
A cell type-specific expression signature predicts 
haploinsufficient autism-susceptibility genes

Chaolin Zhang1,2,3,6,* and Yufeng Shen1,4,5,6,*

1Department of Systems Biology, Columbia University, New York NY 10032, USA

2Department of Biochemistry and Molecular Biophysics, Columbia University, New York NY 
10032, USA

3Center for Motor Neuron Biology and Disease, Columbia University, New York NY 10032, USA

4Department of Biomedical Informatics, Columbia University, New York NY 10032, USA

5JP Sulzberger Genome Center, Columbia University, New York NY 10032, USA

Abstract

Recent studies have identified many genes with rare de novo mutations in autism, but a limited 

number of these have been conclusively established as disease-susceptibility genes due to lack of 

recurrence and confounding background mutations. Such extreme genetic heterogeneity severely 

limits recurrence–based statistical power even in studies with a large sample size. Here we use 

cell-type specific expression profiles to differentiate mutations in autism patients from those in 

unaffected siblings. We report a gene expression signature in different neuronal cell types shared 

by genes with likely gene disrupting (LGD) mutations in autism cases. The signature reflects 

haploinsufficiency of risk genes enriched in transcriptional and post-transcriptional regulators, 

with the strongest positive associations with specific types of neurons in different brain regions, 

including cortical neurons, cerebellar granule cells, and striatal medium spiny neurons. When used 

to prioritize genes with a single LGD mutation in cases, a D-score derived from the signature 

achieved a precision of 40% as compared to the 15% baseline with a minimal loss in sensitivity. 

An ensemble model combining D-score with mutation intolerance metrics from Exome 

Aggregation Consortium further improved the precision to 60%, resulting in 117 high-priority 

candidates. These prioritized lists can facilitate identification of additional autism-susceptibility 

genes.
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Introduction

Autism or autism spectrum disorders (ASDs) are common neurodevelopmental diseases 

characterized by deficits in language, impaired social interaction, and repetitive behaviors 

with complexes such as seizures and intellectual disability (Devlin and Scherer, 2012; 

Newschaffer, et al., 2007). Symptom onset is typically early (~3 years old) and the current 

estimate of incidence is over 1% worldwide (Croning, et al., 2009), underscoring the 

widespread impact of autism on affected families and for society in general (Abul-Husn, et 

al., 2009).

Genetic risk factors are believed to play a pivotal role in ASDs, as revealed by a 

concordance rate up to 90% between monozygotic twins and by over 10-fold increase in the 

risk for a new born child if a previous sibling is affected (Ronemus, et al., 2014). Some 

syndromic forms of autisms are known to be monogenic, as represented by mutations of 

FMR1 (encoding FMRP) in the fragile X syndrome that is comorbid with autism and 

accounts for up to 5% of ASD cases (Kelleher and Bear, 2008; Verkerk, et al., 1991). 

However, most of the genomic abnormalities or mutations found in autism patients are 

extremely rare and frequently de novo. Earlier studies using microarray-based approaches 

identified hundreds of de novo copy number variants (CNVs) (Itsara, et al., 2010; Levy, et 

al., 2011; Marshall, et al., 2008; Pinto, et al., 2010; Sanders, et al., 2011; Sebat, et al., 2007). 

More recently, de novo mutations in individual nucleotides including single nucleotide 

variations (SNVs) and small insertions and deletions (indels) were identified by exome-

sequencing (De Rubeis, et al., 2014; Iossifov, et al., 2014; Iossifov, et al., 2012; Neale, et al., 

2012; O’Roak, et al., 2012b; Sanders, et al., 2012) or whole-genome sequencing (Jiang, et 

al., 2013; Turner, et al., 2016).

The exciting progress in these genetic studies has provided important insights into the 

etiopathogenesis of autism. First, at least a substantial proportion of autism risk is conferred 

by individually rare mutations affecting one or more disease-susceptibility genes. The 

number of risk loci has been estimated to be in the range of several hundred to over 1,000 

genes (Iossifov, et al., 2014; Iossifov, et al., 2012; Ronemus, et al., 2014). Second, although 

the complexity of the genetic landscape underlying autism is still a matter of debate, one 

theory, supported by several lines of evidence, proposes that there are a large number of 

autism risk loci, each individually having high penetrance (Gratten, et al., 2013; Ronemus, et 

al., 2014; Zhao, et al., 2007). Third, analysis of the seemingly isolated candidate autism-

susceptibility genes points to disruption in several convergent molecular pathways (Gilman, 

et al., 2011; Iossifov, et al., 2012; Parikshak, et al., 2013; Ronemus, et al., 2014; Willsey, et 

al., 2013) that inform the neurobiological underpinnings of autism (reviewed by ref. 

(Krumm, et al., 2014)).

Strikingly, even the most frequent de novo mutations in single genes can explain no more 

than 1% of ASD cases (Krumm, et al., 2014). This extreme genetic heterogeneity presents a 

big challenge for conclusive identification of autism-susceptibility genes, which has 

impeded further functional studies of autism neurobiology and development of therapeutic 

strategies. A particular group of de novo mutations identified by whole exome-sequencing 

(De Rubeis, et al., 2014; Iossifov, et al., 2012; Neale, et al., 2012; O’Roak, et al., 2012b; 
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Sanders, et al., 2012) are “likely gene-disrupting” or LGD mutations, which are a collection 

of severe mutations introducing frame shift, disrupted splice sites or premature stop codons 

(these mutations are also named loss-of-function or LOF mutations in the literature). 

Probands clearly show a higher burden of de novo LGD mutations than their unaffected 

siblings used as control, indicating enrichment of disease-susceptibility genes disrupted by 

these genomic lesions. However, although about 4,000 ASD patients and their families have 

been sequenced so far, only about 40 genes at best have been determined as high-confidence 

autism-susceptibility genes based on their recurrence. Most of the remaining mutations were 

observed in only single patient, and ~80% of these are expected to be non-pathogenic (see 

Material and Methods). The signal-to-noise ratio is even lower for genes with missense 

mutations (Iossifov, et al., 2014) due to their more moderate effects and high background 

mutation frequency. Therefore, most autism-susceptibility genes are currently buried among 

a growing list of potential candidates.

Two general strategies have been used to facilitate the identification of candidate autism-

susceptibility genes. One strategy is to sequence larger cohorts of ASD families. For 

example, the SPARK project aims to recruit and analyze 50,000 individuals of autism and 

their families (Simons Foundation, 2016). Furthermore, whole-exome or whole-genome 

sequencing is also complemented by targeted re-sequencing to reduce cost (O’Roak, et al., 

2012a). A caveat of this strategy is its prohibitive cost associated with recruitment and 

sequencing of large cohorts. A second complementary strategy is to stratify already 

identified mutations based on existing orthogonal information associated with the affected 

genes. For example, depletion of rare deleterious variants estimated from the general 

population reflecting severe selection pressure is effective in prioritizing deleterious 

mutations (Lek, et al., 2016; Petrovski, et al., 2013; Samocha, et al., 2014). Alternatively, 

gene regulatory and function information can also be used to help distinguish pathogenic vs. 

neutral mutations. The latter is based on the assumption that the common clinical 

phenotypes of ASDs originate from certain common features shared by autism risk loci at 

the molecular level. Along this line, recent studies identified molecular pathways underlying 

autism etiopathology from analysis of shared genetic phenotypes (Chang, et al., 2015; 

Gilman, et al., 2011), protein-protein interactions (O’Roak, et al., 2012b), and gene co-

expression networks (Parikshak, et al., 2013; Willsey, et al., 2013). Such information has 

also been used in several recent studies to prioritize autism-susceptibility genes (Krishnan, et 

al., 2016; Liu, et al., 2015; Tranchevent, et al., 2016).

In this work, we predict autism-susceptibility genes by using gene expression profiles in a 

wide range of specific neuronal cell types, which has not been systematically investigated in 

previous studies. Our assumption is that different cell types in the central nervous system 

(CNS) have different susceptibility or relevance to autism etiopathogy. Due to the 

heterogeneity among many different cell types in the brain, such an analysis may reveal cell 

type-specific gene regulation that cannot be detected by analysis of brain tissues used in 

previous studies. We identified a gene expression signature reflecting haploinsufficiency in 

the context of autism that was able to effectively predict whether individual LGD mutations 

confer disease risk. Importantly, the use of cell type-specific expression also allows us to 

highlight the cellular contexts of the identified risks. Furthermore, this signature is 
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complementary to previous mutation intolerance analysis, and an ensemble model 

combining multiple scoring metrics results in the optimal prediction accuracy.

Materials and Methods

Data compilation

For the current DAMAGES analysis, we used microarray gene expression profiles in 24 

mouse central nervous system (CNS) cell types isolated from six brain regions, as well as 

unselected RNAs in each of these regions. This dataset was previously generated using a 

translational profiling approach named TRAP (Doyle, et al., 2008). For each gene, we 

selected the probeset with the maximum median expression across all 30 samples as a 

representative, if multiple probesets exist. In total, 20,870 genes with Entrez gene IDs are 

represented in the dataset. Expression intensities for each gene were first log2-transformed, 

with a pseudocount of 8 added to the intensities on the original scale for variance 

stabilization. We determined the one-to-one mouse ortholog of 15,951 human genes (76%) 

using the HomoloGene database (http://www.ncbi.nlm.nih.gov/homologene), complemented 

by manual searches.

The initial list of genes with de novo mutations in ASD probands and unaffected siblings 

were collected from four whole exome-sequencing studies of 952 cases and 594 controls 

published prior to 2013 (Iossifov, et al., 2012; Neale, et al., 2012; O’Roak, et al., 2012b; 

Sanders, et al., 2012). A total of 162 genes have de novo LGD mutations either in the 

probands or siblings. Mouse orthologs were found for 158 genes with LGD mutations, 

including 123 genes with LGD mutations only in probands and 35 genes with LGD 

mutations in siblings. Among these, a total of 145 genes, including 112 genes with LGD 

mutations in probands and 33 genes with LGD mutations in siblings, were represented in the 

microarray data, and were used for the initial model building and analysis. We also used 

1,479 genes with log2 expression intensities ≥ 6 in two or more cell types and a standard 

deviation ≥ 2 across all cell types for global PCA analysis shown in Figure 3B and C.

For further validation, we compiled an expanded list of genes with LGD mutations in autism 

patients (cases) or in their unaffected siblings (controls) from more recent exome-

sequencing studies of about 3,960 cases and 1911 controls (De Rubeis, et al., 2014; Iossifov, 

et al., 2014). In total, we obtained a list of 672 genes, including 40 genes with recurrent 

LGD mutations in patients, 468 genes with singleton LGD mutation in patients, and 173 

genes with LGD mutations in controls (note we excluded TTN). Among these, 611 genes 

(91%) have mouse orthologs and are represented in the microarray data.

De novo copy number variation (CNV) data in ASD probands and annotations of 

overlapping genes were obtained from (Sanders, et al., 2011). This list is composed of 219 

CNVs, and was compiled by the original authors from several previous studies (Itsara, et al., 

2010; Marshall, et al., 2008; Pinto, et al., 2010; Sanders, et al., 2011; Sebat, et al., 2007). 

Technically redundant mutations, due to inclusion of the same patient samples in multiple 

studies, have already been removed from the list, so that recurrence of CNVs observed in the 

list is genuine. We similarly identified the mouse orthlogs of these CNV genes, and those 

(1,571 genes total) represented on the microarrays.
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SFARI autism genes were downloaded in July 2013 from https://gene.sfari.org (Basu, et al., 

2009). The prioritized gene lists by Krishnan et al. (Krishnan, et al., 2016) and DAWN (Liu, 

et al., 2015) were obtained directly from the supplementary tables provided by the authors. 

ExAC metric scores were downloaded from http://exac.broadinstitute.org. De novo mutation 

calls from the Deciphering Developmental Disorders (DDD) project was obtained from 

(McRae, et al., 2016).

We listed all data sets used in the analysis in Supp. Figure S1B.

DAMAGES analysis

For the current work, DAMAGES analysis is composed of two major steps. For PCA 

analysis, log2-transformed expression intensities for each gene were first standardized 

across the 30 cell/tissue types to obtain zero means and unit standard deviations. PCA was 

then performed in R using the princomp package. Here we denote Sgi the score of gene g 
projected onto PC i.

We then used a regularized regression analysis named lasso (Tibshirani, 1996) to evaluate 

the contribution of each PC to prediction of each gene with respect to the source of 

mutations (probands versus siblings) with the following representation. Model overfitting 

was evaluated by a standard leave-one-out cross validation (LOOCV) procedure. For this 

study, we define the score Dg == Sg2 + 0.135 as the DAMAGES score, denoted D-score, of 

gene g, in which the constant is determined by LOOCV.

Estimating specificity and sensitivity in predicting autism-susceptibility genes

The specificity and sensitivity of predicting autism-susceptibility genes have to be inferred 

from the relative enrichment of the mutations in cases versus controls, since the ground truth 

is unknown for most genes. We first estimated the number of non-disease causing genes hit 

by random neutral mutations in the initial list of 112 genes with LGD mutations in probands 

(Supp. Table S1). The five genes with recurrent LGD mutations were considered to be true 

positives, given the very small chance to observe such recurrent de novo mutations (Iossifov, 

et al., 2012; Sanders, et al., 2012; Willsey, et al., 2013). For the remaining genes, the number 

of non-disease causing genes, or false positives, was estimated based on the relative 

frequency of LGD mutations in siblings. A case-control design was used in three studies, 

and the number of false positives in each study was estimated separately. For one study 

(Neale, et al., 2012), no sibling controls were included, so the number of false positives was 

estimated from the false discovery rate (FDR) of the other three studies pooled together. 

Overall, 53 genes with non-recurrent LGD mutations (42% of 127 genes) were estimated to 

be false positives. Therefore, we estimated that among the 112 genes with LGD mutations 

represented in the microarray dataset, there are ~65 disease-causing genes and ~47 non-

disease genes, respectively.

To assess the single-LGD candidate gene prioritization performance of D-score, ExAC 

metrics, and ensemble score, we used estimated background mutation rate (Samocha, et al., 

2014; Ware, et al., 2001) to estimate precision and recall (sensitivity) rate. Specifically, for 

each gene set (with G genes) defined by various metrics, we estimated the number of true 

positive (i.e. disease-causing; MT) LGD mutations based on the observed number (M1) of 
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LGD variants in N cases and the expected number of variants (M0) given the background 

LGD mutation rate (Ri, i indexes genes)  and MT = M1 − M0. We denote 

the total number of true positives in all genes as M, and estimate sensitivity (recall) in each 

gene set by S = MT/M and precision by P = MT/M1. F-measure combines precision and 

recall by their harmonic mean F = 2PS/(P+S), which provides a single metric score that 

balances between precision and recall. We note that genes with recurrent mutations in ASD 

patients and genes with LGD mutations in controls, which were used to build ensemble 

regression model, were not used to estimate the precision and recall in this analysis.

Ensemble score by combining D-score and ExAC metrics

We used a logistic regression to combine D-score with direct measurements of mutation 

intolerance for a better haploinsufficiency prediction. Specifically, we labeled genes with ≥2 

LGD de novo mutations in cases as ≥positives”, and the genes with ≥1 LGD de novo 
mutations in controls and no LGD mutations in cases as “negatives”; we used D-score and 

ExAC metrics (pLI and mis-Z) as features (xi ), and estimated the effect size (βi ) for each 

feature by a standard logistic regression. With estimated effect size, including the intercept 

(β0 ), we calculate a prediction score (“ensemble score”) for each gene by S = 1/[1 + e
−(β0+Σiβixi)].

Results

DAMAGES analysis uncovers an expression signature of autism-susceptibility genes

Our study was motivated by a postulation that different cell types in the brain have different 

susceptibility and impact on autism etiopathology, which is supported by recent studies 

showing expression bias in candidate autism-susceptibility genes (Chang, et al., 2015; Xu, et 

al., 2014). However, to the best of our knowledge, the effectiveness of cell type-specific 

expression in predicting autism-susceptibility genes, alone or in combination with other 

metrics, has not been systematically explored.

We developed and applied a computational framework for disease-associated mutation 

analysis using gene expression signatures (DAMAGES) to score the association of human 

genes with autism, to refine the lists of candidate autism-associated genes currently 

available, and to uncover features shared by these genes as a means of understanding the 

molecular underpinnings of the disease (Supp. Figure S1A). We reason that combination of 

expression and mutation data—two orthogonal types of information—is critical for 

minimizing “guilt by association” and identifying causal disease risk genes. In contrast to 

previous network analysis approaches, we adopted a case-control classification framework 

to optimize and objectively evaluate the accuracy of prediction. To provide a proof of 

principle in this study, we decided to examine a large microarray dataset that profiles cell 

type-specific transcripts associated with translating ribosomes in the mouse brain generated 

by a biochemical assay named TRAP (Doyle, et al., 2008; Heiman, et al., 2008). In total, 

this dataset is composed of translational profiles of 24 specific mouse CNS cell types, 

including both neurons and glial cells, isolated from six different regions, together with 

unselected RNA representing all cell types in each of these regions (Doyle, et al., 2008) 

(Supp. Figure S1A). This translational profiling approach was previously shown to give 
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robust gene expression measurements, and to effectively identify known and novel cell-type 

specific markers and provide biological insights into each cell type (Doyle, et al., 2008).

To identify expression signatures of autism-susceptibility genes, we started with a list of 162 

genes containing de novo LGD mutations in either ASD probands or unaffected siblings 

collected from four exome-sequencing studies (Iossifov, et al., 2012; Neale, et al., 2012; 

O’Roak, et al., 2012b; Sanders, et al., 2012). Our prediction model was built using these 

mutations representing all information available before 2013, which gave us a chance to use 

additional genes discovered by large-scale follow-up studies for objective evaluation (Supp. 

Figure S1B). In total, 145 human genes have mouse orthologs and were represented in the 

microarray dataset we used (Supp. Table S1). We assume that the 33 genes with LGD 

mutations in unaffected siblings confer no risk of ASD (non-disease genes). On the other 

hand, the other 112 genes with LGD mutations in probands were estimated to represent a 

mixture of about 65 autism -susceptibility genes and 47 non-disease genes (Supp. Table S1 

and Material and Methods; a similar estimate provided in (Willsey, et al., 2013)). It is worth 

noting that we limited our analysis to mutations derived from unbiased genomic screens to 

build the model, and excluded candidates identified by more targeted or hypothesis-driven 

approaches or by transcriptomic analysis to avoid potential ascertainment bias. This is 

particularly critical for an objective assessment of DAMAGES analysis in prediction 

accuracy.

Given the relatively balanced representation of autism-susceptibility genes and non-disease 

genes (estimated to be ~65 and ~80, respectively) in the dataset, we anticipated that the 

contrast between these two groups of genes would represent a major axis of expression 

dynamics in the high-dimensional space. A principal component analysis (PCA) (Duda, et 

al., 2000) was thus performed to identify the orthogonal axes that explain the most variance. 

This analysis revealed that the first two principal components explains about 20% of 

variation and projection of genes to the second principal component (PC) is very predictive 

of mutations in probands versus controls (Figure 1A–B and Supp. Figure S2A). We note that 

PCA is an unsupervised method which does not incorporate information on the source of 

mutations (i.e., patient or sibling) so the prediction performance is not due to data 

overfitting. To have a more rigorous assessment of the ability of each PC or combination of 

PCs to differentiate potentially disease-associated mutations from neutral mutations, we 

performed a regularized linear regression analysis lasso (Tibshirani, 1996) to find the PCs 

that are most predictive of the source of mutations. We confirmed that the predictive power 

came almost exclusively from PC2 (Supp. Figure S2 B and C). Therefore, we decided to use 

the PC2 as a signature of autism-susceptibility genes, and adjusted the threshold according 

to leave-one-out cross validation (LOOCV), which resulted in the final DAMAGES scores 

(or D-scores) used for gene ranking (Supp. Figure S2C). As a result, we were able to 

identify 93 genes with positive D-scores, including 83 genes with LGD mutations in 

probands and 10 genes with LGD mutations in siblings, respectively (Figure 1B and Supp. 

Table S1). Proband-specific LGD mutations are strikingly enriched in genes with positive D-

scores compared to the remaining genes (Figure 1B; odds ratio=6.5, P=8×10−6, Fisher’s 

exact test). The ability of the gene expression signature to differentiate mutations in 

probands from those in siblings suggests that at least some of the CNS cell types included in 
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the microarray dataset are strongly associated with the underlying molecular mechanisms of 

autism.

Validation of the expression signature using expanded autism exome sequencing data 
sets

Based on the signature, we assigned a D-score to all human genes represented in the 

microarray dataset independent of their mutation status (Supp. Table S2). This allowed us to 

have an independent, “prospective” evaluation of the performance of the expression 

signature using an expanded list of genes with LGD mutations from recent large-scale 

studies after our prediction model was built (Supp. Figure S1B and Supp. Table S1)(De 

Rubeis, et al., 2014; Iossifov, et al., 2014). In this expanded dataset, almost all genes with 

recurrent mutations in autism patients (35/38=92%) received a positive D-score (Figure 1C; 

exceptions are DSCAM, RANBP17, and TCF7L2; two genes not represented on the array 

were excluded). Among the genes ranked in the top 25% by the D-score, there is a 2.8-fold 

enrichment (P=3.2×10−12) of LGD mutations in cases comparing to unaffected siblings, 

whereas there is no significant enrichment in rest of genes (rate enrichment = 1.2, P=0.16) 

(Table 1). Therefore, DAMAGES analysis prioritized bona fide autism-susceptibility genes 

with minimal loss.

For additional validation, we examined 528 genes compiled in the Simon Foundation 

Autism Research Initiative (SFARI) autism gene database, a list of potential autism-

associated genes manually curated by experts according to various types of evidence 

available in the literature (https://gene.sfari.org) (Basu, et al., 2009). We used the dataset 

retrieved in 2013 for comparison, as later releases of database integrated results from 

sequencing studies. Among the 483 SFARI genes represented in the microarray data, 300 

(62%) have a positive D-score (Figure 2A and Supp. Table S3), a very significant 

enrichment compared to all genes represented in the microarray dataset (odds ratio=2.3, 

P=6.3×10−20; Fisher’s exact test). In addition, this proportion is higher for genes with more 

evidence supporting their implication in autism (Figure 2B). For example, genes with 

positive D-scores include 5/5 (100%) genes that are classified as strong candidates and 15/20 

(75%) genes that are classified as syndromic, such as FMR1, MECP2 [Rett syndrome (Amir, 

et al., 1999)] and TSC1/2 [tuberous sclerosis complex (Crino, et al., 2006)]. Furthermore, 

SFARI genes received much higher ranks based on the D-score, as compared to ranking by 

the first PC reflecting the neuron-glial distinction (P=1.2×10−22; Wilcox ranksum test; see 

below).

CNS cell types associated with autism

To further confirm this molecular signature and gain more biological insights, we examined 

the loadings of different cell types on each PC (Supp. Table S4). The first PC essentially 

differentiates neurons versus glial cells and unselected cell types in different brain regions 

(Figure 3A). In contrast, the second PC predictive of autism-susceptibility genes appears to 

give more of a mix of different cell types and regions, although a certain bias is also clear 

(e.g., cortical neurons have the highest positive loadings; see below). To assess whether this 

pattern is relevant for the underlying molecular mechanisms of autism and specific for 

autism-susceptibility genes, we performed another PCA using all genes showing the most 
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variation across different cell types. The first PC of the whole dataset is highly correlated 

with the one derived from genes with LGD mutations (R2=0.74), and similarly differentiates 

neurons from glial cells and unselected cell types (Figure 3B). This result is consistent with 

the notion that even among genes with LGD mutations the distinction of neuronal versus 

glial genes dominates the expression dynamics. In contrast, the second PC identified in the 

global PCA has a low correlation with the second PC identified using genes with LGD 

mutations (R2=0.19; Figure 3C). This observation supports the notion that the molecular 

signature identified using genes with LGD mutations indeed reflects certain specific features 

shared by autism-susceptibility genes.

Therefore, the loadings of different cell types on the signature (PC2) likely reflect their 

association with autism (Figure 3D). In general, none of the glial cell types included for this 

analysis has a positive association. On the other hand, the association of neurons with the 

signature varies depending on specific cell types and brain regions. Different types of 

cortical neurons, including interneurons, corticothalamic neurons, corticospinal and 

corticopontine neurons, Cck+ neurons, and corticostriatal neurons, have large positive 

loadings on the signature. However, not all types of cortical neurons have a positive 

association, and some, such as Pnoc+ interneurons, have a negative loading. Besides cortical 

neurons, cerebellar granule cells, striatal medium spiny neurons, but not Purkinje cells, 

cholinergic neurons, or motor neurons, show a strong positive loading. Altogether, these 

observations are not only consistent with autism being mainly an impairment of high-level 

cognitive functions, but also suggest that even in a given brain region, specific cell types 

may play very different roles in the etiopathogenesis of the disease.

Molecular functions associated with the autism-susceptibility gene expression signature

We asked whether the expression signature captures certain molecular functions shared by 

autism-susceptibility genes. To this end, we performed Gene Ontology (GO) analysis 

(Dennis, et al., 2003) using the top 500 protein-coding genes ranked by D-scores 

independent of their mutation status. This analysis revealed very strong enrichment of those 

involved in “transcription” (Benjamini FDR=3×10−14), “chromatin modification” 

(Benjamini FDR=7.9×10−6) and “regulation of RNA metabolic process” (Benjamini 

FDR=2.2×10−4) (Supp. Table S5). It is worth noting that “chromatin organization” is also 

enriched in the 83 high-priority candidate genes, although the statistical significance is 

marginal (Benjamini FDR=0.07). Therefore, not only are genes with LGD mutations 

themselves enriched in those important for transcriptional regulation, as noted previously 

(Ben-David and Shifman, 2013; Iossifov, et al., 2012; O’Roak, et al., 2012b), but they define 

a molecular signature represented by a larger set of genes with coherent molecular functions 

in both transcriptional and post-transcriptional regulation of gene expression.

The expression signature reflects haploinsufficiency of the affected genes

We postulate that the expression signature may reflect haploinsufficiency because it was 

derived from genes with heterozygous loss of function. To test this hypothesis, we examined 

genes covered by relatively focal de novo CNV events (≤50 genes) detected in ASD 

probands (Itsara, et al., 2010; Marshall, et al., 2008; Pinto, et al., 2010; Sanders, et al., 2011; 

Sebat, et al., 2007). Interestingly, genes with higher D-scores tend to overlap with deletions 
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than amplifications (P<0.04; Spearman correlation test). The significance is relatively 

marginal, presumably due to the limited spatial resolution of the CNVs. For further 

confirmation, we examined genes differentially expressed in post-mortem autism brains as 

compared to controls (Voineagu, et al., 2011), assuming that the dosage-dependent alteration 

can also be caused by changes at the transcription level. Indeed, genes down-regulated in 

autism tend to have a positive D-score (P<2.2×10−16), while genes upregulated in autism 

tend to have a negative D-score (P<2×10−7; Supp. Figure S3A).

Recently, the Exome Aggregation Consortium (ExAC) used large-scale exome sequencing 

data of general populations without developmental disorders to estimate metrics of 

haploinsufficiency or mutation intolerance (Lek, et al., 2016), including the probability of 

being loss-of-function (LoF) intolerant (pLI), LoF-Z score and mis-Z score. Briefly, pLI is 

an estimate of the probability of a gene being haploinsufficiency based on depletion of rare 

LGD variants in the population, and LoF-Z and mis-Z are normalized scores measuring the 

depletion of rare variants comparing to what is expected by chance in a gene. A positive 

correlation (r = 0.29, P < 10−10) of LoF Z score and D-score was observed among genes 

with positive D-scores (Supp. Figure S3B). This observation is again consistent with the 

notion that both metrics are related to haploinsufficiency although they were derived using 

entirely different approaches with different assumptions.

Prioritizing genes in CNVs including 16p11.2

De novo CNVs detected in ASD probands typically span dozens or hundreds of genes 

(Itsara, et al., 2010; Levy, et al., 2011; Marshall, et al., 2008; Pinto, et al., 2010; Sanders, et 

al., 2011; Sebat, et al., 2007). Therefore, although over 2,000 genes are covered by at least 

one CNV identified so far, it is difficult to differentiate bona fide autism-susceptibility genes 

from other passenger genes. We focused on 58 deletion CNVs for which all overlapping 

genes have mouse orthologs and are represented in the microarray data. Of these, 30 CNVs 

each have one and only one gene with a positive D-score. Based on the high sensitivity 

(~90%, see below) of a positive D-score in predicting autism-susceptibility genes, we argue 

that if a CNV is pathogenic, the only gene with a positive D-score is most likely the causal 

gene. We therefore denote the CNV “likely supporting CNV” or LS-CNV of the 

corresponding gene. This analysis resulted in 19 genes supported by deletion LS-CNV 

events in one or more patients (Supp. Table S6). Of these genes, five are supported by 

recurrent LS-CNVs (NRXN1, DPP6, PTPRT, SHANK2 and SLC4A10), and all of these five 

genes are known to have functional implications in synapse (Clark, et al., 2008; Jacobs, et 

al., 2008; Lim, et al., 2009; Sudhof, 2008; Won, et al., 2012) and/or autism-related 

phenotypes (Won, et al., 2012). Remarkably, three genes harbor recurrent LGD mutations in 

ASD patients (ANKRD11, CHD3 and KMT2C; odd ratio=130, P<3.4×10−6, Fisher’s exact 

test). Two additional genes (NRXN1 and SHANK2) have singleton LGD mutations from 

exome sequencing (i.e., recurrent if the LS-CNV is counted).

LS-CNVs tend to span a smaller number of genes than CNVs in general. For a majority of 

CNVs overlapping with more genes, it is difficult to reliably distinguish susceptibility genes 

versus passenger genes even with the D-score. Nevertheless, it is still possible to eliminate a 

substantial fraction of passenger genes. To illustrate this point, we examined the most 
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frequent recurrent de novo CNV located in 16p11.2, which accounts for up to 1% of ASD 

cases (Marshall, et al., 2008) (14 deletions and 5 duplications in the dataset used for this 

analysis; Figure 4A). This region spans 26 genes (Sanders, et al., 2011) and all of them have 

mouse orthologs; deletion of the region in mice phenocopied behavior deficits observed in 

ASD patients (Horev, et al., 2011). Among the 23 genes represented in the microarray data, 

nine have a positive D-score (Figure 4B). Interestingly, deletion of a smaller region in this 

locus also segregates with ASD or ASD traits (Crepel, et al., 2011). This deletion 

encompasses five genes, including KCTD13, ASPHD1 and SEZ6L2 with a positive D-score. 

A recent study further demonstrated that KCTD13 is a major driver of the macrocephalic 

phenotype associated with ASD cases carrying the 16p11.2 CNV (Golzio, et al., 2012). 

Some of the other genes in this locus, especially the ones with positive D-scores, could 

contribute to the additional clinical manifestations in ASDs.

Comparison with other methods and an ensemble model for optimized prediction of 
autism-susceptibility genes

We compared D-score and several other methods in predicting autism-susceptibility genes. 

A very recent study ranked and predicted autism-associated genes using a human brain-

specific functional gene interaction network derived from expression and interaction 

measurements in thousands of different conditions (Krishnan, et al., 2016). Compared to this 

method, D-score achieved comparable or favorable results in a wide range of stringency 

thresholds, as shown in Precision-Recall curves (Figure 5A,B and Supp. Table S2). For 

example, Krishnan et al. reported enrichment of de novo LGD mutations in the top decile of 

their ranked gene list. We found the top 2,000 genes ranked by this method (among those 

with one-to-one mouse orthologs) included 19 of 36 genes with recurrent mutations and 86 

of 461 genes with singleton mutations in autism cases (odds ratio=6.8 and 1.4, respectively). 

For the same number of predictions, D-score predicted 23 of 36 recurrent genes, and 117 of 

461 singleton in cases (odds ratio=8.9 and 1.7, respectively).

Similarly, the performance of D-score is also on a par with ExAC scores (Figure 5A–C). In 

particular, when we focused on genes with single LGD mutations in cases and found ExAC 

pLI>0.9 or LoF Z-score>3 achieved similar optimal performance as D-score (about 40% 

precision and 90% sensitivity; Figure 5A, B and Supp. Table S2), as compared to a baseline 

15% precision. Importantly, while predictions by the two metrics overlap, small genes with 

low background mutation rate (such as MECP2, pLI=0.7) tend to be missed by ExAC 

scores. These results confirmed the effectiveness of cell-type specific expression in 

prioritizing autism-susceptibility genes compared to the other state-of-the-art approaches.

Since D-score and ExAC scores were derived from very different types of information, we 

investigated whether the two approaches make independent contributions in gene 

prioritization. To this end, we performed a logistic regression to classify recurrently mutated 

genes in cases and genes with LGD mutations in controls, with ExAC pLI, ExAC mis-z, and 

D-score as features. The coefficients of all three features deviate significantly from zero 

(Table 2), indicating that D-score is complementary to ExAC scores in determining gene 

LGD intolerance (interestingly, gene expression in embryonic mouse brain bulk sample at 

E9.5 (Homsy, et al., 2015) did not any predictive power). Therefore, combining these scores 

Zhang and Shen Page 11

Hum Mutat. Author manuscript; available in PMC 2018 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



would maximize the performance in candidate gene prioritization. To assess that, we applied 

the estimated logistic model to all genes to calculate an ensemble score (Supp. Table S2), 

and estimated precision-recall rates in a range of top rank thresholds, excluding the genes 

that are recurrently mutated. We found that the ensemble score outperforms all individual 

methods, with an optimal performance among the top 1,300 genes (Figure 5A, B). With 

ensemble score, the precision quadruples to 60% with near-maximal sensitivity (estimated to 

be 97%). Using this threshold, we identified 117 high-priority candidate genes with a 

singleton LGD mutation (Supp. Table S7).

Since ASD shares substantial number of risk genes with other neurodevelopmental disorders 

(De Rubeis, et al., 2014; Krumm, et al., 2015), we obtained the de novo mutation calls from 

the latest released data (McRae, et al., 2016) from the Deciphering Developmental Disorders 

(DDD) project (The Deciphering Developmental Disorders Study, 2015) to further assess the 

performance of ensemble score prediction. The DDD data includes 4,293 patients with 

severe undiagnosed developmental disorders. Overall, among all the genes with a single 

LGD mutation in ASD data, the ones with at least one de novo LGD or damaging missense 

(predicted by metaSVM (Dong, et al., 2015) or polyphen-2 (Adzhubei, et al., 2001) and 

CADD (Kircher, et al., 2014)) mutation in the DDD data have higher ensemble scores than 

the ones without (P = 1.3×10−11; KS test) (Figure 5D). Importantly, among the 117 high-

priority candidate genes predicted by ensemble score, 65 harbor at least one damaging 

mutation in the DDD data set. This rate is much higher than non-candidate genes with a 

single LGD mutation in ASD data (odds ratio = 4.6; P = 2×10−11; Fisher’s exact test).

We also compared the ensemble method with the DAWN algorithm, which integrates de 
novo mutation data with gene co-expression network (Liu, et al., 2015). In total, 113 genes 

with singleton mutations were among the candidate genes prioritized by DAWN, and 49 

genes of them have at least one deleterious de novo mutations in DDD data set. While the 

proportion is still significantly larger than non-candidate singleton genes (P= 8.3e-4), the 

odds ratio (2.2) is much lower than that of the ensemble score (4.6). Taken together, the 

candidate genes with singleton de novo LGD mutations prioritized by the ensemble score 

are also more likely to be associated with developmental disorders in general.

Gender bias of autism-associated de novo mutations

The incidence of autism has a strong gender bias, with a male:female ratio around 4 overall 

and even higher for high-functioning cases. This is reflected in the population of participants 

included in the exome-sequencing studies (M:F=6.4 in the SSC dataset; Supp. Table S8). 

However, a lower incidence of de novo mutations in males was previously observed 

(Iossifov, et al., 2014; Iossifov, et al., 2012; Levy, et al., 2011). We examined the gender bias 

of de novo LGD mutations in different sets of genes, focusing on mutations identified from 

the Simon SSC dataset, for which the number of male and female patients is known (Supp. 

Table S8). Consistent with previous observations, the lowest M:F ratio was observed from 

genes with recurrent LGD mutations and genes with singleton LGD mutations predicted by 

the ensemble model (M:F~0.5, after correction for the gender bias of the participants; 

P<0.02, Fisher’s exact test). A more moderate, but significant, gender bias was observed in 

genes with singleton mutations predicted by D-score alone (M:F=0.62; P=0.02, Fisher’s 
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exact test). No significant gender bias was observed among singleton mutations in genes 

showing a negative D-score (M:F=0.89; P=0.65, Fisher’s exact test). We also confirmed that 

there is no correlation between D-score and gender-specific gene expression detected in the 

mouse brain(Yang, et al., 2006), suggesting that the gender bias of autism-associated 

mutations predicted by D-score cannot be simply explained by dimorphic gene expression 

(Supp. Figure S4). These observations provided an independent line of evidence that D-

score and the ensemble model can discriminate disease-susceptibility genes from non-

disease genes.

Discussion

Here we present the use of cell type-specific gene expression profiles to improve prediction 

of autism-susceptibility genes. The molecular signature uncovered by DAMAGES analysis 

has several implications. First, this study echoes recent findings on convergent molecular 

pathways underlying autism etiopathogenesis including, approximately, three modules: 

synaptic structure and function, transcriptional regulation and chromatin remodeling, and 

Wnt signaling (reviewed by ref. (Krumm, et al., 2014) (De Rubeis, et al., 2014)). 

Conclusions of these studies were drawn from analysis of co-occurrence in genetic 

phenotypes (Gilman, et al., 2011), protein-protein interactions (O’Roak, et al., 2012b), and 

gene co-expression networks reflecting developmental dynamics in different brain regions 

(Parikshak, et al., 2013; Willsey, et al., 2013). This work extended these previous efforts by 

demonstrating that a robust signature of autism-susceptibility genes can be defined by their 

expression patterns in a range of specific CNS cell types (Chang, et al., 2015; Xu, et al., 

2014). Importantly, this signature reflects genes involved in transcriptional and post-

transcriptional regulation and haploinsufficiency caused by LGD mutations in these genes. 

The importance of transcription factors and chromatin regulators in autism is now well 

established (Krumm, et al., 2014; O’Roak, et al., 2012b). In addition, the role of post-

transcriptional regulation is in line with the observation that several monogenic autism risk 

loci, including FMRP and MeCP2, are important regulators of RNA metabolism (Smith and 

Sadee, 2011), and that candidate autism-associated genes show significant overlap with 

target transcripts of several neuronal RNA-binding proteins including FMRP (Darnell, et al., 

2011; Iossifov, et al., 2012) and RBFOX1 (A2BP1) (Voineagu, et al., 2011; Weyn-

Vanhentenryck, et al., 2014; Zhang, et al., 2010). Indeed, among the 822 FMRP target genes 

represented in the microarray dataset (Darnell, et al., 2011), a vast majority (718 or 87%) 

have a positive D-score.

Second, a key feature of DAMAGES analysis is that it adopts a case-control design using 

candidate genes derived from genomic DNA screens, which are completely independent of 

expression data. This design allows rigorous assessment of the biological relevance and 

predictive power of the uncovered signature by controlling potential confounding factors 

such as non-uniform mutation rates in different groups of genes. In addition, expression data 

from model organisms, which represent richer resources compared to the scarcity and non-

uniform quality of expression profiles derived from postmortem human brains, can be 

naturally included in such framework. Our results demonstrated that the cell type-specific 

expression signature derived from mouse CNS cell types greatly increased the specificity of 

predicting autism-susceptibility genes with minimal loss of true hits. This is reflected in the 
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observation that DAMAGES analysis predicted 35 out of 40 genes with recurrent LGD 

mutations identified so far and all 5 non-syndromic candidate genes with the highest 

confidence in the SFARI autism gene database. Importantly, the information provided by the 

expression signature is complementary to the scoring metrics based on analysis of mutation 

intolerance in the general population, and improved performance was achieved by 

combining the two methods.

Lastly, the cell-type specific signature captures a strong positive association of autism with 

multiple types of cortical neurons, cerebellar granule cells, and striatal medium spiny 

neurons. This observation implies haploinsufficiency of genes that are normally highly 

expressed in these cell types as a converging pathogenic mechanism in autism. The 

implication of cortical projection neurons (Willsey, et al., 2013) and cells in the granule 

layer of the cerebellum (Menashe, et al., 2013) has been noted in the last few years. In basal 

ganglia, striatal medium spiny neurons are known as the primary cell type vulnerable in 

Huntington’s disease (Ehrlich, 2012). In the context of autism, it has been shown that 

depletion of SHANK3, a gene highly expressed in striatum and regarded as the cause of the 

autism-related Phelan-McDermid Syndrome, results in ASD-like features such as impaired 

social interaction in mouse models (Peca, et al., 2011). SHANK3 has a singleton LGD 

mutation detected in the current exome-sequencing studies, and ranks among the top 5% 

genes genome-wide by the D-score (see Figure 4A). In the cerebellum, a reduction of 

Purkinje cells and granule cells has been found in postmortem autistic brains and in mouse 

models (Fatemi, et al., 2012; Tsai, et al., 2012). Interestingly, our analysis revealed that 

cerebellar granule cells show a strong positive loading with a magnitude similar to those 

observed from cortical neurons, while Purkinje cells in cerebellum show weak loadings. 

These data suggest an intriguing hypothesis that different molecular mechanisms might 

underlie the loss of Purkinje and granule cells, although this has to be tested in future work. 

Finally, glial cells, especially astrocytes, show a strong negative loading. However, this 

should probably not exclude the contribution of these cells to autism. Instead, an alternative 

interpretation is that these genes may confer risks through other mechanisms than 

haploinsufficiency, which is supported by the observation that a subset of immune genes and 

glia markers are overexpressed in autism brains (Voineagu, et al., 2011).

In summary, this study suggests the potential of utilizing gene expression and regulation 

information in predicting pathogenic mutations in autism. While we focused on cell type-

specific expression in this work to demonstrate the proof of principle, we anticipate that 

additional spatiotemporal expression profiles and functional annotations of genes, which can 

be integrated using a machine learning framework, will further improve the performance. 

Prioritized gene lists from such analysis can facilitate further validation by targeted re-

sequencing in large cohorts (O’Roak, et al., 2012a) or more mechanistic studies using model 

organisms. This application will be particularly useful as the list of mutations are expected 

to grow steadily as a result of continuing autism exome- and genome-wide sequencing 

projects (Krumm, et al., 2014; Ronemus, et al., 2014; Simons Foundation, 2016).

Statistical analysis

All statistical tests and logistic regression were performed using the R software.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A molecular signature differentiates autism-susceptibility genes and non-disease genes
A. A total of 145 genes, including 112 genes with LGD mutations in probands (blue dots) 

and 33 genes with LGD mutations in siblings (green dots) are projected onto the two-

dimensional space defined by the first two principal components (PCs).

B. The second principal component differentiates autism-susceptibility genes and non-

disease genes. In the heatmap on the left, the PC2 score and loading were used to rank genes 

and arrays respectively. Detail of the cell types is also shown in Figure 3B below. The source 

of mutation in each gene (i.e., patient or control) is indicated with genes shown in the same 

order. The number of genes with D-score>0 or <0 is shown on the right.

C. Summary of prediction using an expanded list of genes with LGD mutations in ASD 

patients and unaffected siblings.
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Figure 2. The DAMAGES molecular signature refines the list of candidate genes in the SFARI 
autism gene database
A. All genes represented in the microarray dataset, except those with average log2 intensity 

<4.5, are projected onto the first two PCs, and shown as a smoothed scatter plot. The gray-

scale intensity reflects the local density of genes. A total of 483 genes from the SFARI 

autism gene database represented in the microarray dataset (asterisks) are overlaid. A subset 

of these genes were manually scored by experts by considering strength of existing 

evidence, and these scored genes are distinguished using different colors. A subset of 

syndromic ASD genes and the five strong candidate genes are highlighted.

B. The percentage of scored genes in each group with a positive or negative DAMAGES 

score (D-score) is shown. The color codes are the same as in (A). The number of genes in 

each group is indicated in the parentheses following the gene categories.
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Figure 3. The DAMAGES molecular signature reveals CNS cell types associated with autism
A. The loadings of different cell types on the first two PCs derived from genes with LGD 

mutations are shown. Each dot represents a cell type. Different colors represent the brain 

regions used to isolate the specific types of cells, with the same color codes as shown in 

Supp. Figure S1A. Neurons, glial cells and unselected RNA samples are represented by 

triangles, circles, and squares, respectively.

B. The loadings of cell types on PC1 derived from genes with LGD mutations (x-axis) are 

plotted against that derived from the whole dataset (y-axis). The asterisk indicates cerebellar 

Grp+ cells that are known to include both unipolar brush cells and Bergmann glial cells 

(Doyle, et al., 2008). The squared Pearson correlation between the two signatures is 

indicated.

C. Similar to (B), except that the loadings on PC2 are plotted.

D. Loadings of all cell types on PC2 derived from genes with LGD mutations (DAMAGES 

signature) are plotted. The color codes and abbreviation of each brain region are the same as 

shown in Supp. Figure S1A. UB: unbound RNA without selection for specific cell types.
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Figure 4. Prioritized candidate autism-susceptibility genes with recurrent CNVs in chromosome 
16p11.2
A. A UCSC genome browser view of the region (hg19: chr16:29,350,841–30,433,540) is 

shown, with de novo CNV events displayed above the RefSeq genes. Duplication and 

deletion CNVs are shown in red and blue, respectively. The dotted box indicates the region 

with 26 genes affected in almost all CNVs.

B. The 26 genes are ranked by their D-scores. Three genes not represented in the microarray 

data are indicated by n.a..
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Figure 5. Comparison D-score with other methods and the ensemble model
A. Performance of prediction as measured by Precision and Recall (Sensitivity) using 

different gene prioritizing methods or an ensemble model as a function of varying cutoffs. 

Note that Precision and Recall were estimated from the relative enrichment of mutations in 

patients and controls, since the ground truth whether a gene is a true positive is unavailable 

in most cases.

B. Similar to (A), but the F measure is shown. F measure is the harmonic mean of precision 

and recall and rewards a balance of the two.

C. Distribution of D-scores and ExAC LOF Z-scores for genes with recurrent LGD 

mutations in ASD cases and controls.

D. Distribution of ensemble score among singleton genes in which damaging de novo 
mutations observed (red) in the DDD data set versus the ones not observed (blue). Singleton 

genes refer to the ones with a single de novo LGD mutation in autism cases.
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Table 1

Enrichment of LGD de novo mutations in cases among genes grouped by D-score.

D-score rank percentile Number of LGD mutations in 
cases

Number of LGD mutations in 
controls

Rate enrichment P-value

Top 25% (n-genes = 3928) 257 45 2.76 3.2×10−12

Bottom 75% 318 132 1.16 0.16

P-values were calculated by binomial tests to test a null hypothesis that the rate of LGD mutations is the same in cases as in controls in a set of 
genes.

Hum Mutat. Author manuscript; available in PMC 2018 March 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Shen Page 26

Table 2

Logistic regression for classification of recurrently LGD-mutated genes in ASD and genes LGD-mutated in 

unaffected siblings.

Features Estimate P-value

pLI 2.00 0.0029

Mis_z 0.290 0.019

D-score 2.90 0.0015

We also considered the gene expression rank from brain tissues at mouse embryonic day 9.5 (Brain E9.5; data described in (Homsy, et al., 2015)) as 
a potential feature. However, in the logistic regression, if we include brain E9.5 together with other features above, the effect size of the feature is 
not statistically significant from 0 (P-value=0.92). This feature is thus excluded in our final ensemble model.
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