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Introduction

Greater incidence of cardiovascular diseases (CVDs) 
globally, is associated with the increase in mortality 
and morbidity rate every passing year (1). Despite the 
recent progress in diagnosis and health support, multiple 
limitations for cardiac pharmacologic therapy still remain, 
including intolerance, individual variation in effectiveness, 
side effects and high cost (2). Gene therapy tends to 
be a promising therapeutic tool and may be beneficial 
in refractory cardiac disease after raising insight into 
the molecular mechanisms of CVDs (3,4). However, 
experimental methods are not yet ready for clinical 
applications in terms of efficient delivery to the target tissue 
and sustained expression of transgenes.

Ultrasound targeted microbubble destruction (UTMD) 
is a novel therapy to deliver the objective gene to organs of 
living animals. It has been proven to bind non-invasively 
microbubbles (MBs) with DNA or RNA carriers (assemble 
adenoviral, plasmid or nanoparticles) into the shell and 
destroy the located MBs with low frequency and high 
mechanical index ultrasound, releasing target agents into 
peculiar organs (5-7). Not only can UTMD improve the 
transfection efficiency by several orders of magnitude, but 
also achieve specific target markedly (8). Due to its less 
invasive method and highly specific gene delivery system, 
UTMD is considered a promising strategy for gene therapy. 

For our study the criteria and keywords of “ultrasound 
targeted microbubble destruction”, “gene therapy”, 
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“cardiovascular diseases” was used in PubMed. All cited 
studies have received informed consent from each study 
participant and protocol approval by the ethics committee 
and institutional review board. This paper briefly reviews 
the current applications of UTMD in cardiac gene therapy 
and suggests avenues for further studies.

Mechanisms of UTMD 

UTMD has proven to elevate the gene transfection efficiency 
by various preclinical studies in vitro and in vivo (9-11), as 
a potential target specific gene delivery tool. MBs, made of 
lipids, saccharide, albumin, biocompatible polymers and other 
materials (12-14), are considered as a promising approach for 
gene delivery vectors, which expands and contracts through 
sonoporation, cavitation and other effects. 

Sonoporation, based on the specific response of the 
MBs upon exposure to ultrasound, is the mechanism of 
transferring gene into cells effectively. When exposed to 
ultrasound, MBs oscillate and then rupture (Figure 1). Not 
only can UTMD improve the transfection efficiency by 
several orders of magnitude, but also achieve specific target 
markedly. The nuclear membrane in the cell membrane 
have temporary and reversible holes (about 50 nm in 
diameter), allowing a molecular (weigh 10–30 KD) to get 
through (15). Figure 2 shows the process of UTMD gene 

delivery in tissue (16), which demonstrates the key role in 
augmentation of transfection efficiency (17). 

Cavitation effect is another physical basis of ultrasound 
targeted microbubble therapy. Cell membrane permeability 
change is a prerequisite for gene transfection. The cavitation 
and mechanical effect can enhance the permeability of 
cell membrane, especially the cavitation effect which can 
be divided into; steady state and transient cavitation. The 
latter is a kind of strong biological effect, which can cause 
cell apoptosis and necrosis at the same time (18-20). It has 
been reported that ultrasonic cavitation effect can widen 
the gap between capillary endothelial cells and increase cell 
membrane permeability, so the microbubble or gene that is 
released can enter the blood vessel wall and tissue space, so 
as to increase the effect of targeted gene therapy.

In addition, Meijering et al. (21) proposed the MBs 
rupture resulted in hydrogen peroxide generation under 
ultrasound irradiation. At the same time, it caused Ca2+ 

influx and Ca2+-dependent K channel opening in adjacent 
cell membrane, thereby causing local membrane potential 
hyperpolarization. The ultrasound microbubble gets into 
the cell by the mechanism of endocytosis and pinocytosis. 
Tran et al. (22) reported, the pressure generated by the MBs 
rupture induced the formation of a mechanical stimulation, 
activating specific channels (stretch activated channels) and 
non-specific ion channels, causing the exogenous molecules 

Figure 1 Therapeutic gene is released to the target cell after the microbubbles are destroyed at the site of the target tissue.
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(such as MBs containing transfection gene or drugs) to 
enter cells and play a role.

Gene delivery system in UTMD

Viral vector with high efficiency of transfection and sustained 
expression is the primary choice of transferring genes to the 
target cells in UTMD. Pre-clinical studies have proven that 
UTMD has synergy to combine with viral vectors and offers 
many benefits (23,24). First of all, transgenic expression 
was enhanced in the heart tissue associated with adenoviral 
DNA (25,26). Secondly, after injection of MBs in targeted 
objects loaded with the expressing luciferase or EGFP, the 
MBs released the site-specific strength through ultrasound 
irradiation that improved gene transfection efficiency (27). 
Also, the microbubble allows intravenous injection as delivery 
method as it can reduce the degradation rate of viruses by the 
immune system, simultaneously imposing restriction on the 
immune response to the viruses thus allowing intravascular 
administration and repetitive injections (28). Danialou et al. (29) 
investigated a 3-fold transfection of the gene and a 22-fold 
increase in level of expression was noted in animals treated 
using UTMD therapies. 

Compared with viral vectors, non-viral carrier systems 
are potentially safer and more convenient, which can 
be used not only for gene application but also for direct 
delivery of exogenous protein. Plasmids, siRNA, miRNA 
and PiggyBac are common non-viral transposons for 
UTMD. Table 1 shows the studies in which non-viral 

vectors worked as the delivery vectors. A highly specific and 
minimally invasive non-viral gene delivery system is the 
new direction for future therapeutic procedures.

Applications of UTMD in ischemic heart disease

Myocardial infarction (MI)

Despite the stenting or bypassing of the infarcted artery, 
ventricular dysfunction may still progress after an extensive 
MI (40). Novel gene therapies may improve cardiac function 
by regulating gene expression, promoting tissue regeneration 
and regional perfusion in the infarcted myocardium (41,42). 
UTMD, non-invasively and selectively delivers genes to 
the infarct via microbubble carriers and can help to release 
plasmid DNA when they are targeted with an ultrasound 
beam. Intravenously administered lipid MBs have been 
proven mature in clinical evaluation of myocardial perfusion 
and pre-clinical cardiac gene delivery (25,43). Recently, 
previous pre-clinical studies have proven the potential 
advantages of UTMD, however it warrants pragmatic 
studies that still needs separate optimized protocols for 
different diseases. In rats, promising strategies were provided 
to realize the localized delivery of shRNA against PHD2 
(44,45), G-CSF (46), S100A6 (47), MMP2 (31), TATp (48), 
SCF, SDF-1α (30) and bFGF (49) to protect the heart from 
acute MI via cationic MBs. Besides, ultrasound microbubble 
was suggested as an effective vector for VEGF (12), SCF (13) 
and GDF11 (50) delivery in mice, CD151 (51) and Ang-1 (32) 
in rabbit, microRNA-21 (34) in swine and HGF (52) in dog. 

Figure 2 UTMD gene delivery in tissue. The ultrasound application leads to holes in cell membrane and capillary, which facilitates the 
uptake of therapeutic GFP-mark gene (16). UTMD, ultrasound targeted microbubble destruction.
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The therapeutic value of UTMD mediated gene transfer 
into the infarcted heart was enhanced by these pre-clinical 
treatments (12,30-32,34,44-52). 

Regeneration

Approximately 10% of MI patients will die, typically from 
ventricular arrhythmias, pump failure or myocardial rupture 
as reported (53). Developing strategies for regeneration of 
cardiomyocytes and blood vessels in the damaged area of 
the heart, rather than stenting or bypassing the infarcted 
artery has been the major goal of therapy for acute MI. 
Novel strategies, particularly non-invasive approaches 
that induce stem cell homing to the damaged heart for 
myocardial regeneration includes embryonic stem cells, 
induced pluripotent stem cells and bone marrow stem cells, 
which have been studied in recent years (54-56). Moreover, 
resident cardiac progenitor cells were discovered in the 
adult mammalian heart. They are self-renewing, clonogenic 
and multipotent, and can be differentiated into three major 
cardiac lineages; cardiac muscle cells, vascular smooth 
muscle cells and endothelial cells theoretically (57-62), 
despite being sparse in number. Genes such as SDF-1 (35),  
SDF-1/CXCR4 (63) and TB4 (38) in rat, MSC (64,65) 
in dog, MSC (66) in rabbit and BMSC (67) in swine were 
delivered directly to the heart in order to stimulate resident 
cardiac progenitor cells. Cardiac progenitor cells proliferate 

and differentiate into three intact cardiac cell lineages after 
UTMD therapies. However, whether adult cardiac muscle 
cells can be formed from these resident progenitor cells  
in vivo still remains controversial. 

Ischemia/reperfusion injury (I/R)

I/R injury is one of the main risks of heart failure, and 
the regenerative capacity of intrinsic stem cells plays an 
important role in tissue repair after injury. However, stem 
cells in ageing individuals have reduced regenerative potential 
and their tissues lack the capacity to renew. TRAF3IP2 
(68), GDF11 (69), Antagomir (70), VEGF-a, IGF-1 and  
Cav-3 (71) in mice as well as bone marrow cell (BMC) (72),  
MMP2 (31) and Akt1 (73) in rat undergoing multiple 
application via UTMD can rejuvenate the aged heart and 
protect it from I/R injury.

Applications of UTMD in hypertension

Cardiac hypertrophy is induced by hypertension in pre-
clinical models, but clinical translation is limited by lack of 
target cardiac delivery systems. Kopechek et al. (33) founded 
that UTMD mediated delivery of anti-miR-23a can suppress 
cardiomyocyte hypertrophy and culture cardiomyocytes in 
rats, laying the groundwork for future in vivo translational 
studies, which leads to targeted clinical strategies to 
therapeutically modulate miRNA activity in the human heart. 
In addition, Huang et al. (39) discovered the downregulation 
of renal GRK4 expression via UTMD lowers blood pressure 
in spontaneously hypertensive rats. UTMD offers a novel 
strategy for gene therapy in hypertension.

Applications of UTMD in cardiomyopathies

Diabetic cardiomyopathy (DCM)

DCM, one of the serious chronic complications of diabetes, 
is the leading cause of morbidity and mortality (74).  
It results in cardiac functional and structural changes, 
independent of hypertension, coronary artery disease, or 
any other known cardiac disease. The structural changes 
include fibrosis, apoptosis, hypertrophy of myocytes and the 
functional changes include systolic and diastolic dysfunction 
(75-80). Previous studies have confirmed the progress of 
cardiac dysfunction after DCM could be effectively inhibited 
and even reversed by gene of aFGF (81,82), bFGF (83,84) 
and FGF-1 (85) in rat combined with the UTMD technique. 

Table 1 Non-viral carrier systems in UTMD

Vector Study Target gene

Plasmids Fujii et al. 2009 (12) VEGF, SCF

Fujii et al. 2011 (30) SCF, SDF-1α

Yan et al. 2014 (31) MMP2

Deng et al. 2015 (32) Ang-1

miRNA Kopechek et al. 2015 (33) miR-23a

Su et al. 2015 (34) microRNA-21

Liu et al. 2015 (35) microRNA-21

PiggyBac Chen et al. 2016 (36) ANGPTLs

Chen et al. 2015 (37) GLP-1

Chen et al. 2013 (38) TB4

siRNA Huang et al. 2016 (39) GRK4

UTMD, ultrasound targeted microbubble destruction; Ang-1,  
angiopoietin-1; MMP2, matrix metalloproteinase 2; VEGF,  
vascular endothelial growth factor; TB4, thymosin beta 4; GRK4, 
G protein-coupled receptor kinase type 4.
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It provides a promising strategy for DCM-targeted therapy.

Adriamycin cardiomyopathy 

Adriamycin cardiomyopathy is an established lethal disease. 
Approximately 50% of mortality every year is figured out 
to be capable of maintaining heart function by stimulating 
adult cardiac progenitor cells to initiate myocardial 
regeneration when congestive heart failure develops. 
Lee et al. (86) revealed surviving gene therapy attenuates 
left ventricular systolic dysfunction in doxorubicin 
cardiomyopathy by reducing apoptosis and fibrosis, which 
specifically targeted the underlying biological processes in 
heart failure. Additionally, Chen et al. employed UTMD 
to deliver PiggyBac transposon plasmids encoding the 
intranuclear myocardial gene of ANGPTL8 (36) and  
GLP-1 (37) to rat hearts with adriamycin cardiomyopathy, 
which results in stimulating myocardial regeneration 
respectively. 

To summarize ,  UTMD contr ibutes  a  ta i lored 
approach to improve cardiac diseases. Table 2 showed the 
encouraging pre-clinical studies, including applications in 
MI, regeneration, IR, hypertension, DCM and adriamycin 
cardiomyopathy. However, clinical trials have yet to 
produce disappointing results, possibly due to incomplete 
or inaccurate gene delivery (87). Early clinical trials of cell 
transplantation demonstrated improved perfusion, but 
limited cell survival may have diminished the benefits of this 
approach for cardiac restoration (88).

Discussion

UTMD is definitely a promising strategy to improve 
efficiency of cardiac gene delivery because of the low 
toxicity, low immunogenicity of vectors, minimum 
invasiveness, with the great potential for multiple 
application, and organs which can be targeted with its high 
specificity proven by increasing evidences. Pre-clinical 
studies have demonstrated the combination of UTMD with 
viral or non-viral vectors in gene delivery. UTMD not only 
enhances the efficiency of the viral vector, but also avoids 
its immunogenicity. Therefore, a novel and feasible way to 
support gene therapy trial for individuals with CVDs has 
come into effect in the past few years.

Nevertheless, future work remains to be done for the 
technological improvement of UTMD before clinical 
application (53,54). First, microbubble preparation 
technology needs to be optimized to efficiently carry gene 

payloads while maintaining acoustic activity and prolonging 
circulation time to prevent clearance by the mononuclear 
cell as well as improving targeting techniques to enhance 
tissue binding force in areas of high sheer stress. The 
illustration of optimal ultrasound parameters for each 
microbubble and its intended application also works (89). 
Second, the techniques of microbubble surface modification 
tend to not be mature, such as the technology to connect 
drugs, gene or ligand to the microbubble. The number of 
genes or drugs which the microbubble carries are limited 
to the micro vesicle transport in the blood vessels because 
of blood fluidity and impact resistance, which leads to short 
contact time between the MBs and the receptor. Also, there 
is shortage of formation for targeted microbubble receptor 
which is often below the treatment of threshold (90). 
Moreover, to some degree, the parameters of ultrasound 
influences the transfection rate of MBs. Recent studies point 
out the use of low frequency probe can produce a wider and 
more uniform sound field and that strong cavitation is the 
key to thrombolysis. However, the optimal parameters have 
not been formed yet (7). In addition, when MBs exist in the 
capillaries, ultrasonic irradiation can cause microvascular 
leakage, intracardiac hemolysis capillary rupture, bleeding, 
formation, inflammatory cell infiltration, myocardial cell 
damage and other adverse reactions (7,89,90). Therefore, 
more technological revolution should be taken to enhance 
the biological application of UTMD.

When it comes to the biological efficacy and safety of 
UTMD, the injured endothelial cells in part of the vessel 
wall, limited by toxicity as well as lack of immunogenicity 
and the potential for repetitive and targeted applications 
should be taken into account. UTMD is primarily an 
intravascular method of gene delivery, with the vascular 
endothelium being the primary target (91), while several 
studies were not mainly for cardiomyocyte transfection. 
In addition, effective application of UTMD in larger 
animal models is one of the major obstacles hampering 
UTMD application (92) and most cited studies demonstrate 
feasibility in rodents. Here, Table 3 shows the specific gene 
delivery in target subjects, which significantly reveals the 
target animal models, cell types and disease states treated 
by UTMD. It may help to select the appropriate subjects 
based on the therapeutic agent. Taken together, mounting 
experiments with large animal models and specific target 
cell types as well as accurate disease states are warranted to 
facilitate the translation into human applications. 

Taken together, the fascinating pre-clinical UTMD 
studies discussed here represent only a fraction among a 
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Table 3 Specific gene delivery in target subjects

Animal model Target tissue/cell type Disease state Therapeutic agent Study 

Rat Heart/cardiomyocyte Myocardial infarction S100A6 Mofid et al. (2017)

TATp Zhou et al. (2013)

Ischemia-reperfusion injury Akt1 Li et al. (2012)

MMP2 Yan et al. (2014)

Hypertension miR-23a Kopechek et al. (2015)

DIC GLP-1 Chen et al. (2015)

Heart/vascular endothelial Myocardial infarction/DCM bFGF Zhao et al. (2016);  
Zhao et al. (2014);  
Sheng et al. (2009)

Myocardial infarction SCF, SDF-1α Fujii et al. (2011)

G-CSF Xue et al. (2016)

Regeneration SDF-1/CXCR4 Li et al. (2015).

DCM FGF-1 Tian et al. (2013)

aFGF Zhao et al. (2016)

Heart/vascular smooth muscle cells Hypertension GRK4 Huang et al. (2016)

Heart/cardiac stem cells Myocardial infarction PHD2 Zhang et al. (2017); Li et al. (2016)

DIC ANGPTLs Chen et al. (2016)

Heart/cardiac stem cells Regeneration TB4 Chen et al. (2013)

Ischemia-reperfusion injury BMC Chen et al. (2016)

Mice Heart/cardiomyocyte Ischemia-reperfusion injury TRAF3IP2 Erikson et al. (2017)

Heart/cardiac stem cells Ischemia-reperfusion injury Antagomir Kwekkeboom et al. (2016)

Myocardial infarction/ 
ischemia-reperfusion injury

GDF11 Du et al. (2015);  
Du et al. (2017)

Heart/vascular endothelial Ischemia-reperfusion injury VEGF-a, IGF-1 and 
Cav-3

Dorner et al. (2013)

Myocardial infarction VEGF, SCF Fujii et al. (2009)

Swine Heart/cardiomyocyte Myocardial infarction microRNA-21 Su et al. (2015); Liu et al. (2015)

Heart/cardiac stem cells Regeneration BMSC Li et al. (2009)

Rabbit Heart/cardiomyocyte Myocardial infarction CD151 Yang et al. (2016)

Heart/cardiac stem cells Regeneration MSC Xu et al. (2010)

Heart/vascular endothelial Myocardial infarction Ang-1 Deng et al. (2015)

Dog Heart/cardiomyocyte Myocardial infarction HGF Yuan et al. (2012)

Heart/cardiac stem cells Regeneration MSC Ling et al. (2013); Zhong et al. (2012)

UTMD, ultrasound targeted microbubble destruction; PHD2, prolyl hydroxylase-2; CD151, cluster of differentiation 151; G-CSF,  
granulocyte colony-stimulating factor; GDF11, growth differentiation factor 11; Ang-1, angiopoietin-1; MMP2, matrix metalloproteinase 
2; TATp, TAT peptide; bFGF, basic fibroblast growth factor; VEGF, vascular endothelial growth factor; MSC, mesenchymal stem cell; TB4, 
thymosin beta 4; BMSC, bone marrow mesenchymal stem cell; TRAF3IP2, TRAF3 interacting protein 2; FGF-1, fibroblast growth factor-1; 
GRK4, G protein-coupled receptor kinase type 4; DCM, dilated cardiomyopathy; DIC, disseminated intravascular coagulation; BMC, bone 
marrow cell.
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wide variety of applications in cardiac gene therapy. UTMD 
has a strong potential to be used as an adjuvant therapy for 
candidates with cardiac disorders in the future.
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