize, UTMD contributes a tailored
approach to improve cardiac diseases. Table 2 showed the
encouraging pre-clinical studies, including applications in
MI, regeneration, IR, hypertension, DCM and adriamycin
cardiomyopathy. However, clinical trials have yet to
produce disappointing results, possibly due to incomplete
or inaccurate gene delivery (87). Early clinical trials of cell
transplantation demonstrated improved perfusion, but
limited cell survival may have diminished the benefits of this
approach for cardiac restoration (88).

Discussion

UTMD is definitely a promising strategy to improve
efficiency of cardiac gene delivery because of the low
toxicity, low immunogenicity of vectors, minimum
invasiveness, with the great potential for multiple
application, and organs which can be targeted with its high
specificity proven by increasing evidences. Pre-clinical
studies have demonstrated the combination of UTMD with
viral or non-viral vectors in gene delivery. UTMD not only
enhances the efficiency of the viral vector, but also avoids
its immunogenicity. Therefore, a novel and feasible way to
support gene therapy trial for individuals with CVDs has
come into effect in the past few years.

Nevertheless, future work remains to be done for the
technological improvement of UTMD before clinical
application (53,54). First, microbubble preparation
technology needs to be optimized to efficiently carry gene
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payloads while maintaining acoustic activity and prolonging
circulation time to prevent clearance by the mononuclear
cell as well as improving targeting techniques to enhance
tissue binding force in areas of high sheer stress. The
illustration of optimal ultrasound parameters for each
microbubble and its intended application also works (89).
Second, the techniques of microbubble surface modification
tend to not be mature, such as the technology to connect
drugs, gene or ligand to the microbubble. The number of
genes or drugs which the microbubble carries are limited
to the micro vesicle transport in the blood vessels because
of blood fluidity and impact resistance, which leads to short
contact time between the MBs and the receptor. Also, there
is shortage of formation for targeted microbubble receptor
which is often below the treatment of threshold (90).
Moreover, to some degree, the parameters of ultrasound
influences the transfection rate of MBs. Recent studies point
out the use of low frequency probe can produce a wider and
more uniform sound field and that strong cavitation is the
key to thrombolysis. However, the optimal parameters have
not been formed yet (7). In addition, when MBs exist in the
capillaries, ultrasonic irradiation can cause microvascular
leakage, intracardiac hemolysis capillary rupture, bleeding,
formation, inflammatory cell infiltration, myocardial cell
damage and other adverse reactions (7,89,90). Therefore,
more technological revolution should be taken to enhance
the biological application of UTMD.

When it comes to the biological efficacy and safety of
UTMD, the injured endothelial cells in part of the vessel
wall, limited by toxicity as well as lack of immunogenicity
and the potential for repetitive and targeted applications
should be taken into account. UTMD is primarily an
intravascular method of gene delivery, with the vascular
endothelium being the primary target (91), while several
studies were not mainly for cardiomyocyte transfection.
In addition, effective application of UTMD in larger
animal models is one of the major obstacles hampering
UTMD application (92) and most cited studies demonstrate
feasibility in rodents. Here, 7able 3 shows the specific gene
delivery in target subjects, which significantly reveals the
target animal models, cell types and disease states treated
by UTMD. It may help to select the appropriate subjects
based on the therapeutic agent. Taken together, mounting
experiments with large animal models and specific target
cell types as well as accurate disease states are warranted to
facilitate the translation into human applications.

Taken together, the fascinating pre-clinical UTMD
studies discussed here represent only a fraction among a

F Thorac Dis 2018;10(2):1099-1111



Qian et al. UTMD in preclinical studies of cardiac gene therapy

1104

(panurzu0d) 7 a1quy,
uolouNy JejNdUUSA pue uoisnpad [eipJedoAw parosdwl pue ‘Ajsusp Jejnosea
pesealoul ‘pesy pajosejul 8y} ojul seusb 403 PUB 4HIA PalaAIep A|INysseoons gIALLN SAISBAUIUON 90IN 40S 493N (6002) e 18 liing
uoljoJejUl [eIPJBO0AW BINOE JO JusWieal} (6002)
10} S8|QQNQOJDIW UOIJONJIISSP PAJEIPSW-pUNOSE} N AQ palanlap J0}oe} yimolb 1sejqoiqy oiseg 1ey 4949 ‘e 10 Buays
Ayisusp Jenosen paseaioul pue s|@o Joyuaboud
paxNnIoal wnipsedoAw pajosejul 8y} o} seusb v|-40S pue 40S Jo Aisaljep punoseiyn paiebiel 'ed  »01-4aS 40S  (L102) re e liing
92IS 10JejuUl pUE BuljepowWwal JejNdLUSA S8oNPal PUE UOIJEZIIBNOSEA (2102
-08U S8OUBYUS UO[JBUOSUI Y})IM UOIFBUIqUIOD Ul SB|QgNQOIDIW PUB 45HH JO UOI308[ul [elpJedoAweliu) Boq 49H ‘e 38 uen\
OAIA UJ pUB (€102)
o4iA ul Apnis [eluswiLadxa ue :uonoajsuel) susb uo apndad |y pue QLN 10 S10aue oNisIBIsUAS 18y divi ‘[e 1@ noyz
uolouny oeiIpJed saAoidwi pue uoijoslsuel} susb gdwi) sedoueyus
‘wnipsesoAw olwayos! ay} 19bue) 03 8jqgngoJdiw dluolyed payebnfuod-Apogiue ZdININ 10 8sn 8yl 1ey Z-dNIN  (#102) Je 18 uex
winIpJeooAw pajoleul (SL02)
ay1 01 Auanijep auab |-Buy paleipaw gNLN Ag siseuabolbue oinadelay jo Aoeoye ayy Buinoidw 1qgey |-Buy ‘le 1@ BuaQ
ueay asnow pabe ay) s109104d pue sajeusasnfal
uoI}oNIISaP 8|qgnqo.dIW dlUONed pajelpaw punosesn Aq | L4aD Jo Aienljep palebiel aaliedey S0IN LE4A (S1L02) re 18 NQ
Aianijep Areuoiooeiiul BIA Lieay SUIMS Ul | g-YNHOOIW Jo uoissaldxe auab saoueyus QLN auUIMS | Z-YNYoJolw (5102) 1B 19 NIN
uoisnyuadal-uonoleyul [eipsesoAw ainoe 1sod uoisnpad pue (2102)
uonouNy 1j03sAs JeINOLIUSA Ya| sanoidwil pue az|s JoJejul S91enuane 9y00 | S-9[aJ101uiw Jo QNN 1ey 9v001S ‘Ie 38 PO
uolouUNSAp OeIpJED PaONPUI-UOIIEZI|0qUIS0IOIW AIBuoI0D
wenaid 0} Aemyyed 0-4N L/g>-4N/FADAd Poye|nBas uoiossuel} | 2-YNHOIOIW pajelpsw QINLN suIMG | g-YNYoJolw (S102) /e 1o NS
sisauabolbue oninadelsyy Jo Aoeolye ayy Buiroidwi BIA
syes ul Aunfur ojwisyost BUIMO||0} UOOUNY [BIPJEDOAW 810384 0} YNHUS-ZAHd Ui S9oUByUS QINLN fed ¢dHd (9102) TR 12 1T
S}EJ UOIJOJBUI [BIPJBOOAW Ul UOIIOUNY
oe|pJed senosdwl (4SD-D) J03oe} Buneinwils-Auojod 81400|nuelb yim uoireuiquiod ul giNLN 18y 4S0-9 (9102 e 18 9nX
(9102)
uopoeyUl [elPseD0AW Jgges Ul S8|qgngosoiw punoselin Aq 151.ao 4o Aiealled Hqqgey [RejNale} ‘e 3o Buex
UOI3ONJISapP 8|qgnQgoJoIW dluoled pajabiel-punoselyn ybnoiyy (2102
uoljoJejUl [BIPJBOOAW 81NOk WO} Yeay ay} s30a10id ZaHd 1sulebe YNYUs Jo Alaallep pazieoo] 1ey 2aHd ‘Je 10 Bueyz IN
9seasIp Yeay olWayos|
Arewwns swo21nQ 109[qo 196.B] onnadelay | Apnis aseasiq

A13AT[9p oudG orIpaed ur (AL Jo suoneorddy g J[qey,

F Thorac Dis 2018;10(2):1099-1111

jtd.amegroups.com

© Journal of Thoracic Disease. All rights reserved.



1105

Journal of Thoracic Disease, Vol 10, No 2 February 2018

(panurzuod) 7 ajquy,
AydoapedAy (5102
sassaiddns sa|qgngoJoIW pue punoseJn Buisn sajAooAwolpied 0] Jiw-iue ue Jo Aanlep paebiel 18y egg-yiw ‘e 18 yayoadoy
sjes anisuspiedAy Alsnosuejuods ul ainssaid poojq (9102)
SJeMo| QINLN BIA uoissaidxa { 9dA} aseury Jo1dedal pajdnoo-uisiold 5 jeual Jo uoneinbaiumoq 18y PIHD ‘le 1@ BuenH uoisuspadAH
se1ho
-oAwolipJed
uoJ3oNJISap s8|qgnqgosdiw/punosesyn Ag se1AooAwolpied el uo ausb | Py JO 1088 ay L /sI190 14€62 LDV (2rog) e19 11
uoljezie|NoSeA
QUO0Z JapJoq J0 Juswaroidwi BIA 821w Ul Buljopowal Je|ndUusA-Ya| Saleloljdwe uoisnpadal g-AB) pue | (102)
puUE UOI}0JBUI [BIPJEDOAW 8)NOE JaYE SB|qQNQOJDIW JO UOIBINWIIS pajelpaw-punosel}n AOIN  -49] ‘e-49H3IA ‘e 1@ JauloQ
uonouny oelpJed sanoidwl pue uoljosjsuel) susb gdwi] sedueyus
‘wnipsedoAw o1wayos! 8y} 1obue} 03 8jqgngo.diw dluoled payebnfuod-Apoqiue ZdNIN J0 8sn ay L 1ey Z2dAN  (#102) Te 18 uex
s|eubBis swyelbus Buonpul (9102)
Aq Buijepowal oelpsed uoljolejul-1sod saenualie pue AaAllep DSING paAejap seoueyua QINLN 1ey oNng ‘[e 1@ uayn
se|qgngo.oIw (9102) 12
pue punoseJ}n Buisn wnipJ/esoAw juspol 8y} 0} solnadelsy} Jiluobejue Jo AlsAllep [BD0| pasealou| 90IN Jwobejuy 1o Woogayyamyy
Ainful uoisnpuadal-elwayosi Joye uonelausbal [elpsedoAw
S9oUBYUS pue Leay asnow pabe ayl sereusnnfas auab | | 4Q0) Jo Aionlep [eipieooAw parabiel 9OIN LL4as (2102) 1’19 NQ fnfu
Bulspowas asianpe pue Ainful [eipsedoAw padonpul-uoisnpadal/elwayos] (2102 uoisnyadai
sHQIyul seyoeoidde [euonuanisiul pue ojeusb Aq zdigdvd L Bunebiel 90IN cdledvdl ‘e jo uos)u3 /erusyos|
uoljoJejUl [elpJ/eo0AW J0} uoljelue|dsuUel} ||90 WalS [ewAydUassw mollew suog sajowold gNLN auIMS JSInNg (6002) 121917
S}iggeJ pue[eaz MaN JO UOI1DJejul [BIpJed0AW Ul uoiRouNny SeIpJED
sanoidwi gNLN onsoubelp Ag s|j90 wals [ewAyouasaw o uolelue|dsuely palabiel-wnipiedoA|n 1uqgey OSIN (0102) 1B 18 NX
(c1Lo2)
ANLN A9 wnips/edoAw ojwayos] 8y} 0} S|[92 Wa)s [ewAyoussaw jo Bujwoy paoueyul Boq JSIN ‘le 1@ Buoyz
Aianljep ajqgngoudiw pajebiel-punosesin Yum { e1aq uisowAyy (€102)
JO uoissaidxa [eipsesoAw a|qeinp Aq s|j@0 Jojusaboid oelpied Juspisal YNpe JO UoeNWIIS 1ey a1l ‘e 3@ usyD
abueyo
JUsWUOJIAUS0IDIW [elpsedoAw Butonpul Ag uonouny pesy pue sissuabolbue sajowoid gNLN boq OSIN  (€102) e e bun
Apris jo11d € :HOXO/ L-4aS Bunenfai-dn Aqg ydOXO
uoljoJBjUI [BIPJBOOAW JBYE S||90 WalS [BwWAYoussal Jo Buiwoy pue uoliesbiw sy} sanoidwi LN rey /1-4as (S10Q) 11917 UOnKEIBUBDAY
Arewwins awo21nQ 108lqo 1961B| onnadesay Apnis aseasiq
(panurzu0d) 7 a1quy,

F Thorac Dis 2018;10(2):1099-1111

jtd.amegroups.com

© Journal of Thoracic Disease. All rights reserved.



Qian et al. UTMD in preclinical studies of cardiac gene therapy

1106

190 moulew auoq ‘QAg ‘uoire|nbeod JeindseA.Ilul paleuUIWSSSIP ‘D|a

‘AyredoAwoipied pale|ip ‘INDQ ‘uolioieul [eipsedoAw ‘||N ‘i 9dA} aseupy J0ydadas pajdnod-uigjoid 5 ‘pYHD {|-1010e) ymmolb 1sejqoiql ‘L-494 ‘g uieioud Bunoessiul g4vy 1l
‘2dIedvHdl {190 wels [ewAyoussaw moilew auog ‘OSING ‘i Bleq UISOwAy] ‘pg] ‘(@0 wals [ewAyouasaw ‘OSIA (10}0e} |90 Wals 4OS J0loe} ymmolb [eljaylopus Jejnosea
4H3A 4030k} ymmolb 1sejqoiql diseq 494q ‘epndad |yl ‘dlyl ‘g eseulsjoidojeiow Xuew ‘gdAIN {L-unslodoibue ‘| -Buy | | J0joe} uojeijualayip Yimolb ‘|1 4qo ‘103oe}
Bulyenwis-Auojod a3hoojnuelb ‘4SO-DH (|G| UOIIBIUBISHIP JO JBISN|D ‘161 a0 ‘g-9se|AxolpAy |Ajoid ‘gaHd ‘uononiisep a|jggngoJlolw pajabie} punoselyn ‘QNLN

antin (GLo2)
Buisn | 41D jo uoissaidxa Jesjonu Aq AyredoAwolpied uidAwelpe ul uoneisusbal [eIpJedoAN 18y L-d1D ‘e 1@ uayn
s||e2 Jonusboud (9102)
oelpJeo }npe Buienwis Aq AyredoAwoipied ulpAwelpe paysiigeiss sasianal 811 dONY 1ey STLdONY ‘e 1@ uayD ola
D@ Buiney SsjeJ Ul UOIIOUN) DIJ0SEIP PUE J1|0}SAS Je|ndljuaA sanoidwl pue sisoiqly [elpJedoAw
pue sisojdode 81400Aw saonpal QNLN Ag L-10108} yimoub isejqoiql Jo Aianljep palabiel 18y 1-494  (€102) e 18 uBlL
dW1N yum sejoruedoueu papeo|-454q jo Adeisy} (r1o2)
pauIquiod 8y} AQ |opow sajagelp ul sueay ay} Jo spuswanoidwi [eoibojoyed pue jeuonoun 18y 4949 ‘[e 1@ oeyz
anbluyosl gINLLN PUe $8|qgngqoJoiw (9102)
paiipow-uleday papeol-494e Aq sies AyyedoAwolpied O138geIp JO JuslUieal} 818)8lul POUBAPY rey 494e ‘e 1o Bueyz
AyredoAwoipJied oiagelp ayl suanialul Alies 0y ABojouyosl (9102)
PaoNPOJIUI-PUNOSEIHN YHM Paulquiod awosodijoueu Joloe} ymmodb 1sejqoiqu oiseq Buisn ey 4949 ‘le j@ oeyz
anbiuyosy gNLN pue sejdiuedoueu (9102)
papeo|-494e jo Adeiayl pauiquiod Aqg sied ollagelp ul AyyedoAwolpied dagelp Juanaid 1ey 494e ‘e 1@ oeyz DA
AyyedoAwoipren
Arewwins awo21nQ 108lqo 1961B| onnadesay Apnis aseasiq
(panurzu0d) 7 a1quy,

F Thorac Dis 2018;10(2):1099-1111

jtd.amegroups.com

© Journal of Thoracic Disease. All rights reserved.



Journal of Thoracic Disease, Vol 10, No 2 February 2018

Table 3 Specific gene delivery in target subjects
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Animal model Target tissue/cell type

Disease state

Therapeutic agent

Study

Rat

Mice

Swine

Rabbit

Dog

Heart/cardiomyocyte

Heart/vascular endothelial

Heart/vascular smooth muscle cells

Heart/cardiac stem cells

Heart/cardiac stem cells

Heart/cardiomyocyte

Heart/cardiac stem cells

Heart/vascular endothelial

Heart/cardiomyocyte
Heart/cardiac stem cells
Heart/cardiomyocyte
Heart/cardiac stem cells
Heart/vascular endothelial
Heart/cardiomyocyte

Heart/cardiac stem cells

Myocardial infarction S100A6
TATp

Ischemia-reperfusion injury Akt1

MMP2
Hypertension miR-23a
DIC GLP-1

Myocardial infarction/DCM bFGF

Myocardial infarction
G-CSF

Regeneration

DCM FGF-1
aFGF
Hypertension GRK4
Myocardial infarction PHD2
DIC ANGPTLs
Regeneration TB4

Ischemia-reperfusion injury BMC
Ischemia-reperfusion injury TRAF3IP2
Ischemia-reperfusion injury Antagomir

Myocardial infarction/ GDF11
ischemia-reperfusion injury

Ischemia-reperfusion injury VEGF-a, IGF-1 and

Cav-3
Myocardial infarction VEGF, SCF
Myocardial infarction microRNA-21
Regeneration BMSC
Myocardial infarction CD151
Regeneration MSC
Myocardial infarction Ang-1
Myocardial infarction HGF
Regeneration MSC

SCF, SDF-1a

SDF-1/CXCR4

Mofid et al. (2017)
Zhou et al. (2013)
Liet al. (2012)

Yan et al. (2014)
Kopechek et al. (2015)
Chen et al. (2015)

Zhao et al. (2016);
Zhao et al. (2014);
Sheng et al. (2009)

Fujii et al. (2011)

Xue et al. (2016)

Li et al. (2015).

Tian et al. (2013)

Zhao et al. (2016)

Huang et al. (2016)

Zhang et al. (2017); Li et al. (2016)
Chen et al. (2016)

Chen et al. (2013)

Chen et al. (2016)

Erikson et al. (2017)
Kwekkeboom et al. (2016)

Du et al. (2015);
Du et al. (2017)

Dorner et al. (2013)

Fuijii et al. (2009)

Su et al. (2015); Liu et al. (2015)

Li et al. (2009)

Yang et al. (2016)

Xu et al. (2010)

Deng et al. (2015)

Yuan et al. (2012)

Ling et al. (2013); Zhong et al. (2012)

UTMD, ultrasound targeted microbubble destruction; PHD2, prolyl hydroxylase-2; CD151, cluster of differentiation 151; G-CSF,
granulocyte colony-stimulating factor; GDF11, growth differentiation factor 11; Ang-1, angiopoietin-1; MMP2, matrix metalloproteinase
2; TATp, TAT peptide; bFGF, basic fibroblast growth factor; VEGF, vascular endothelial growth factor; MSC, mesenchymal stem cell; TB4,
thymosin beta 4; BMSC, bone marrow mesenchymal stem cell; TRAF3IP2, TRAF3 interacting protein 2; FGF-1, fibroblast growth factor-1;
GRK4, G protein-coupled receptor kinase type 4; DCM, dilated cardiomyopathy; DIC, disseminated intravascular coagulation; BMC, bone

marrow cell.
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wide variety of applications in cardiac gene therapy. UTMD
has a strong potential to be used as an adjuvant therapy for
candidates with cardiac disorders in the future.
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