Skip to main content
Molecular Medicine Reports logoLink to Molecular Medicine Reports
. 2017 Sep 11;16(5):6650–6673. doi: 10.3892/mmr.2017.7462

MicroRNA expression profiles and networks in placentas complicated with selective intrauterine growth restriction

Hong Wen 1, Lu Chen 1, Jing He 1,, Jun Lin 1,
PMCID: PMC5865797  PMID: 28901463

Abstract

The microRNA (miRNA) profiles of placentas complicated with selective intrauterine growth restriction (sIUGR) are unknown. In the present study, the sIUGR-associated placental miRNA expression was investigated using microarray and confirmatory reverse transcriptase-quantitative polymerase chain reaction studies. Placenta samples around the individual insertion region for each umbilical cord were collected from monochorionic twins complicated with (n=17) or without sIUGR (control, n=16). miRNA profile analysis was performed on two sIUGR cases and one control using an Affymetrix microRNA 4.0 Array system. A total of 14 miRNAs were identified to be specifically differentially expressed (7 upregulated and 7 downregulated) among larger twins of sIUGR cases compared with smaller twins of sIUGR cases. The target genes of the identified miRNAs participate in organ size, cell differentiation, cell proliferation and migration. In addition, according to the miRNA-pathway network analysis, key miRNAs and pathways (transforming growth factor-β, mitogen-activated protein kinase and Wnt) were identified to be associated with the pathogenesis of sIUGR. To the best of our knowledge, the results of the current study have provided the most complete miRNA profiles and the most detailed miRNA regulatory networks of placental tissues complicated with sIUGR.

Keywords: microRNA, placenta, selective intrauterine growth restriction, microarray

Introduction

MicroRNAs (miRNAs), 21–25 nucloeotide long non-coding RNA molecules, are highly ubiquitous and conserved across many species (1). miRNA binds to the 3′-untranslated region of target mRNA and silence gene expression by either translational repression or direct mRNA degradation (2). Human genome codes for more than 1,000 miRNAs, and each of them can potentially post-transcriptionally regulate a vast number of genes. By negatively regulating their mRNA targets, miRNA have been implicated in regulating a number of key cellular functions including cell migration, invasion, growth, differentiation and apoptosis (3,4). miRNA expression has been detected expressed in diverse tissues, including placenta (5). Altered expression of miRNAs has been showed in pregnancy-specific diseases, such as preeclampsia, ectopic pregnancy, fetal growth restriction and intrauterine growth retardation (6).

Selective intrauterine growth restriction (sIUGR) is used to define cases with an estimated fetal weight (EFW) of below the 10th percentile in one fetus (7,8). sIUGR occurs in 10 to 15% of monochorionic (MC) twins and is associated with an increased risk of intrauterine fetal demise (IUFD) and neurological adverse outcome for both twins (9). The presence of vascular anastomoses, the localization of umbilical cord and the unequal placental sharing are associated with the development of sIUGR in monozygotic twins, which have identical inherited backgrounds (1012), while the molecular mechanisms underlying the pathogenesis of sIUGR are still unclear. Studies have showed that several angiogenic and antiangiogenic factors [vascular endothelial growth factor receptor-1 (VEGFR-1), endoglin and fms-Like Tyrosine Kinase-1 (Flt-1)] are involved in the pathogenesis of twin pregnancies complicated by sIUGR (1315). Unbalanced placental expression of imprinted genes such as PHLDA2 (16) and insulin-like growth factor 2 (IGF2) (17) may also contribute to the development of sIUGR. However, little is known about the dysregulated miRNAs in the placentas complicated sIUGR.

The aim of this study was to identify miRNA profiles in the placentas from pregnancies complicated by sIUGR. The placentas around the individual insertion region for each umbilical cord were collected and subjected for miRNA profile analysis using Affymetrix microRNA 4.0 Array System. We characterized 14 specific significant differentially expressed miRNAs (DEMs) in larger twin placenta compared to corresponding smaller twin placenta. The target genes of significantly changed miRNAs were predicted, and miRNA-Pathway network was established, which provided comprehensive information on the molecular mechanisms of sIUGR.

Materials and methods

Collection of placenta samples

The study was performed with the approval of the Institutional Review Board of Zhejiang University. All participating women were given written, informed consent prior to the collection of samples. Thirty-three women were enrolled in this study, including 17 cases complicated with sIUGR and 16 cases with normal MC. The intertwin EFW discordance, calculated as [(larger twin-smaller twin)/larger twin], was above 20% and less than 5% for sIUGR and normal MC, respectively. Pregnancies complicated with twin-to-twin transfusion syndrome (TTTs), severe congenital anomalies and maternal complication were excluded from this study. The placentas around the individual insertion region for each umbilical cord were collected within 30 min after delivery. The tissue was excised from inside the placental lobules, avoiding both the maternal surface and the amniotic membrane. The excised tissues were washed in sterilized ice-cold PBS to eliminate any blood and stored at −80°C until they were used to isolate RNA. Placenta samples from two cases with sIUGR [larger twin (L1 and L2), smaller twin (S1 and S2)] and one cases with normal MC [larger twin (N1) and smaller twin (n1)] were used for miRNA profiling; Placenta samples from other 15 cases with sIUGR and other 15 cases with normal MC were used for validation of microarray data.

RNA extraction

About 200 mg of homogenized placenta tissue was used for extraction of total RNA by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to manufacturer's instructions. After quantifying by using Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, Delaware, USA), extracted RNA was aliquoted and stored at −80°C.

miRNAs expression analysis using miRNA array

miRNA profiling was performed using Affymetrix microRNA 4.0 Array (Santa Clara, CA, US), which covering 2,578 human microRNAs annotated in miRBase V2.0. Briefly, 1 µg of each sample was labeled with Biotin using the FlashTag™ Biotin HSR RNA Labeling Kit (Affymetrix) and then hybridized overnight with the array according to the manufacturer's protocols. After washing and staining, the hybridized slides were read by a GeneChip Scanner 3000 7G (Affymetrix). The raw data were exported by GeneChip Command Console Software Version 4.0 (Affymetrix). The microarray data have been deposited in NCBI's Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) under accession number GSE98146. miRNAs exhibited Fold Change >=2.0 and P-value <0.05 were identified as significant differentially expressed miRNAs (DEMs). miRNA target genes were predicted by miRanda (http://www.microrna.org) (18) and TargetScan (http://www.targetscan.org/) (19).

Pathway analysis

To find out the significant pathway of the differential genes, pathway analysis was performed according to the KEGG database (2022). The Fisher's exact test and chi-square test were used to select the significant pathway, and the threshold of significance was defined by P-value (<0.05).

miRNA-pathway network analysis

A miRNA-pathway network was built according to the relationship among miRNAs and pathways as previously described (23).

Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR)

qRT-PCR was performed to measure the levels of miRNAs. A total of 0.5 µg of total RNA was reverse-transcribed using M-MLV reverse transcriptase (Thermo Fisher, Rockford, IL, USA) with a special stem-loop primer (Genepharma; Shanghai, China) for miRNAs. Real-time PCR was performed on ABI PRISM 7500 Real-time PCR system (Applied Biosystems; Foster City, CA, USA) using SYBR Green PCR kit (Thermo Fisher) according to manufacturer's instruction. All samples were analyzed in triplicate. The primer sequences were listed in Table I. The relative expression level was determined by the 2−ΔΔCt method and normalized to U6 expression. Statistical analysis was performed with ANOVA for multiple comparisons. P-value <0.05 were considered statistically significant.

Table I.

Primer sequence for qRT-PCR.

A, RT primer sequences.

miRNA Primer sequence
has-miR-1 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATGGGC-3′
has-miR-370-3p 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATGGGC-3′
has-miR-5189-5p 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCTGTC-3′
has-miR-373-3p 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACCC-3′
has-miR-338-5p 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACTCA-3′
has-miR-590-5p 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTGCAC-3′

B, PCR primer sequences

miRNA Primer sequence

has-miR-1 5′-ACACTCCAGCTGGGACATACTTCTTTATAT-3′
has-miR-370-3p 5′-ACACTCCAGCTGGGGCCTGCTGGGGTGGAA-3′
has-miR-5189-5p 5′-ACACTCCAGCTGGGTCTGGGCACAGGCGGATG-3′
has-miR-373-3p 5′-ACACTCCAGCTGGGGAAGTGCTTCGATTTTG-3′
has-miR-338-5p 5′-ACACTCCAGCTGGGAACAATATCCTGGTGC-3′
has-miR-590-5p 5′-ACACTCCAGCTGGGGAGCTTATTCATAAAA-3′
U6 5′-CTCGCTTCGGCAGCACA-3′ and 5′-AACGCTTCACGAATTTGCGT-3′
Universal reverse 5′-TGGTGTCGTGGAGTCG-3′

Results

Identify differentially expressed miRNAs (DEMs)

Placenta tissues around the individual insertion region for each umbilical cord were collected for RNA extraction and further analysis. Placenta tissues from two cases complicated with sIUGR [larger twin (L1 and L2), smaller twin (S1 and S2)] and one cases with normal MC [larger twin (N1) and smaller twin (n1)] were used for miRNA profile analysis by Affymetrix microRNA 4.0 Array system. The expression of 2,578 miRNAs were examined. miRNAs with Fold Change >=2.0, and P-value <0.05 (g Student t test) were defines as DEMs.

Here, we identified a total of 130 (84 up-regulations and 46 down-regulations; Tables II and III) and 148 (107 up-regulations and 41 down-regulations; Tables II and IV) significantly DEMs in L1 and L2, respectively, when compared with S1 and S2. A total of 133 significantly DEMs with 50 up-regulations and 83 down-regulations; Tables II and V) were identified in N1, when compared with n1. As shown in Fig. 1 and Table VI, 45 DEMs (33 up-regulators and 12 down-regulators) identified from L1 vs. S1 were included in the list of DEMs identified from L2 and S2 comparison. More importantly, 7 up-regulated miRNAs and 7 down-regulated miRNAs identified from the territory of sIUGR larger twins vs. sIUGR smaller twins (L1 vs. S1 and L2 vs. S2) were not included in the list of DEMs identified from N1 and n1 (Figs. 1B and 2). These 14 DEMs may be associated with the pathology of sIUGR, and then subjected to target gene analysis, pathway analysis and miRNA-pathway analysis.

Table II.

Identified DEMs.

Category Up-regulated Down-regulated Total
L1 vs. S1   84 46 130
L2 vs. S2 107 41 148
N1 vs. n2   50 83 133

Fold change >2, P<0.05.

Table III.

DEMs (L1 vs. S1).

Regulation Systematic name FC (L1 vs. S1) Log FC (L1 vs. S1) Chromosome Mirbase accession no.
Up-regulated hsa-let-7c 2.574462 1.3642709 chr21 MIMAT0000064
hsa-let-7g-5p 2.0787826 1.0557389 chr3 MIMAT0000414
hsa-miR-1 6.5372915 2.708693 chr18 MIMAT0000416
hsa-miR-101-3p 7.129267 2.8337538 chr1 MIMAT0000099
hsa-miR-127-3p 2.284758 1.1920414 chr14 MIMAT0000446
hsa-miR-1306-3p 2.2638326 1.1787672 chr22 MIMAT0005950
hsa-miR-133b 38.066643 5.2504554 chr6 MIMAT0000770
hsa-miR-144-5p 7.3764052 2.882918 chr17 MIMAT0004600
hsa-miR-152 7.540236 2.9146097 chr17 MIMAT0000438
hsa-miR-154-3p 6.04454 2.5956326 chr14 MIMAT0000453
hsa-miR-154-5p 3.067223 1.6169331 chr14 MIMAT0000452
hsa-miR-155-5p 7.5116105 2.9091222 chr21 MIMAT0000646
hsa-miR-181c-5p 5.300414 2.406105 chr19 MIMAT0000258
hsa-miR-193a-3p 31.360935 4.9708967 chr17 MIMAT0000459
hsa-miR-194-5p 6.75868 2.7567415 chr1 MIMAT0000460
hsa-miR-195-5p 2.3303063 1.2205195 chr17 MIMAT0000461
hsa-miR-1973 7.752263 2.9546175 chr4 MIMAT0009448
hsa-miR-199a-3p 2.136898 1.0955181 chr1 MIMAT0000232
hsa-miR-199b-5p 2.0532408 1.0379028 chr9 MIMAT0000263
hsa-miR-202-3p 37.374104 5.223967 chr10 MIMAT0002811
hsa-miR-214-3p 2.0166378 1.0119519 chr1 MIMAT0000271
hsa-miR-218-5p 6.466407 2.6929643 chr4 MIMAT0000275
hsa-miR-221-3p 2.6082892 1.3831038 chrX MIMAT0000278
hsa-miR-222-3p 3.7729478 1.9156921 chrX MIMAT0000279
hsa-miR-28-5p 2.027596 1.0197701 chr3 MIMAT0000085
hsa-miR-299-3p 28.977842 4.8568783 chr14 MIMAT0000687
hsa-miR-299-5p 2.3908083 1.2574985 chr14 MIMAT0002890
hsa-miR-30e-3p 5.7678924 2.5280442 chr1 MIMAT0000693
hsa-miR-3125 7.3044753 2.8687806 chr2 MIMAT0014988
hsa-miR-3127-5p 7.3825746 2.884124 chr2 MIMAT0014990
hsa-miR-323a-3p 25.762617 4.687207 chr14 MIMAT0000755
hsa-miR-33b-3p 6.059397 2.5991743 chr17 MIMAT0004811
hsa-miR-342-3p 2.086935 1.0613856 chr14 MIMAT0000753
hsa-miR-361-3p 7.1666164 2.8412921 chrX MIMAT0004682
hsa-miR-362-5p 3.0538094 1.61061 chrX MIMAT0000705
hsa-miR-3620-5p 88.913635 6.474333 chr1 MIMAT0022967
hsa-miR-3622b-5p 6.9455557 2.7960901 chr8 MIMAT0018005
hsa-miR-363-3p 5.4890895 2.4565668 chrX MIMAT0000707
hsa-miR-3682-3p 96.9888 6.599746 chr2 MIMAT0018110
hsa-miR-370 6.1665797 2.6244705 chr14 MIMAT0000722
hsa-miR-376c-3p 2.002838 1.0020456 chr14 MIMAT0000720
hsa-miR-379-5p 107.84705 6.752843 chr14 MIMAT0000733
hsa-miR-381-3p 2.1550357 1.1077118 chr14 MIMAT0000736
hsa-miR-382-5p 2.920635 1.546282 chr14 MIMAT0000737
hsa-miR-3917 6.9297132 2.7927957 chr1 MIMAT0018191
hsa-miR-3923 178.99112 7.483744 chr3 MIMAT0018198
hsa-miR-409-3p 4.9062624 2.2946243 chr14 MIMAT0001639
hsa-miR-411-5p 7.6058702 2.9271133 chr14 MIMAT0003329
hsa-miR-4476 41.244473 5.366129 chr9 MIMAT0019003
hsa-miR-4535 80.93671 6.338722 chr22 MIMAT0019075
hsa-miR-4539 91.96671 6.52304 chr14 MIMAT0019082
hsa-miR-4632-5p 2.642979 1.4021649 chr1 MIMAT0022977
hsa-miR-4698 110.092384 6.782571 chr12 MIMAT0019793
hsa-miR-4716-3p 2.1197543 1.0838971 chr15 MIMAT0019827
hsa-miR-4740-5p 7.15094 2.8381329 chr17 MIMAT0019869
hsa-miR-4743-5p 41.097565 5.360981 chr18 MIMAT0019874
hsa-miR-4749-3p 7.212792 2.8505578 chr19 MIMAT0019886
hsa-miR-4750-5p 7.316306 2.8711154 chr19 MIMAT0019887
hsa-miR-4754 2.11079 1.0777831 chr19 MIMAT0019894
hsa-miR-487a 32.68032 5.03035 chr14 MIMAT0002178
hsa-miR-487b 2.2653325 1.1797228 chr14 MIMAT0003180
hsa-miR-489 7.1415405 2.8362353 chr7 MIMAT0002805
hsa-miR-493-5p 2.8272614 1.4994053 chr14 MIMAT0002813
hsa-miR-495-3p 2.1915793 1.1319709 chr14 MIMAT0002817
hsa-miR-5003-3p 74.188484 6.2131233 chr5 MIMAT0021026
hsa-miR-500a-3p 5.8292727 2.543316 chrX MIMAT0002871
hsa-miR-502-3p 30.460754 4.9288797 chrX MIMAT0004775
hsa-miR-5096 5.691079 2.5087023 chr4 MIMAT0020603
hsa-miR-513b 2.4948008 1.3189247 chrX MIMAT0005788
hsa-miR-5189 7.34395 2.8765562 chr16 MIMAT0021120
hsa-miR-532-3p 30.798903 4.944807 chrX MIMAT0004780
hsa-miR-539-5p 7.7136526 2.9474142 chr14 MIMAT0003163
hsa-miR-543 37.697845 5.23641 chr14 MIMAT0004954
hsa-miR-5581-5p 2.7262392 1.4469122 chr1 MIMAT0022275
hsa-miR-584-5p 39.059162 5.287589 chr5 MIMAT0003249
hsa-miR-6075 7.67851 2.9408264 chr5 MIMAT0023700
hsa-miR-6132 7.5204616 2.9108212 chr7 MIMAT0024616
hsa-miR-6508-5p 6.424311 2.6835418 chr21 MIMAT0025472
hsa-miR-6512-5p 29.820745 4.8982444 chr2 MIMAT0025480
hsa-miR-652-3p 7.47874 2.9027953 chrX MIMAT0003322
hsa-miR-654-3p 2.6468177 1.4042588 chr14 MIMAT0004814
hsa-miR-660-5p 2.1465678 1.1020317 chrX MIMAT0003338
hsa-miR-718 6.8719115 2.7807114 chrX MIMAT0012735
hsa-miR-887 33.127758 5.0499687 chr5 MIMAT0004951
Down- hsa-miR-1225-3p −5.8417506 −2.5464008 chr16 MIMAT0005573
regulated hsa-miR-1238-3p −8.677957 −3.1173553 chr19 MIMAT0005593
hsa-miR-126-5p −4.150803 −2.0533905 chr9 MIMAT0000444
hsa-miR-1273f −4.8539524 −2.27916 chr1 MIMAT0020601
hsa-miR-141-3p −2.0020258 −1.0014606 chr12 MIMAT0000432
hsa-miR-142-3p −5.4498663 −2.4462209 chr17 MIMAT0000434
hsa-miR-1469 −2.2450392 −1.1667407 chr15 MIMAT0007347
hsa-miR-193b-3p −2.9037018 −1.5378933 chr16 MIMAT0002819
hsa-miR-193b-5p −12.566032 −3.6514573 chr16 MIMAT0004767
hsa-miR-1972 −2.4747171 −1.3072636 chr16 MIMAT0009447
hsa-miR-19a-3p −6.396935 −2.6773808 chr13 MIMAT0000073
hsa-miR-210 −11.999909 −3.5849516 chr11 MIMAT0000267
hsa-miR-30b-3p −4.5346327 −2.1809857 chr8 MIMAT0004589
hsa-miR-3138 −4.882965 −2.2877574 chr4 MIMAT0015006
hsa-miR-335-3p −4.2380176 −2.0833895 chr7 MIMAT0004703
hsa-miR-338-5p −3.542421 −1.8247358 chr17 MIMAT0004701
hsa-miR-3653 −3.0687642 −1.6176578 chr22 MIMAT0018073
hsa-miR-3679-3p −4.8174143 −2.268259 chr2 MIMAT0018105
hsa-miR-372 −3.2183118 −1.6863041 chr19 MIMAT0000724
hsa-miR-373-3p −4.5374827 −2.1818922 chr19 MIMAT0000726
hsa-miR-3907 −4.354147 −2.12239 chr7 MIMAT0018179
hsa-miR-4287 −12.793394 −3.6773272 chr8 MIMAT0016917
hsa-miR-4324 −2.4016316 −1.2640148 chr19 MIMAT0016876
hsa-miR-4429 −4.713071 −2.2366674 chr2 MIMAT0018944
hsa-miR-4472 −2.5906193 −1.373297 chr12 MIMAT0018999
hsa-miR-4484 −5.330914 −2.414383 chr10 MIMAT0019018
hsa-miR-4486 −2.6245956 −1.3920952 chr11 MIMAT0019020
hsa-miR-4649-3p −35.55725 −5.152072 chr7 MIMAT0019712
hsa-miR-4767 −2.7031322 −1.4346321 chrX MIMAT0019919
hsa-miR-4783-3p −2.6541424 −1.4082458 chr2 MIMAT0019947
hsa-miR-4800-5p −2.005754 −1.0041447 chr4 MIMAT0019978
hsa-miR-514b-5p −2.4455242 −1.2901437 chrX MIMAT0015087
hsa-miR-516a-3p −15.977234 −3.9979458 chr19 MIMAT0006778
hsa-miR-518a-5p −5.789181 −2.5333593 chr19 MIMAT0005457
hsa-miR-518c-3p −2.3767946 −1.2490172 chr19 MIMAT0002848
hsa-miR-520b −5.798103 −2.5355809 chr19 MIMAT0002843
hsa-miR-523-3p −2.0523486 −1.0372758 chr19 MIMAT0002840
hsa-miR-5585-3p −4.71074 −2.2359538 chr1 MIMAT0022286
hsa-miR-590-5p −3.056939 −1.6120877 chr7 MIMAT0003258
hsa-miR-623 −2.361158 −1.2394946 chr13 MIMAT0003292
hsa-miR-659-3p −4.1545143 −2.0546799 chr22 MIMAT0003337
hsa-miR-664b-3p −2.9298499 −1.5508268 chrX MIMAT0022272
hsa-miR-765 −12.846773 −3.683334 chr1 MIMAT0003945
hsa-miR-766-3p −2.3770628 −1.24918 chrX MIMAT0003888
hsa-miR-770-5p −2.219985 −1.1505499 chr14 MIMAT0003948
hsa-miR-877-3p −3.1021721 −1.6332787 chr6 MIMAT0004950
Table IV.

DEMs (L2 vs. S2).

Regulation Systematic name FC (L1 vs. S1) Log FC (L1 vs. S1) Chromosome Mirbase accession no.
Up-regulated hsa-miR-1 6.2799373 2.6507502 chr18 MIMAT0000416
hsa-miR-101-3p 6.4381766 2.6866522 chr1 MIMAT0000099
hsa-miR-1236-5p 6.4806085 2.6961293 chr6 MIMAT0022945
hsa-miR-1238-3p 6.655472 2.734541 chr19 MIMAT0005593
hsa-miR-1290 152.34323 7.2511816 chr1 MIMAT0005880
hsa-miR-133b 37.049896 5.2113976 chr6 MIMAT0000770
hsa-miR-135b-5p 94.51581 6.562484 chr1 MIMAT0000758
hsa-miR-136-3p 29.46167 4.8807673 chr14 MIMAT0004606
hsa-miR-136-5p 6.712153 2.7467756 chr14 MIMAT0000448
hsa-miR-139-3p 6.2614946 2.646507 chr11 MIMAT0004552
hsa-miR-1469 26.883722 4.748661 chr15 MIMAT0007347
hsa-miR-149-3p 5.559239 2.4748874 chr2 MIMAT0004609
hsa-miR-154-3p 80.835304 6.3369136 chr14 MIMAT0000453
hsa-miR-184 107.06464 6.742338 chr15 MIMAT0000454
hsa-miR-191-3p 5.199818 2.3784611 chr3 MIMAT0001618
hsa-miR-193a-3p 30.860113 4.9476714 chr17 MIMAT0000459
hsa-miR-193b-5p 6.7797785 2.761238 chr16 MIMAT0004767
hsa-miR-1972 31.809767 4.991398 chr16 MIMAT0009447
hsa-miR-198 7.100607 2.8279424 chr3 MIMAT0000228
hsa-miR-19a-3p 6.9222608 2.7912433 chr13 MIMAT0000073
hsa-miR-204-5p 29.051617 4.8605466 chr9 MIMAT0000265
hsa-miR-2114-5p 128.1817 7.0020466 chrX MIMAT0011156
hsa-miR-218-5p 6.376806 2.672834 chr4 MIMAT0000275
hsa-miR-298 6.9036517 2.7873597 chr20 MIMAT0004901
hsa-miR-299-3p 30.239016 4.9183393 chr14 MIMAT0000687
hsa-miR-301a-3p 23.225285 4.5376244 chr17 MIMAT0000688
hsa-miR-3127-5p 6.460783 2.691709 chr2 MIMAT0014990
hsa-miR-3135b 123.808846 6.9519706 chr6 MIMAT0018985
hsa-miR-3147 6.529907 2.7070625 chr7 MIMAT0015019
hsa-miR-3173-3p 166.4288 7.3787613 chr14 MIMAT0015048
hsa-miR-3180-3p 156.06705 7.286022 chr16 MIMAT0015058
hsa-miR-3194-5p 106.03497 6.7283964 chr20 MIMAT0015078
hsa-miR-33b-3p 5.4492188 2.4460495 chr17 MIMAT0004811
hsa-miR-34b-5p 6.9539423 2.797831 chr11 MIMAT0000685
hsa-miR-3610 7.0247335 2.8124435 chr8 MIMAT0017987
hsa-miR-3620-5p 119.47107 6.9005175 chr1 MIMAT0022967
hsa-miR-3622b-5p 6.797605 2.7650266 chr8 MIMAT0018005
hsa-miR-3675-3p 5.4626126 2.4495912 chr1 MIMAT0018099
hsa-miR-370 6.585063 2.7191973 chr14 MIMAT0000722
hsa-miR-3911 136.38383 7.091529 chr9 MIMAT0018185
hsa-miR-411-5p 6.842667 2.7745588 chr14 MIMAT0003329
hsa-miR-4252 6.649911 2.733335 chr1 MIMAT0016886
hsa-miR-4257 29.410418 4.8782554 chr1 MIMAT0016878
hsa-miR-4274 6.556329 2.7128882 chr4 MIMAT0016906
hsa-miR-4280 6.1641645 2.6239054 chr5 MIMAT0016911
hsa-miR-4314 6.209586 2.6344972 chr17 MIMAT0016868
hsa-miR-4317 29.65745 4.8903227 chr18 MIMAT0016872
hsa-miR-4322 114.98171 6.8452606 chr19 MIMAT0016873
hsa-miR-4327 168.50354 7.396635 chr21 MIMAT0016889
hsa-miR-4428 6.98875 2.8050344 chr1 MIMAT0018943
hsa-miR-4443 2.4926476 1.3176789 chr3 MIMAT0018961
hsa-miR-4476 6.292596 2.6536553 chr9 MIMAT0019003
hsa-miR-4482-3p 6.502412 2.700975 chr10 MIMAT0020958
hsa-miR-4484 91.229645 6.5114307 chr10 MIMAT0019018
hsa-miR-4486 37.18235 5.216546 chr11 MIMAT0019020
hsa-miR-4496 5.89344 2.55911 chr12 MIMAT0019031
hsa-miR-4513 131.67114 7.0407953 chr15 MIMAT0019050
hsa-miR-4522 111.41926 6.7998548 chr17 MIMAT0019060
hsa-miR-4535 84.8799 6.407351 chr22 MIMAT0019075
hsa-miR-4539 156.92206 7.2939043 chr14 MIMAT0019082
hsa-miR-4632-5p 6.771799 2.7595391 chr1 MIMAT0022977
hsa-miR-4646-5p 80.15663 6.32475 chr6 MIMAT0019707
hsa-miR-4656 112.753174 6.817024 chr7 MIMAT0019723
hsa-miR-4690-5p 26.123838 4.707295 chr11 MIMAT0019779
hsa-miR-4698 122.851776 6.940775 chr12 MIMAT0019793
hsa-miR-4734 2.1158128 1.081212 chr17 MIMAT0019859
hsa-miR-4740-5p 140.27261 7.1320896 chr17 MIMAT0019869
hsa-miR-4743-5p 6.4767523 2.6952705 chr18 MIMAT0019874
hsa-miR-4749-3p 6.195103 2.6311283 chr19 MIMAT0019886
hsa-miR-4758-5p 72.96534 6.1891394 chr20 MIMAT0019903
hsa-miR-4767 38.017128 5.2485776 chrX MIMAT0019919
hsa-miR-487a 34.672806 5.1157327 chr14 MIMAT0002178
hsa-miR-5003-3p 99.04469 6.6300077 chr5 MIMAT0021026
hsa-miR-502-3p 6.4271126 2.6841707 chrX MIMAT0004775
hsa-miR-5096 28.428453 4.8292637 chr4 MIMAT0020603
hsa-miR-513a-5p 92.79643 6.5359974 chrX MIMAT0002877
hsa-miR-513b 5.130571 2.3591194 chrX MIMAT0005788
hsa-miR-513c-5p 5.255153 2.3937328 chrX MIMAT0005789
hsa-miR-514b-5p 86.46717 6.4340806 chrX MIMAT0015087
hsa-miR-5189 28.272223 4.8213134 chr16 MIMAT0021120
hsa-miR-518a-5p 27.765553 4.795224 chr19 MIMAT0005457
hsa-miR-5195-5p 6.754108 2.7557652 chr14 MIMAT0021126
hsa-miR-520b 6.59573 2.7215323 chr19 MIMAT0002843
hsa-miR-532-3p 6.8659596 2.7794614 chrX MIMAT0004780
hsa-miR-539-5p 28.060043 4.8104453 chr14 MIMAT0003163
hsa-miR-543 36.802776 5.2017426 chr14 MIMAT0004954
hsa-miR-557 87.43645 6.450163 chr1 MIMAT0003221
hsa-miR-5581-5p 69.77128 6.1245613 chr1 MIMAT0022275
hsa-miR-601 2.1609044 1.1116352 chr9 MIMAT0003269
hsa-miR-602 5.791587 2.5339587 chr9 MIMAT0003270
hsa-miR-605 12.47016 3.640408 chr10 MIMAT0003273
hsa-miR-6075 35.023468 5.13025 chr5 MIMAT0023700
hsa-miR-6081 6.4466505 2.6885498 chr9 MIMAT0023706
hsa-miR-6086 107.75808 6.7516522 chrX MIMAT0023711
hsa-miR-6087 2.2509918 1.1705608 chrX MIMAT0023712
hsa-miR-610 150.35155 7.232196 chr11 MIMAT0003278
hsa-miR-622 5.405943 2.4345462 chr13 MIMAT0003291
hsa-miR-630 2.1389875 1.0969281 chr15 MIMAT0003299
hsa-miR-6511b-5p 6.7421665 2.7532122 chr16 MIMAT0025847
hsa-miR-659-3p 68.05403 6.0886087 chr22 MIMAT0003337
hsa-miR-671-5p 116.28812 6.86156 chr7 MIMAT0003880
hsa-miR-6722-3p 35.948414 5.167856 chr9 MIMAT0025854
hsa-miR-758-3p 4.839683 2.2749126 chr14 MIMAT0003879
hsa-miR-765 6.2472134 2.6432128 chr1 MIMAT0003945
hsa-miR-769-3p 66.88174 6.0635405 chr19 MIMAT0003887
hsa-miR-877-3p 34.31749 5.100872 chr6 MIMAT0004950
hsa-miR-887 6.620651 2.726973 chr5 MIMAT0004951
Down-regulated hsa-miR-10a-5p −3.7419279 −1.9037818 chr17 MIMAT0000253
hsa-miR-1281 −4.1730103 −2.0610886 chr22 MIMAT0005939
hsa-miR-1306-3p −6.1992292 −2.632089 chr22 MIMAT0005950
hsa-miR-138-2-3p −3.1503472 −1.6555109 chr16 MIMAT0004596
hsa-miR-144-3p −214.5132 −7.7449226 chr17 MIMAT0000436
hsa-miR-148b-3p −2.2464561 −1.1676509 chr12 MIMAT0000759
hsa-miR-150-5p −3.811245 −1.9302623 chr19 MIMAT0000451
hsa-miR-151a-3p −2.9817586 −1.5761634 chr8 MIMAT0000757
hsa-miR-197-3p −3.9836307 −1.9940839 chr1 MIMAT0000227
hsa-miR-3064-5p −2.292184 −1.196723 chr17 MIMAT0019864
hsa-miR-3162-3p −12.083851 −3.5950084 chr11 MIMAT0019213
hsa-miR-335-3p −13.996734 −3.8070183 chr7 MIMAT0004703
hsa-miR-338-5p −11.968582 −3.5811803 chr17 MIMAT0004701
hsa-miR-363-3p −2.986565 −1.5784872 chrX MIMAT0000707
hsa-miR-3651 −2.0020404 −1.001471 chr9 MIMAT0018071
hsa-miR-3653 −7.8723674 −2.9767976 chr22 MIMAT0018073
hsa-miR-3679-3p −3.019187 −1.5941601 chr2 MIMAT0018105
hsa-miR-373-3p −3.2492068 −1.7000875 chr19 MIMAT0000726
hsa-miR-378i −6.4152656 −2.681509 chr22 MIMAT0019074
hsa-miR-3923 −144.07567 −7.170683 chr3 MIMAT0018198
hsa-miR-4287 −2.9859235 −1.5781772 chr8 MIMAT0016917
hsa-miR-4324 −3.4396935 −1.78228 chr19 MIMAT0016876
hsa-miR-4455 −2.6491299 −1.4055185 chr4 MIMAT0018977
hsa-miR-4472 −3.141099 −1.6512694 chr12 MIMAT0018999
hsa-miR-4481 −4.197097 −2.0693917 chr10 MIMAT0019015
hsa-miR-4485 −3.3330746 −1.7368536 chr11 MIMAT0019019
hsa-miR-455-3p −2.3138413 −1.21029 chr9 MIMAT0004784
hsa-miR-4707-5p −2.0739546 −1.0523844 chr14 MIMAT0019807
hsa-miR-4710 −22.40822 −4.485956 chr14 MIMAT0019815
hsa-miR-4754 −3.394706 −1.7632866 chr19 MIMAT0019894
hsa-miR-491-3p −80.396675 −6.329064 chr9 MIMAT0004765
hsa-miR-5190 −4.129208 −2.045865 chr18 MIMAT0021121
hsa-miR-5196-5p −2.629623 −1.394856 chr19 MIMAT0021128
hsa-miR-574-5p −2.571706 −1.3627257 chr4 MIMAT0004795
hsa-miR-584-5p −3.136044 −1.6489458 chr5 MIMAT0003249
hsa-miR-590-5p −2.542061 −1.3459988 chr7 MIMAT0003258
hsa-miR-623 −3.541924 −1.8245332 chr13 MIMAT0003292
hsa-miR-650 −12.4346285 −3.6362915 chr22 MIMAT0003320
hsa-miR-652-5p −2.726224 −1.4469041 chrX MIMAT0022709
hsa-miR-664b-3p −3.0773356 −1.6216818 chrX MIMAT0022272
hsa-miR-766-3p −7.31454 −2.870767 chrX MIMAT0003888
Table V.

DEMs (N1 vs. n1).

Regulation Systematic name FC (L1 vs. S1) Log FC (L1 vs. S1) Chromosome Mirbase accession no.
Up-regulated hsa-let-7f-1-3p 4.762908 2.2518427 chr9 MIMAT0004486
hsa-miR-1236-5p 4.8852377 2.2884288 chr6 MIMAT0022945
hsa-miR-1290 3.285437 1.7160853 chr1 MIMAT0005880
hsa-miR-138-2-3p 2.8810282 1.5265838 chr16 MIMAT0004596
hsa-miR-142-3p 2.217947 1.1492249 chr17 MIMAT0000434
hsa-miR-144-5p 98.02035 6.6150093 chr17 MIMAT0004600
hsa-miR-149-3p 4.419525 2.1438913 chr2 MIMAT0004609
hsa-miR-1914-3p 2.0559897 1.0398331 chr20 MIMAT0007890
hsa-miR-197-5p 3.2845297 1.7156868 chr1 MIMAT0022691
hsa-miR-19a-3p 2.7125516 1.4396505 chr13 MIMAT0000073
hsa-miR-3138 5.336239 2.4158232 chr4 MIMAT0015006
hsa-miR-3156-5p 2.5390592 1.3442941 chr10 MIMAT0015030
hsa-miR-3180-3p 34.78387 5.1203465 chr16 MIMAT0015058
hsa-miR-335-3p 4.254274 2.088913 chr7 MIMAT0004703
hsa-miR-33b-3p 5.437156 2.4428523 chr17 MIMAT0004811
hsa-miR-3675-3p 30.885275 4.9488473 chr1 MIMAT0018099
hsa-miR-3679-3p 4.8394313 2.2748375 chr2 MIMAT0018105
hsa-miR-378i 5.5282373 2.4668195 chr22 MIMAT0019074
hsa-miR-382-5p 2.0238345 1.0170913 chr14 MIMAT0000737
hsa-miR-4257 2.8030276 1.4869859 chr1 MIMAT0016878
hsa-miR-4299 2.322742 1.2158289 chr11 MIMAT0016851
hsa-miR-4324 2.5575805 1.3547796 chr19 MIMAT0016876
hsa-miR-4442 2.2200553 1.1505957 chr3 MIMAT0018960
hsa-miR-4472 2.564959 1.3589358 chr12 MIMAT0018999
hsa-miR-4476 34.042854 5.08928 chr9 MIMAT0019003
hsa-miR-4481 2.978939 1.5747986 chr10 MIMAT0019015
hsa-miR-4486 2.60555 1.381588 chr11 MIMAT0019020
hsa-miR-4497 2.0459917 1.0328002 chr12 MIMAT0019032
hsa-miR-4505 2.1049914 1.0738144 chr14 MIMAT0019041
hsa-miR-4513 31.151861 4.9612465 chr15 MIMAT0019050
hsa-miR-4656 2.8565521 1.5142748 chr7 MIMAT0019723
hsa-miR-4698 2.3614159 1.2396522 chr12 MIMAT0019793
hsa-miR-4731-3p 3.035372 1.6018734 chr17 MIMAT0019854
hsa-miR-4740-5p 2.4809349 1.3108839 chr17 MIMAT0019869
hsa-miR-4746-3p 2.4210067 1.2756071 chr19 MIMAT0019881
hsa-miR-4767 3.1487603 1.654784 chrX MIMAT0019919
hsa-miR-4788 2.6694448 1.4165397 chr3 MIMAT0019958
hsa-miR-486-5p 2.3081188 1.2067175 chr8 MIMAT0002177
hsa-miR-493-5p 2.2956579 1.1989076 chr14 MIMAT0002813
hsa-miR-514b-5p 13.624513 3.7681327 chrX MIMAT0015087
hsa-miR-518a-5p 2.4678388 1.3032482 chr19 MIMAT0005457
hsa-miR-520f 4.3717 2.1281943 chr19 MIMAT0002830
hsa-miR-557 3.5224607 1.8165836 chr1 MIMAT0003221
hsa-miR-6087 2.4719765 1.305665 chrX MIMAT0023712
hsa-miR-6127 2.003823 1.0027552 chr1 MIMAT0024610
hsa-miR-650 3.9777071 1.991937 chr22 MIMAT0003320
hsa-miR-652-5p 2.5595675 1.3559 chrX MIMAT0022709
hsa-miR-6722-3p 2.8041553 1.4875662 chr9 MIMAT0025854
hsa-miR-769-3p 42.50052 5.4094086 chr19 MIMAT0003887
hsa-miR-887 113.96282 6.8324194 chr5 MIMAT0004951
Down-regulated hsa-let-7c −2.015736 −1.0113068 chr21 MIMAT0000064
hsa-miR-101-3p −30.543362 −4.932787 chr1 MIMAT0000099
hsa-miR-1225-3p −6.48305 −2.6966727 chr16 MIMAT0005573
hsa-miR-126-5p −7.1831927 −2.8446252 chr9 MIMAT0000444
hsa-miR-1281 −2.6692638 −1.4164419 chr22 MIMAT0005939
hsa-miR-133b −6.7808595 −2.7614682 chr6 MIMAT0000770
hsa-miR-136-3p −32.852886 −5.037948 chr14 MIMAT0004606
hsa-miR-136-5p −3.713002 −1.8925861 chr14 MIMAT0000448
hsa-miR-139-3p −7.6147995 −2.928806 chr11 MIMAT0004552
hsa-miR-1469 −7.4298234 −2.893328 chr15 MIMAT0007347
hsa-miR-148a-3p −2.1474736 −1.1026404 chr7 MIMAT0000243
hsa-miR-152 −7.315202 −2.8708978 chr17 MIMAT0000438
hsa-miR-154-3p −40.05453 −5.3238935 chr14 MIMAT0000453
hsa-miR-155-5p −6.8148932 −2.768691 chr21 MIMAT0000646
hsa-miR-181c-5p −7.4166875 −2.890775 chr19 MIMAT0000258
hsa-miR-183-5p −7.3213196 −2.8721037 chr7 MIMAT0000261
hsa-miR-184 −2.7409573 −1.4546798 chr15 MIMAT0000454
hsa-miR-193a-3p −3.5614202 −1.8324527 chr17 MIMAT0000459
hsa-miR-193a-5p −7.283015 −2.8645358 chr17 MIMAT0004614
hsa-miR-1972 −33.596 −5.0702176 chr16 MIMAT0009447
hsa-miR-198 −7.6496506 −2.9353938 chr3 MIMAT0000228
hsa-miR-202-3p −4.0569763 −2.0204048 chr10 MIMAT0002811
hsa-miR-2114-5p −102.90411 −6.685157 chrX MIMAT0011156
hsa-miR-218-5p −6.8879266 −2.7840698 chr4 MIMAT0000275
hsa-miR-222-3p −2.7792513 −1.4746963 chrX MIMAT0000279
hsa-miR-299-3p −7.6879406 −2.9425972 chr14 MIMAT0000687
hsa-miR-301a-3p −36.397095 −5.1857514 chr17 MIMAT0000688
hsa-miR-3064-5p −40.484715 −5.3393054 chr17 MIMAT0019864
hsa-miR-30b-3p −14.569369 −3.8648665 chr8 MIMAT0004589
hsa-miR-3125 −2.843465 −1.5076501 chr2 MIMAT0014988
hsa-miR-3127-5p −2.7899294 −1.4802287 chr2 MIMAT0014990
hsa-miR-3135b −4.5898676 −2.1984525 chr6 MIMAT0018985
hsa-miR-3147 −7.3836718 −2.8843384 chr7 MIMAT0015019
hsa-miR-3173-3p −3.5254762 −1.8178182 chr14 MIMAT0015048
hsa-miR-3194-5p −2.9631052 −1.5671098 chr20 MIMAT0015078
hsa-miR-323a-3p −7.243867 −2.85676 chr14 MIMAT0000755
hsa-miR-345-3p −3.170144 −1.6645484 chr14 MIMAT0022698
hsa-miR-34b-5p −89.56483 −6.4848604 chr11 MIMAT0000685
hsa-miR-362-3p −6.8308253 −2.77206 chrX MIMAT0004683
hsa-miR-3620-5p −3.0599833 −1.6135237 chr1 MIMAT0022967
hsa-miR-3660 −7.1529465 −2.8385377 chr5 MIMAT0018081
hsa-miR-377-3p −2.1646178 −1.1141124 chr14 MIMAT0000730
hsa-miR-3907 −2.053038 −1.0377603 chr7 MIMAT0018179
hsa-miR-3923 −86.46017 −6.433964 chr3 MIMAT0018198
hsa-miR-411-5p −7.0822854 −2.824215 chr14 MIMAT0003329
hsa-miR-4252 −103.971664 −6.7000465 chr1 MIMAT0016886
hsa-miR-4280 −6.009121 −2.587154 chr5 MIMAT0016911
hsa-miR-4317 −34.604424 −5.1128845 chr18 MIMAT0016872
hsa-miR-4322 −91.20365 −6.5110197 chr19 MIMAT0016873
hsa-miR-4428 −6.9082146 −2.788313 chr1 MIMAT0018943
hsa-miR-4522 −40.902264 −5.354109 chr17 MIMAT0019060
hsa-miR-4539 −3.3245769 −1.7331707 chr14 MIMAT0019082
hsa-miR-455-5p −28.737402 −4.8448577 chr9 MIMAT0003150
hsa-miR-4632-5p −7.527243 −2.9121215 chr1 MIMAT0022977
hsa-miR-4646-5p −2.8159547 −1.4936241 chr6 MIMAT0019707
hsa-miR-4649-3p −7.12472 −2.8328333 chr7 MIMAT0019712
hsa-miR-4690-5p −7.212258 −2.850451 chr11 MIMAT0019779
hsa-miR-4749-3p −6.8722167 −2.7807755 chr19 MIMAT0019886
hsa-miR-487a −35.818806 −5.1626453 chr14 MIMAT0002178
hsa-miR-489 −7.070114 −2.8217335 chr7 MIMAT0002805
hsa-miR-491-3p −5.64386 −2.4966822 chr9 MIMAT0004765
hsa-miR-5003-3p −7.107153 −2.8292718 chr5 MIMAT0021026
hsa-miR-502-3p −14.068433 −3.8143897 chrX MIMAT0004775
hsa-miR-5090 −5.9943867 −2.5836122 chr7 MIMAT0021082
hsa-miR-5096 −7.0916066 −2.8261125 chr4 MIMAT0020603
hsa-miR-513b −3.0015473 −1.5857065 chrX MIMAT0005788
hsa-miR-516a-3p −6.1154137 −2.6124501 chr19 MIMAT0006778
hsa-miR-5190 −3.2782757 −1.7129372 chr18 MIMAT0021121
hsa-miR-5195-5p −31.958092 −4.9981093 chr14 MIMAT0021126
hsa-miR-525-3p −5.2564344 −2.3940845 chr19 MIMAT0002839
hsa-miR-532-3p −31.67539 −4.9852905 chrX MIMAT0004780
hsa-miR-539-5p −7.4776726 −2.9025893 chr14 MIMAT0003163
hsa-miR-543 −31.493706 −4.9769917 chr14 MIMAT0004954
hsa-miR-574-3p −2.0015302 −1.0011034 chr4 MIMAT0003239
hsa-miR-602 −5.946781 −2.572109 chr9 MIMAT0003270
hsa-miR-6075 −33.264282 −5.055902 chr5 MIMAT0023700
hsa-miR-622 −6.371007 −2.6715214 chr13 MIMAT0003291
hsa-miR-6511b-5p −7.128962 −2.833692 chr16 MIMAT0025847
hsa-miR-6512-5p −14.816795 −3.8891616 chr2 MIMAT0025480
hsa-miR-758-3p −5.32387 −2.4124753 chr14 MIMAT0003879
hsa-miR-765 −6.9221396 −2.791218 chr1 MIMAT0003945
hsa-miR-766-3p −2.33501 −1.2234287 chrX MIMAT0003888
hsa-miR-877-3p −13.717739 −3.7779708 chr6 MIMAT0004950
Figure 1.

Figure 1.

Venn-analysis of miRNAs. (A) Overlap of L1 vs. S1 and L2 vs. S2. (B) Overlap of (L1 vs. S1, L2 vs. S2) and N1 vs. n1. L1 and L2, placenta tissues supporting larger twins from case 1 and case 2 with sIUGR (intertwin EFW discordance was more than 25%), respectively; S1 and S2, placenta tissues supporting smaller twins from case 1 and case 2 with sIUGR, respectively. N1 and n1, placenta tissues supporting larger and smaller twin form normal MC (intertwin EFW discordance was less than 5%), respectively.

Table VI.

DEMs (L1 vs. S1 and L2 vs. S2).

Regulation Systematic_name FC (L1 vs. S1) FC (L2 vs. S2) Chromosome Mirbase accession no.
Up-regulated hsa-miR-1 6.5372915 6.2799373 chr18 MIMAT0000416
hsa-miR-101-3p 7.129267 6.4381766 chr1 MIMAT0000099
hsa-miR-133b 38.066643 37.049896 chr6 MIMAT0000770
hsa-miR-154-3p 6.04454 80.835304 chr14 MIMAT0000453
hsa-miR-193a-3p 31.360935 30.860113 chr17 MIMAT0000459
hsa-miR-218-5p 6.466407 6.376806 chr4 MIMAT0000275
hsa-miR-299-3p 28.977842 30.239016 chr14 MIMAT0000687
hsa-miR-3127-5p 7.3825746 6.460783 chr2 MIMAT0014990
hsa-miR-33b-3p 6.059397 5.4492188 chr17 MIMAT0004811
hsa-miR-3620-5p 88.913635 119.47107 chr1 MIMAT0022967
hsa-miR-3622b-5p 6.9455557 6.797605 chr8 MIMAT0018005
hsa-miR-370 6.1665797 6.585063 chr14 MIMAT0000722
hsa-miR-411-5p 7.6058702 6.842667 chr14 MIMAT0003329
hsa-miR-4476 41.244473 6.292596 chr9 MIMAT0019003
hsa-miR-4535 80.93671 84.8799 chr22 MIMAT0019075
hsa-miR-4539 91.96671 156.92206 chr14 MIMAT0019082
hsa-miR-4632-5p 2.642979 6.771799 chr1 MIMAT0022977
hsa-miR-4698 110.09238 122.85178 chr12 MIMAT0019793
hsa-miR-4740-5p 7.15094 140.27261 chr17 MIMAT0019869
hsa-miR-4743-5p 41.097565 6.4767523 chr18 MIMAT0019874
hsa-miR-4749-3p 7.212792 6.195103 chr19 MIMAT0019886
hsa-miR-487a 32.68032 34.672806 chr14 MIMAT0002178
hsa-miR-5003-3p 74.188484 99.04469 chr5 MIMAT0021026
hsa-miR-502-3p 30.460754 6.4271126 chrX MIMAT0004775
hsa-miR-5096 5.691079 28.428453 chr4 MIMAT0020603
hsa-miR-513b 2.4948008 5.130571 chrX MIMAT0005788
hsa-miR-5189 7.34395 28.272223 chr16 MIMAT0021120
hsa-miR-532-3p 30.798903 6.8659596 chrX MIMAT0004780
hsa-miR-539-5p 7.7136526 28.060043 chr14 MIMAT0003163
hsa-miR-543 37.697845 36.802776 chr14 MIMAT0004954
hsa-miR-5581-5p 2.7262392 69.77128 chr1 MIMAT0022275
hsa-miR-6075 7.67851 35.023468 chr5 MIMAT0023700
hsa-miR-887 33.127758 6.620651 chr5 MIMAT0004951
Down-regulated hsa-miR-335-3p −4.238018 −13.99673 chr7 MIMAT0004703
hsa-miR-338-5p −3.542421 −11.96858 chr17 MIMAT0004701
hsa-miR-3653 −3.068764 −7.872367 chr22 MIMAT0018073
hsa-miR-3679-3p −4.817414 −3.019187 chr2 MIMAT0018105
hsa-miR-373-3p −4.537483 −3.249207 chr19 MIMAT0000726
hsa-miR-4287 −12.79339 −2.985924 chr8 MIMAT0016917
hsa-miR-4324 −2.401632 −3.439694 chr19 MIMAT0016876
hsa-miR-4472 −2.590619 −3.141099 chr12 MIMAT0018999
hsa-miR-590-5p −3.056939 −2.542061 chr7 MIMAT0003258
hsa-miR-623 −2.361158 −3.541924 chr13 MIMAT0003292
hsa-miR-664b-3p −2.92985 −3.077336 chrX MIMAT0022272
hsa-miR-766-3p −2.377063 −7.31454 chrX MIMAT0003888
Figure 2.

Figure 2.

The 14 DEMs differentiated larger twins (L1 and L2) from smaller twins (S1 and S2). The hierarchical clustering analysis was shown.

Pathway analysis

The potential target genes of the above 14 DEMs were then searched by using bioinformatic algorithms such as MiRanda and TargetScan. There are 712 and 929 target genes for up-regulated and down-regulated DEMs, respectively, and listed in Table VII.

Table VII.

Target genes of potential target genes of 14 DEMs.

Regulation Systematic name Target genes
Up-regulated hsa-miR-1 ABCA1, ABHD2, ABI2, ABL2, ACER2, ADAM12, ADAR, AKAP11, AMOT, AMOTL2, ANKIB1, ANKRD29, ANKRD34B, ANO1, ANP32B, ANXA4, AP3D1, API5, ARF3, ARHGEF18, ARID2, ASH2L, ASPH, BCL11A, BDNF, BET1, BLCAP, BMPR1B, BOLL, BSCL2, BSN, BZRAP1, C1RL, CAGE1, CALN1, CAPRIN1, CASK, CDC42, CEBPZ, CHM, CLCN3, CLTC, CNN3, COIL, COL4A3, CPEB1, CREB5, CREM, DDX5, DHX15, DICER1, DLG4, DNAJC5, E2F5, EHMT2, EIF1AX, EIF4E, EML3, EPB41L4B, ETS1, FAM107B, FAM126A, FAM134A, FAM155A, FAM168B, FAM46C, FAM63B, FAM91A1, FBXL14, FBXL20, FBXO22, FNDC3A, FOXP1, FRS2, FZD4, G6PD, GABBR2, GAS2L1, GCH1, GDF6, GJA1, GLCCI1, GLIS2, GMFB, GNPTAB, HACE1, HIAT1, HIGD1A, HMBOX1, HMGN1, HNRNPK, HNRNPU, HOOK1, HOXB4, HP1BP3, HS3ST3B1, HSP90B1, HSPD1, JARID2, KCNJ2, KCTD10, KDM5C, KDSR, KIAA1462, KTN1, LARP4, LASP1, LIN7C, LPPR4, LRCH1, LRRC8A, MAGI2, MAP3K1, MATR3, MEIS1, MEOX2, MET, MGAT4A, MIER1, MMD2, MMP8, MON2, MXD1, NAB1, NAMPT, NBEA, NCOA3, NDRG3, NET1, NFAT5, NR3C1, NR4A3, NRP1, NUP50, NXT2, OSBPL7, OSBPL8, OTX2, PABPC4L, PAX6, PAX7, PDE7A, PDGFA, PDIK1L, PFKFB2, PHAX, PHIP, PHLDA1, PKD2, PLEKHO2, POGK, PPIB, PREX1, PRIC285, PRKRIR, PTPLAD1, PTPN2, PTPRK, RAB43, RARB, RNF138, RNF141, RNF165, RNF213, RSBN1L, RUNX1, SEC22C, SEC23B, SEC63, SELT, SFRP1, SH3PXD2B, SH3TC2, SLC10A7, SLC16A6, SLC25A22, SLC25A30, SLC25A36, SLC29A3, SLC35B4, SLC35F1, SLC37A3, SLC39A9, SLC7A11, SLC8A2, SMAD4, SMAP1, SNED1, SNX13, SNX2, SOX9, SPRED1, SS18, STC2, STX12, SULF1, TAGLN2, TMED5, TMEM135, TMEM178, TMSB4X, TNKS2, TNPO1, TNRC6B, TNS3, TPPP, TRAPPC3, TRHDE, TRIM2, TTC3, TTC7B, UBE2H, UBE4A, UBR5, UTRN, VAMP2, WIPF2, WNK3, WSCD2, YPEL2, ZBTB4, ZBTB41, ZC3HAV1, ZFP91, ZNF148, ZNF236, ZNF652, ZZZ3
hsa-miR-3622b-5p ANKRD52, ATRNL1, BEND4, CADM4, CBX5, CCDC34, CCDC97, CNKSR2, COL5A3, CPNE5, DCX, DVL3, EDEM3, EXTL3, FAM126B, FAM20B, FBXL20, FKBP5, FOXP3, GRIK2, HUWE1, KCTD20, KIAA0317, KIAA1239, KLF12, LARP1, LCORL, LOXL4, LPPR2, MAP3K3, MBOAT2, MIB1, MUM1L1, MYO1D, NDRG3, NTRK2, NUCKS1, NUP98, PAX6, PDE7B, PHF20L1, PHF21A, PTP4A1, PVRL1, PXT1, QKI, RIMKLA, SH3TC2, SLC1A2, SNTB2, SP2, SRGAP3, SSH2, STAG2, TBC1D14, TCF20, TRIM46, TRIM66, TSGA10, TSPAN11, VPS53, ZBTB7B
hsa-miR-4535 APBA1, CHD6, CLDN19, DNAJB12, EEF1A2, FKBP4, MAT2A, MYH7B, NDST1, PARVA, PTCD1, RIBC1, SCN2B, SPIN3, SPOPL, TUB
hsa-miR-370-3p ABCG4, ABR, ACCN4, ACOX1, ACTR1A, ACVR2B, ADCY5, AFF1, ANGEL1, ANKH, ANKRD52, ARCN1, ARF3, ASB10, ATP11A, ATP1A2, ATXN7L3, BAG4, BMF, BSN, C1QTNF6, CCDC64, CCL21, CDC42EP4, CFL1, CFLAR, CHD2, CHRNA7, CIT, CNGB1, CRLF1, CYB5B, CYP2U1, DES, DGCR14, DHX35, DMRTB1, DNAJB1, DNAJC11, DND1, EML1, ENAH, ENOX2, FAM102A, FAM123B, FAM164C, FAM168B, FBLN5, FBXO46, FGF11, FGF7, FOSL2, FOXO1, GADD45B, GSG1L, HDAC4, HEMK1, HHIPL1, HIF1AN, HNRNPUL2, HPS5, HSPA12A, HTR4, IKZF4, INO80, IPPK, IVD, JMY, KCNJ11, KIAA2018, KIF1B, KLC2, KLF12, KLHL18, KRT80, LPHN2, MAP2K7, MOCS1, MRPS25, MTL5, NAPG, NCDN, NCOA5, NEK9, NF1, NFASC, NLGN2, NTRK2, ODF2, OPA3, ORAI2, PACS1, PAPL, PCDH10, PCDH11X, PCDH19, PCLO, PDE7A, PHF19, PLEKHA6, PLEKHM1, POLR2F, POMT2, PPARGC1B, PRDM10, PRLR, PRRX1, PTCD1, PXMP4, RAB11A, RAP1GDS1, RAPGEF1, RAPGEFL1, RBBP4, SAP30BP, SEMA6A, SH3BP2, SHE, SLC10A7, SLC46A1, SLC4A4, SMURF1, SOX12, SPRYD3, ST3GAL3, ST6GAL1, STK35, SYNGR1, SYNPO2, TGFBR2, TM9SF4, TMCO7, TMEM127, TMEM154, TMEM184A, TMEM40, TNRC6C, TP53I11, TRIM33, TRIOBP, TRIT1, UBE2R2, UBTF, USP37, USP47, USP5, VANGL1, VSTM2L, WDTC1, WNT10B, ZBTB39, ZBTB42, ZC3H7B, ZC3HAV1, ZCCHC17, ZCCHC24, ZDHHC5, ZMYND11, ZNF148, ZNF185, ZNF37A, ZNF605, ZNF704
hsa-miR-5189-5p AAK1, ACVR1B, ACVR2A, ADAT2, ADCY2, ADRBK1, AGBL4, AHI1, AKT2, ANKS6, ARHGAP19, ARID4A, ARRDC3, ASTN1, ASXL1, ATG4B, ATOH8, ATP2B2, ATP6V0D1, ATP8A1, BAIAP2L2, BAK1, BMP8B, BMPR2, BRAP, BRD4, BTRC, CA5B, CACNA1I, CACNB3, CALM3, CBFA2T2, CCBE1, CCDC69, CCDC76, CD300LG, CDH24, CHL1, CNP, CPLX2, CSMD2, CSRNP1, CYP26B1, DACT3, DCBLD2, DCHS1, DENND1A, DIS3L2, DNAJC5G, DTX1, DUOX1, EEFSEC, ELFN2, FAM105B, FAM120C, FAM155B, FAM53C, FBXL19, FBXL20, FBXO33, FBXO41, FGD3, FGF14, FOXN3, FOXP1, GGT5, GLG1, GLUL, GNA12, GRIN1, GRIP2, GRK6, HEG1, HM13, HOXA13, IGFN1, KATNB1, KCNK2, KCTD15, KIF21B, KPNA6, LCNL1, LHFPL4, LHX6, LHX8, LMAN2, LRRTM3, LYPLA2, LZTR1, M6PR, MAP3K3, MAPK1IP1L, MARCKSL1, MCTS1, MDGA1, MECP2, MLLT6, MMP19, MPP2, MYO1D, NAGS, NAT8L, NAV1, NDRG4, NFYA, NIPSNAP1, NOL3, NPTX1, NRP1, NUAK1, NUP43, OBFC1, OFD1, OSBPL7, PBX1, PCDH11X, PHF15, PHF21A, PIGA, PLEKHM3, PODXL, POLDIP2, POLR2F, PPIL6, PPME1, PRMT2, PROSC, PTOV1, RAB11FIP3, RAB11FIP4, RAB11FIP5, RAB22A, RC3H1, REM1, RFX1, RHBDL3, RIMS3, RNF157, RNMTL1, RUNX3, SEC14L1, SEMA3G, SENP5, SETBP1, SH3PXD2B, SHANK2, SHANK3, SLC17A5, SLC23A2, SLC26A9, SLC30A6, SLC38A3, SLC6A4, SMARCD1, SNCA, SNX27, SRF, SRRM1, SS18L1, ST3GAL3, ST7L, STAC3, STK4, STX1B, SUV39H1, SV2A, SYNPO, SYT9, TBC1D13, TCF7L1, TFAP2A, THRB, TLN2, TMEM79, TRIM10, TRIM16, TRIM44, TRIM9, TSG101, TSPAN18, TSR2, TTBK1, USH1G, USP54, VAMP2, VCPIP1, VPS39, WBSCR17, WDR37, WDTC1, WTAP, XYLT1, YEATS2, ZBTB7B, ZER1, ZHX3, ZNF76, ZNRF1
hsa-miR-4743-5p AKT1S1, ARL3, GRIN1, HIC1, NCDN, OLFML2A, SCRT2, ZDHHC8
hsa-miR-5581-5p APLNR, ATP6V1A, ATP8A1, BRD4, BTG4, CABP7, CADM1, CALN1, CAPN1, CCDC62, CCL22, CDON, CHRNB2, CLDN2, CLIC4, CPEB2, CR2, CSNK1D, CTNND2, DCLK2, DRP2, FAF2, FAM13A, FGA, FNDC5, FOXP1, GGA1, GMEB1, GRIN1, HIF3A, HNRNPA3, IFFO2, IL4R, IPO7, ITPKB, KCNK3, KPNA6, LAMC1, LHX6, LIPH, MMP19, MTHFR, MYO5A, NACC1, NCOA3, NEDD4L, NTN1, NWD1, PARP16, PHF8, PHOSPHO1, PLCB3, PNKD, RALGPS1, RECQL5, RIMKLA, RMND5A, RNF169, SH3PXD2A, SHROOM4, SLC26A9, SYNGR3, SYT11, TBRG1, TGFBR1, THSD7A, TP53I11, TPM3, TRIM47, TUB, UBAP2L, UBXN7, UNC119, VEZF1, ZKSCAN2, ZNF304, ZNF576, ZNF608, ZNF629, ZXDC
Down-regulated hsa-miR-373-3p A2LD1, AAK1, ABCA1, ABHD3, ABI2, ABL2, ACBD5, ACVR1C, ADAM9, ADAMTS18, AFF2, AGAP2, AHNAK, AKAP5, AKTIP, ANKRD13C, ANKRD50, ANKRD52, ANO6, AP1M1, APBB2, ARHGAP30, ARHGEF10, ARHGEF18, ARHGEF3, ARHGEF7, ARID4A, ARID4B, ARL4A, ASAP1, ASB1, ASF1B, ASH1L, ATP2B2, ATXN1, BAHD1, BAMBI, BCAT1, BCL11A, BCL11B, BCL2L11, BCL6B, BMPR2, BNC2, BNIP3L, BRMS1L, BRWD1, BSCL2, BTBD7, BVES, CAMSAP1, CAMTA1, CASC4, CC2D1A, CCDC88A, CCND1, CCND2, CD44, CDC25A, CDC40, CDCA7, CFL2, CHD9, CLIP4, CNN1, CNOT6, CORIN, CREB1, CRK, CROT, CXCL12, CXCL14, CYB561D1, CYBB, CYBRD1, CYP26B1, DDHD1, DENND5B, DERL2, DGKE, DIRC2, DLGAP2, DMTF1, DNAJA2, DNAJC27, DPP3, DPP8, DPYSL5, DYNLT3, EDNRB, EGLN1, EIF4B, ELAVL2, ENDOD1, EPHA2, EPHA5, EPHA7, ERO1LB, EZH1, FAM102B, FAM117A, FAM18B2, FAM40B, FAM46C, FBXL4, FBXO10, FBXO41, FGD4, FGD5, FLT1, FMNL3, FOXK2, FOXO3, FRMD4A, FRMD4B, FYCO1, FZD6, GAB2, GALNT10, GALNT3, GATAD2B, GATC, GDA, GLIS3, GLS, GNB5, GNG12, GNPDA2, GOLGA1, GPR12, GPR137C, GPR180, GUCY1A3, HAUS8, HDAC4, HEG1, HIP1, HIPK3, HK1, HLF, HMGXB3, HN1, HNRNPUL2, HOOK3, HP1BP3, IGDCC3, IKZF2, IL28RA, IL8, INO80D, IPO7, IQSEC1, IRAK2, IRAK4, IRF2, IRF9, ISM1, ITGB8, JUB, KDM2A, KIAA0226, KIAA0240, KIAA0513, KIAA1522, KIAA1549, KIAA1737, KIF3B, KLF12, KLF13, KLF3, KLHL28, KREMEN1, KSR2, LEF1, LEFTY1, LEFTY2, LHX6, LHX8, LIF, LMO3, LRIT1, LUC7L2, LYPD6, LYRM2, LYSMD3, LYST, MAML1, MAP1B, MAP3K1, MAP3K14, MAP3K2, MBD2, MBNL2, MBNL3, MCCD1, MCL1, MDM4, MECP2, MED13L, MFAP3L, MIB1, MICAL3, MKNK2, MKRN1, MLL, MLL3, MLLT6, MNT, MRPS25, MSL1, MTCH2, MTF1, MTMR3, MTUS1, MYO1D, NAPEPLD, NCOA3, NCOA7, NECAP1, NEK9, NFATC3, NFIB, NFYA, NHLRC2, NHLRC3, NNAT, NPAS3, NR2C1, NR2C2, OCRL, ODF2, OPCML, ORMDL3, OSBPL5, OSTM1, OTUD7B, PAFAH2, PAG1, PAK2, PAM, PAN3, PARP8, PBX3, PCDH7, PCGF5, PDCD4, PDLIM5, PFN2, PGBD5, PHACTR4, PHC3, PHF6, PHKA1, PHYHIPL, PIP4K2A, PKD2, PKN2, PLAG1, PLCL1, POFUT1, POLK, POU6F1, PPARA, PPARGC1B, PPP1R10, PPP1R9A, PPP6C, PRDM16, PRDM8, PRKACB, PRMT6, PRRT2, PRRX1, PSD3, PSEN1, PTGDR, PTPDC1, RAB11A, RAB11FIP1, RAB11FIP5, RAB22A, RABEP1, RAD18, RAD23B, RALGDS, RAPGEF2, RAPGEF5, RAPGEFL1, RASSF2, RBL1, RBMS2, RDX, RELA, RELL1, RGL1, RGMA, RHOC, RIMKLA, RNF180, RNF216, RNF38, RNF6, RORA, RPS6KA2, RRAGD, RSBN1, RSBN1L, RSF1, RSRC2, RUNX2, RYR2, SAMD12, SAR1B, SASH1, SBF1, SCD5, SCN2A, SCN5A, SCRT2, SDC1, SETBP1, SETD7, SHCBP1, SIK1, SIPA1L3, SLC14A1, SLC16A12, SLC16A9, SLC35E1, SLC38A1, SLC39A6, SLC46A3, SLC6A9, SMARCC2, SNRK, SNTB2, SNX30, SNX5, SNX9, SOS1, SPRED1, SS18L1, SSX2IP, ST3GAL5, ST8SIA2, STX16, SUV420H2, SYAP1, SYDE1, SYNC, SYNPO2, TANC2, TAOK2, TAPT1, TARDBP, TBCEL, TCEB3, TET2, TET3, TGFBR2, TIAM1, TMCC1, TMEM100, TMTC2, TMUB2, TNRC18, TNRC6B, TNRC6C, TNS1, TOX, TRAPPC2, TRHDE, TRIM2, TRIM44, TRIM66, TRPS1, TRPV6, TSEN34, TSHZ3, TTC9, TTPAL, TUSC2, UBASH3B, UBE2B, UBE2J1, UBE2Q2, UBE2R2, UBE2W, UBN1, UBN2, UHRF1, UHRF1BP1, ULK1, UNK, UNKL, UPF3A, USP24, USP42, USP46, USP53, VSX1, WDR26, WDR37, WDR45, WEE1, WIPF2, YTHDF3, ZBTB11, ZBTB41, ZBTB43, ZBTB44, ZBTB47, ZBTB7A, ZCCHC24, ZDHHC8, ZDHHC9, ZFP91, ZFYVE26, ZKSCAN1, ZMYND11, ZNF148, ZNF2, ZNF236, ZNF25, ZNF292, ZNF362, ZNF385A, ZNF436, ZNF473, ZNF512B, ZNF518A, ZNF566, ZNF597, ZNF697, ZNF862, ZNFX1”
hsa-miR-4287 AKT2, AP3M2, APLN, ASTN1, ATG9A, BAHD1, BHLHE41, BSDC1, BTG2, CALB1, CAMK2A, CAMK2B, CCDC113, CECR6, COL17A1, CRTC2, DDX3X, DDX3Y, DNAJC21, EHF, EIF2S1, ENC1, EYA3, FAM117B, FAM76A, GCC1, GRAMD4, HELZ, HUNK, IGSF9B, KCNA6, KCNK10, KIAA1210, KLF12, KPNA6, KRT80, MDM1, MFAP3L, MID1, NARG2, NBN, NCAN, NFASC, OPCML, ORAI3, OSBP, PDE1B, PHF23, PI4K2A, PIK3C2B, PMEPA1, POLD3, RAB1B, RGL1, RIPK1, ROBO2, SGCZ, SGTB, SH3BP2, SH3RF2, TIGD3, TIMM17B, TOX2, UBN2, VBP1, ZNF48, ZNRF3, CREB1, CRK, CROT, CXCL12, CXCL14, CYB561D1, CYBB, CYBRD1, CYP26B1, DDHD1, DENND5B, DERL2, DGKE, DIRC2, DLGAP2, DMTF1, DNAJA2, DNAJC27, DPP3, DPP8, DPYSL5, DYNLT3, EDNRB, EGLN1, EIF4B, ELAVL2, ENDOD1, EPHA2, EPHA5, EPHA7, ERO1LB, EZH1, FAM102B, FAM117A, FAM18B2, FAM40B, FAM46C, FBXL4, FBXO10, FBXO41, FGD4, FGD5, FLT1, FMNL3, FOXK2, FOXO3, FRMD4A, FRMD4B, FYCO1, FZD6, GAB2, GALNT10, GALNT3, GATAD2B, GATC, GDA, GLIS3, GLS, GNB5, GNG12, GNPDA2, GOLGA1, GPR12, GPR137C, GPR180, GUCY1A3, HAUS8, HDAC4, HEG1, HIP1, HIPK3, HK1, HLF, HMGXB3, HN1, HNRNPUL2, HOOK3, HP1BP3, IGDCC3, IKZF2, IL28RA, IL8, INO80D, IPO7, IQSEC1, IRAK2, IRAK4, IRF2, IRF9, ISM1, ITGB8, JUB, KDM2A, KIAA0226, KIAA0240, KIAA0513, KIAA1522, KIAA1549, KIAA1737, KIF3B, KLF12, KLF13, KLF3, KLHL28, KREMEN1, KSR2, LEF1, LEFTY1, LEFTY2, LHX6, LHX8, LIF, LMO3, LRIT1, LUC7L2, LYPD6, LYRM2, LYSMD3, LYST, MAML1, MAP1B, MAP3K1, MAP3K14, MAP3K2, MBD2, MBNL2, MBNL3, MCCD1, MCL1, MDM4, MECP2, MED13L, MFAP3L, MIB1, MICAL3, MKNK2, MKRN1, MLL, MLL3, MLLT6, MNT, MRPS25, MSL1, MTCH2, MTF1, MTMR3, MTUS1, MYO1D, NAPEPLD, NCOA3, NCOA7, NECAP1, NEK9, NFATC3, NFIB, NFYA, NHLRC2, NHLRC3, NNAT, NPAS3, NR2C1, NR2C2, OCRL, ODF2, OPCML, ORMDL3, OSBPL5, OSTM1, OTUD7B, PAFAH2, PAG1, PAK2, PAM, PAN3, PARP8, PBX3, PCDH7, PCGF5, PDCD4, PDLIM5, PFN2, PGBD5, PHACTR4, PHC3, PHF6, PHKA1, PHYHIPL, PIP4K2A, PKD2, PKN2, PLAG1, PLCL1, POFUT1, POLK, POU6F1, PPARA, PPARGC1B, PPP1R10, PPP1R9A, PPP6C, PRDM16, PRDM8, PRKACB, PRMT6, PRRT2, PRRX1, PSD3, PSEN1, PTGDR, PTPDC1, RAB11A, RAB11FIP1, RAB11FIP5, RAB22A, RABEP1, RAD18, RAD23B, RALGDS, RAPGEF2, RAPGEF5, RAPGEFL1, RASSF2, RBL1, RBMS2, RDX, RELA, RELL1, RGL1, RGMA, RHOC, RIMKLA, RNF180, RNF216, RNF38, RNF6, RORA, RPS6KA2, RRAGD, RSBN1, RSBN1L, RSF1, RSRC2, RUNX2, RYR2, SAMD12, SAR1B, SASH1, SBF1, SCD5, SCN2A, SCN5A, SCRT2, SDC1, SETBP1, SETD7, SHCBP1, SIK1, SIPA1L3, SLC14A1, SLC16A12, SLC16A9, SLC35E1, SLC38A1, SLC39A6, SLC46A3, SLC6A9, SMARCC2, SNRK, SNTB2, SNX30, SNX5, SNX9, SOS1, SPRED1, SS18L1, SSX2IP, ST3GAL5, ST8SIA2, STX16, SUV420H2, SYAP1, SYDE1, SYNC, SYNPO2, TANC2, TAOK2, TAPT1, TARDBP, TBCEL, TCEB3, TET2, TET3, TGFBR2, TIAM1, TMCC1, TMEM100, TMTC2, TMUB2, TNRC18, TNRC6B, TNRC6C, TNS1, TOX, TRAPPC2, TRHDE, TRIM2, TRIM44, TRIM66, TRPS1, TRPV6, TSEN34, TSHZ3, TTC9, TTPAL, TUSC2, UBASH3B, UBE2B, UBE2J1, UBE2Q2, UBE2R2, UBE2W, UBN1, UBN2, UHRF1, UHRF1BP1, ULK1, UNK, UNKL, UPF3A, USP24, USP42, USP46, USP53, VSX1, WDR26, WDR37, WDR45, WEE1, WIPF2, YTHDF3, ZBTB11, ZBTB41, ZBTB43, ZBTB44, ZBTB47, ZBTB7A, ZCCHC24, ZDHHC8, ZDHHC9, ZFP91, ZFYVE26, ZKSCAN1, ZMYND11, ZNF148, ZNF2, ZNF236, ZNF25, ZNF292, ZNF362, ZNF385A, ZNF436, ZNF473, ZNF512B, ZNF518A, ZNF566, ZNF597, ZNF697, ZNF862, ZNFX1
hsa-miR-338-5p AAK1, ADAMTS17, ADARB2, AEBP2, AMMECR1, APPL1, ARFGAP3, ARID2, ARNT, ATAD1, ATF7, ATP2C1, ATRX, AUTS2, B4GALT6, BAZ1B, BCL11B, BCL2L11, BTG3, CADM2, CALM3, CAST, CCDC140, CCNT2, CD28, CD82, CD9, CDK5R1, CDYL2, CHST12, CLIC4, CLTC, CNR1, CNTN4, CPEB4, CPNE3, CREB3L1, CRIM1, CSNK1G1, CUL3, DGKG, DICER1, DLAT, DMXL2, DNAJC6, DNM3, DYRK4, EML1, EP300, EPAS1, EPHA7, ERRFI1, EXOC5, FAM126A, FAM129B, FAM135B, FAM177A1, FAM18B2, FMNL2, FNDC3B, FOXJ3, FUT9, GATAD2B, GREM2, GRIA4, GRM7, GTF3C2, GUCY1A3, HCN1, HDAC9, HIF1A, HIPK2, HSPA12A, IKZF1, IMPACT, INO80D, IREB2, JMJD1C, KAL1, KDM5B, KIAA1024, KIAA1467, KLF11, KLHL14, KLHL6, KLRAQ1, KRAS, LMO4, LRP1, MACF1, MBNL1, MBNL2, MCTS1, MEF2C, MIPOL1, MKL2, MLL4, MLLT4, MN1, MON2, MPPED2, NCK2, NCOA3, NDFIP1, NPAS4, NRP1, NUDT4, NUFIP2, OCIAD1, ONECUT2, PARD6B, PCDH17, PCDH20, PCGF5, PCNX, PELI1, PHC3, PHIP, PKN2, PLAGL2, PLEKHA5, PPARGC1A, PPM1B, PPP2R5A, PRDM10, PRLR, PTCHD1, PTGS1, R3HDM2, RAB14, RAB1A, RAB22A, RAB6B, RAP2C, RAPGEF5, RAPH1, RCOR1, RICTOR, RND3, RNF138, RORA, SAMD12, SBNO1, SEC16B, SEMA6A, SERTAD2, SIRT1, SKP1, SLC4A7, SLIT1, SLMAP, SNTB1, SOX6, SPAST, SPOP, SSX2IP, STAG2, SUB1, SYNCRIP, SYPL1, TAF4, TANC2, TARDBP, TBX18, TBX2, TCERG1L, TEAD1, TET2, TLK1, TRA2B, TRAF3, TRPM7, TSHZ3, UBE2N, UBR2, USP25, WASF1, WDFY3, WWC3, ZBTB44, ZFAND5, ZNF292
hsa-miR-623 AAK1, ACSM2A, ADARB2, AGPAT4, ALPL, AP3M2, APPL1, ATG9A, BAHD1, CACNA1C, CAMK2B, CCDC117, CCDC3, CELSR3, CLUAP1, CORO2A, CRTC2, CXCL12, DCLK1, DCLK3, DSEL, ECE1, EGFLAM, EIF1, ELAVL2, EZR, FAM126A, FAM134C, FOXN2, GATAD2B, GLIS3, HAS3, HGSNAT, HLCS, HM13, HMGA2, HOXC10, HOXC9, IGF2R, ILDR2, KIAA1199, KPNA1, MAPK1, MECP2, MEIS1, MFSD11, MON2, MTMR7, NIPBL, NMT1, NR3C2, NTRK2, NTRK3, OBFC2A, ODZ4, PCMT1, PDE4A, PI4KB, PLCD4, POLD3, PRIMA1, RBM24, RHOBTB3, RIMKLA, RIN3, RNF144A, RNF169, RPRD2, SECISBP2L, SH3PXD2A, SH3TC2, SIGLEC1, SKI, SLC12A2, SLC44A5, SNX13, SUPT16H, TAOK2, TET3, TNFRSF8, TNRC6B, TPM3, TRIM31, TRPS1, ZMIZ1
hsa-miR-3653 ACVR1C, ADCY2, AEBP2, AMIGO2, ATP1B4, ATRNL1, ATXN7, BMP3, BMPR2, BNC2, BRD3, BRPF3, BRWD3, BTG1, CCDC88A, CPEB4, DBT, DGCR2, DIXDC1, DUSP19, EFNB3, ESRRB, FAM107B, FASLG, GALNT2, GJC1, GPC2, GPC6, HCFC2, HIPK3, KIAA0947, KIAA2018, KLHL28, LPCAT2, LRRTM2, MED12L, MKLN1, MYSM1, NCOA1, NIP7, ODZ3, PCDH11X, PDE11A, PHLDA1, PI15, PRPF4B, R3HDM1, RBBP4, SEC62, SERBP1, SORT1, SPATA5, SV2B, TMEM215, TMEM50B, TRIM67, TRPM8, VPS33A, YAF2, ZADH2, ZDHHC21, ZFAND5, ZFY, ZNF280C, ZNF507, ZYG11B
hsa-miR-590-5p ARHGAP24, ARHGEF12, ARMCX1, BAHD1, BMP3, BMPR2, CADM1, CCL22, CEP68, CNOT6, CREB5, DAG1, DSC2, EIF2C4, EIF4EBP2, ELF2, ENAH, EPHA4, FAM13A, FAM3C, FASLG, FBXO28, FGD4, FGF1, FRS2, GABRB2, GATAD2B, GLCCI1, GPR64, ITGB8, JHDM1D, JPH1, KCNT2, KLF12, KLHDC5, LCORL, LRRC57, MATN2, MBNL1, MICALL1, MTMR12, NELL2, NFAT5, NFIB, OSR1, PAG1, PAIP2B, PAN3, PBRM1, PCBP2, PDZD2, PER2, PGRMC2, PIK3R1, PLAG1, PLEKHA1, PPP1R3B, PTPN9, RAB22A, RASGRP1, RAVER2, RBPJ, RECK, RFFL, RP2, RPRD1A, SATB1, SECISBP2L, SESTD1, SETD1B, SKI, SLC7A6, SNTB2, SNX29, SPRY2, ST3GAL6, STAG2, TAGAP, TBX2, TET1, TGFB2, TGFBR2, TNRC6B, UBE2D3, UBN2, UBR3, YOD1, ZCCHC3, ZNF704
hsa-miR-664b-3p AASS, ABCE1, ABI2, ACVR2B, ADD3, AKNA, APAF1, APC, ARPM1, ASB13, ATG7, ATP2C1, BACH1, BACH2, BCAS1, BDNF, BHLHB9, BNC2, CA5B, CACHD1, CCNC, CENPL, COPA, CREG2, DCP2, DENND4C, DIP2B, DPY19L1, EDAR, ERBB4, ETNK1, FAM114A1, FAM8A1, FBXW2, FNDC3A, FRMD4A, FZD5, GPRASP2, HIPK2, HMGA2, INTS6, JPH1, KCTD21, KLF12, KLHDC10, LDB3, LMTK3, MED1, MSR1, MTCH2, MTR, MYCBP, MYO1D, N4BP2, NDFIP1, NETO1, NFIB, NIPAL3, NOTCH2, NSL1, NUFIP2, PAPD5, PARVA, PDE4D, PDYN, PELI2, PGM3, PHIP, PI15, PKP1, PRDM10, PRDM15, PRKAA1, PRKAA2, PRLR, QKI, RANBP9, RAPGEF6, RIBC1, RS1, RSU1, SALL4, SAMD12, SH2D4B, SMAD3, SNX30, STT3A, TAF4, TGOLN2, TMEM215, TMEM26, TRAM2, TXLNA, UTP23, VAMP1, VAMP4, WDFY1, WWC2, YKT6, ZFHX3, ZFP28, ZFX, ZNF24

To find out the significant pathway associated with the target genes, pathway analysis was performed according to the KEGG database. The results showed that 49 and 101 significant pathways were associated with the up-regulated and down-regulated DEMs, respectively (P<0.05; Table VIII and Fig. 3). Signaling pathways associated with organ size, cell differentiation, cell proliferation and migration, such as transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), Hippo, PI3K-Akt, Wnt, mTOR, Jak/STAT, NF-κB and Notch, were identified. These data suggested the involvement of these 14 DEMs on the pathology of sIUGR.

Table VIII.

Pathway analysis based on miRNA-targeted genes.

Regulation Name Diffgene count Gene count Enrichment P-value FDR
Up-regulated Pathways in cancer 23 327 4.3892 1.822E-08 2.670E-06
TGF-beta signaling pathway 12 81 9.2448 2.697E-08 2.670E-06
MAPK signaling pathway 20 260 4.8002 4.116E-08 2.716E-06
Hippo signaling pathway 15 156 6.0002 1.526E-07 7.555E-06
Endocytosis 16 204 4.8943 9.288E-07 3.678E-05
HTLV-I infection 18 268 4.1912 1.689E-06 5.371E-05
Glutamatergic synapse 12 118 6.3460 1.899E-06 5.371E-05
Estrogen signaling pathway 10 100 6.2403 1.987E-05 4.917E-04
Protein processing in endoplasmic reticulum 12 167 4.4840 7.169E-05 1.577E-03
Neurotrophin signaling pathway 10 120 5.2002 1.001E-04 1.981E-03
Transcriptional misregulation in cancer 12 180 4.1602 1.505E-04 2.709E-03
Insulin secretion 8 87 5.7382 3.211E-04 5.297E-03
Wnt signaling pathway 10 143 4.3638 4.435E-04 6.350E-03
GnRH signaling pathway 8 92 5.4263 4.769E-04 6.350E-03
Cytokine-cytokine receptor interaction 14 267 3.2720 4.811E-04 6.350E-03
Adherens junction 7 73 5.9838 6.869E-04 8.495E-03
Calcium signaling pathway 11 183 3.7510 7.844E-04 8.495E-03
Gastric acid secretion 7 75 5.8242 8.141E-04 8.495E-03
Regulation of actin cytoskeleton 12 215 3.4829 8.152E-04 8.495E-03
Melanogenesis 8 101 4.9428 9.132E-04 9.040E-03
Axon guidance 9 131 4.2872 1.105E-03 1.042E-02
RNA transport 10 165 3.7820 1.418E-03 1.276E-02
Ubiquitin mediated proteolysis 9 138 4.0697 1.623E-03 1.398E-02
Cholinergic synapse 8 113 4.4179 1.956E-03 1.614E-02
Glycosaminoglycan biosynthesis-heparan sulfate/heparin 4 24 10.4004 2.153E-03 1.705E-02
Synaptic vesicle cycle 6 64 5.8502 2.259E-03 1.721E-02
Salivary secretion 7 90 4.8535 2.493E-03 1.829E-02
Morphine addiction 7 93 4.6970 3.034E-03 2.146E-02
Pancreatic secretion 7 96 4.5502 3.664E-03 2.502E-02
Melanoma 6 71 5.2735 3.928E-03 2.592E-02
Chemokine signaling pathway 10 192 3.2501 4.581E-03 2.926E-02
Cocaine addiction 5 50 6.2403 4.868E-03 3.012E-02
PI3K-Akt signaling pathway 14 347 2.5177 6.421E-03 3.853E-02
Focal adhesion 10 206 3.0293 7.726E-03 4.499E-02
Gap junction 6 89 4.2069 1.252E-02 6.800E-02
Prostate cancer 6 89 4.2069 1.252E-02 6.800E-02
Colorectal cancer 5 62 5.0325 1.271E-02 6.800E-02
Lysosome 7 122 3.5805 1.444E-02 7.524E-02
Proteoglycans in cancer 10 227 2.7490 1.550E-02 7.868E-02
Renal cell carcinoma 5 66 4.7275 1.666E-02 8.044E-02
Pancreatic cancer 5 66 4.7275 1.666E-02 8.044E-02
Circadian entrainment 6 97 3.8600 1.913E-02 9.018E-02
Proximal tubule bicarbonate reclamation 3 23 8.1395 2.286E-02 1.053E-01
Tight junction 7 134 3.2598 2.404E-02 1.082E-01
Chronic myeloid leukemia 5 73 4.2741 2.556E-02 1.125E-01
Endocrine and other factor-regulated calcium reabsorption 4 49 5.0941 3.133E-02 1.348E-01
Cell adhesion molecules (CAMs) 7 146 2.9919 3.776E-02 1.591E-01
Basal cell carcinoma 4 55 4.5384 4.679E-02 1.930E-01
Other types of O-glycan biosynthesis 3 30 6.2403 4.825E-02 1.950E-01
Down-regulated Neurotrophin signaling pathway 22 120 8.8478 2.651E-14 5.567E-12
Proteoglycans in cancer 26 227 5.5277 9.364E-12 9.832E-10
Axon guidance 19 131 6.9996 1.365E-10 8.205E-09
Hepatitis B 20 148 6.5217 1.563E-10 8.205E-09
MAPK signaling pathway 26 260 4.8261 2.037E-10 8.554E-09
Renal cell carcinoma 13 66 9.5059 3.543E-09 1.240E-07
PI3K-Akt signaling pathway 28 347 3.8942 5.365E-09 1.610E-07
Pathways in cancer 27 327 3.9848 6.399E-09 1.680E-07
Colorectal cancer 12 62 9.3408 1.948E-08 4.545E-07
Regulation of actin cytoskeleton 21 215 4.7138 2.194E-08 4.607E-07
TGF-beta signaling pathway 13 81 7.7455 4.888E-08 8.699E-07
HTLV-I infection 23 268 4.1418 4.971E-08 8.699E-07
Circadian entrainment 14 97 6.9655 5.551E-08 8.967E-07
Melanogenesis 14 101 6.6896 9.433E-08 1.415E-06
Chronic myeloid leukemia 12 73 7.9333 1.346E-07 1.884E-06
mTOR signaling pathway 11 60 8.8478 1.547E-07 2.031E-06
HIF-1 signaling pathway 14 106 6.3741 1.767E-07 2.183E-06
Wnt signaling pathway 16 143 5.3998 2.141E-07 2.498E-06
Endocytosis 19 204 4.4949 2.489E-07 2.751E-06
Viral carcinogenesis 19 207 4.4297 3.140E-07 3.297E-06
Cholinergic synapse 14 113 5.9792 4.010E-07 4.010E-06
Amphetamine addiction 11 70 7.5838 8.093E-07 7.725E-06
Insulin signaling pathway 15 140 5.1708 9.843E-07 8.987E-06
ErbB signaling pathway 12 88 6.5810 1.132E-06 9.903E-06
Prostate cancer 12 89 6.5071 1.284E-06 1.078E-05
T cell receptor signaling pathway 13 108 5.8092 1.605E-06 1.296E-05
Chemokine signaling pathway 17 192 4.2731 2.494E-06 1.940E-05
Pancreatic cancer 10 66 7.3122 4.108E-06 3.081E-05
Endometrial cancer 9 52 8.3528 4.485E-06 3.248E-05
Circadian rhythm 7 31 10.8976 1.092E-05 7.645E-05
GnRH signaling pathway 11 92 5.7703 1.330E-05 9.010E-05
Dopaminergic synapse 13 131 4.7892 1.463E-05 9.601E-05
Phosphatidylinositol signaling system 10 81 5.9581 2.766E-05 1.760E-04
Estrogen signaling pathway 11 100 5.3087 3.017E-05 1.839E-04
Glioma 9 65 6.6823 3.065E-05 1.839E-04
Cocaine addiction 8 50 7.7217 3.277E-05 1.911E-04
Insulin secretion 10 87 5.5472 5.269E-05 2.990E-04
Apoptosis 10 88 5.4842 5.835E-05 3.225E-04
Long-term potentiation 9 71 6.1176 6.393E-05 3.442E-04
Acute myeloid leukemia 8 57 6.7734 8.877E-05 4.635E-04
Hepatitis C 12 133 4.3544 9.049E-05 4.635E-04
Hippo signaling pathway 13 156 4.0217 9.772E-05 4.886E-04
Alcoholism 14 180 3.7536 1.046E-04 4.993E-04
Transcriptional misregulation in cancer 14 180 3.7536 1.046E-04 4.993E-04
Calcium signaling pathway 14 183 3.6921 1.256E-04 5.864E-04
Tuberculosis 14 184 3.6720 1.334E-04 6.092E-04
Retrograde endocannabinoid signaling 10 103 4.6855 2.309E-04 1.032E-03
Chagas disease (American trypanosomiasis) 10 105 4.5963 2.720E-04 1.190E-03
GABAergic synapse 9 90 4.8261 4.275E-04 1.832E-03
Non-small cell lung cancer 7 54 6.2560 4.865E-04 2.041E-03
Osteoclast differentiation 11 135 3.9324 4.958E-04 2.041E-03
Adherens junction 8 73 5.2888 5.398E-04 2.180E-03
Morphine addiction 9 93 4.6704 5.510E-04 2.183E-03
Fc gamma R-mediated phagocytosis 9 94 4.6207 5.983E-04 2.301E-03
Ubiquitin mediated proteolysis 11 138 3.8469 6.026E-04 2.301E-03
Gastric acid secretion 8 75 5.1478 6.534E-04 2.450E-03
B cell receptor signaling pathway 8 76 5.0801 7.171E-04 2.616E-03
Glutamatergic synapse 10 118 4.0899 7.226E-04 2.616E-03
Protein processing in endoplasmic reticulum 12 167 3.4678 8.172E-04 2.909E-03
Shigellosis 7 61 5.5381 1.057E-03 3.701E-03
Cell cycle 10 124 3.8920 1.083E-03 3.728E-03
Thyroid cancer 5 29 8.3208 1.187E-03 4.021E-03
Hypertrophic cardiomyopathy (HCM) 8 85 4.5422 1.555E-03 5.183E-03
Progesterone-mediated oocyte maturation 8 86 4.4894 1.684E-03 5.525E-03
Jak-STAT signaling pathway 11 158 3.3599 1.942E-03 6.274E-03
Measles 10 134 3.6015 2.013E-03 6.388E-03
Endocrine and other factor-regulated calcium reabsorption 6 49 5.9095 2.038E-03 6.388E-03
Oocyte meiosis 9 112 3.8781 2.224E-03 6.867E-03
Salivary secretion 8 90 4.2898 2.288E-03 6.964E-03
Dilated cardiomyopathy 8 91 4.2427 2.464E-03 7.392E-03
RIG-I-like receptor signaling pathway 7 71 4.7581 2.697E-03 7.976E-03
Legionellosis 6 55 5.2648 3.804E-03 1.110E-02
Aldosterone-regulated sodium reabsorption 5 39 6.1873 4.853E-03 1.396E-02
Influenza A 11 179 2.9657 5.421E-03 1.538E-02
Dorso-ventral axis formation 4 24 8.0435 5.593E-03 1.566E-02
Cytokine-cytokine receptor interaction 14 267 2.5305 6.010E-03 1.661E-02
Huntington's disease 11 183 2.9009 6.465E-03 1.763E-02
Inositol phosphate metabolism 6 61 4.7470 6.563E-03 1.767E-02
Toll-like receptor signaling pathway 8 108 3.5749 7.514E-03 1.997E-02
Herpes simplex infection 11 188 2.8238 7.997E-03 2.099E-02
Vasopressin-regulated water reabsorption 5 45 5.3623 9.299E-03 2.411E-02
Gap junction 7 89 3.7958 1.015E-02 2.600E-02
Serotonergic synapse 8 114 3.3867 1.055E-02 2.656E-02
VEGF signaling pathway 6 67 4.3219 1.063E-02 2.656E-02
NF-kappa B signaling pathway 7 92 3.6720 1.224E-02 3.024E-02
Notch signaling pathway 5 48 5.0272 1.239E-02 3.025E-02
Fc epsilon RI signaling pathway 6 70 4.1366 1.325E-02 3.199E-02
Lysine degradation 5 49 4.9246 1.356E-02 3.236E-02
Adipocytokine signaling pathway 6 71 4.0784 1.423E-02 3.320E-02
Melanoma 6 71 4.0784 1.423E-02 3.320E-02
Epstein-Barr virus infection 11 204 2.6023 1.498E-02 3.457E-02
RNA degradation 6 72 4.0217 1.525E-02 3.482E-02
Focal adhesion 11 206 2.5770 1.612E-02 3.640E-02
Pertussis 6 75 3.8609 1.866E-02 4.125E-02
Arrhythmogenic right ventricular cardiomyopathy (ARVC) 6 75 3.8609 1.866E-02 4.125E-02
Regulation of autophagy 4 34 5.6777 2.073E-02 4.534E-02
SNARE interactions in vesicular transport 4 36 5.3623 2.549E-02 5.517E-02
Bladder cancer 4 38 5.0801 3.091E-02 6.625E-02
Natural killer cell mediated cytotoxicity 8 140 2.7578 3.597E-02 7.568E-02
Small cell lung cancer 6 86 3.3670 3.604E-02 7.568E-02
Salmonella infection 6 88 3.2905 4.013E-02 8.345E-02
Figure 3.

Figure 3.

Pathway analysis based on miRNA-targeted genes. (A and B) The histogram of significant pathways targeted by up-regulated (A) and down-regulated miRNA (B) were shown. The vertical axis is the pathway category, and the horizontal axis represents-lg (P-value) of the pathways.

miRNA-pathway network analysis

Based on the significantly regulated pathways, we further established miRNA-pathway networks to screen the key regulatory functions and the key DEMs (Fig. 4). The top rated five miRNAs included hsa-miR-373-3p, hsa-miR-338-5p, hsa-miR-590-5p, hsa-miR-623 and hsa-miR-4287 (Table IX), all of which were down-regulated in placenta tissues supporting larger twins of sIUGR. The DEMs mainly play vital roles in various biological processes, including HTLV-I infection and signal transduction (TGF-β, MAPK and Wnt signaling pathways). These networks provided a large amount of information about the regulation of miRNAs in placenta tissues during the development of sIUGR.

Figure 4.

Figure 4.

miRNA-pathway network. Red box nodes and blue box nodes represent up-regulated miRNA and down-regulated miRNA, respectively. Blue cycle nodes represent Pathway. Edges show the inhibitory effect of miRNA on Pathway. Left network included all the pathways. When the area of box or circle is larger, the degree of the miRNA or pathway is bigger. Right network extracted from the left network including the key miRNAs and pathways.

Table IX.

The degrees of miRNA-Pathway-networks.

Rank miRNAs Degree Feature
1 hsa-miR-373-3p 100 Down
2 hsa-miR-338-5p 88 Down
3 hsa-miR-590-5p 78 Down
4 hsa-miR-623 77 Down
5 hsa-miR-4287 69 Down
6 hsa-miR-5189-5p 48 Up
7 hsa-miR-664b-3p 48 Down
8 hsa-miR-1 44 Up
9 hsa-miR-370-3p 44 Up
10 hsa-miR-3653 39 Down
11 hsa-miR-5581-5p 36 Up
12 hsa-miR-3622b-5p 22 Up
13 hsa-miR-4535 7 Up
14 hsa-miR-4743-5p 4 Up

The degree of each miRNA was the number of pathways regulated by that miRNA.

Verification of miRNAs microarray with qRT-PCR

We chose three down-regulated miRNAs (has-miR-373-3p, has-miR-338-5p and has-miR-590-5p) and three up-regulated miRNAs (has-miR-1, has-miR-370-3p and has-miR-5189-5p) for the validation analysis. Our validation cohort included 15 cases with sIUGR [larger twin (L3-L17), smaller twin (S3-S17)] and 15 cases with normal MC [larger twin (N2-N16) and smaller twin (n2-n16)]. The qRT-PCR results showed that the expression changes of these six miRNAs were in the same direction as determined by the miRNA microarray (Fig. 5).

Figure 5.

Figure 5.

Expression of (A) has-miR-1, (B) has-miR-370-3p, (C) has-miR-5189-5p, (D) has-miR-373-3p, (E) has-miR-338-5p and (F) has-miR-590-5p in placenta tissues from sIUGR and normal NC by qRT-PCR analysis. n=15.

Discussion

sIUGR MC twin gestations complicated by sIUGR are at high risk of perinatal complications. Recently, some studies have reported that miRNAs are associated with pregnancy-specific diseases (6). Although the pathophysiological insight of sIUGR has been substantially improved, there are few studies on miRNA profiles in the placentas complicated with sIUGR. In this microarray study, we evaluated differential placental miRNA expression in the territory of sIUGR larger twin than in that of corresponding smaller twin. We found 14 placenta miRNAs (7 up-regulated and 7 down-regulated) specifically significantly differentially expressed among larger twins of sIUGR cases compared with smaller twins of sIUGR cases. Differentially expressed miRNAs included those that were previously associated with pregnancy-specific diseases, such as preterm delivery and preeclampsia (miR-338, miR-590-5p and miR-1) (2426), and others that are novel in pregnancy-specific diseases (miR-373-3p, miR-623, miR-4287, miR-664b-3p, miR-3653, miR-5189-5p, miR-370-3p, miR-5581-5p, miR-3622b-5p, miR-4535 and miR-4743-5p). Several of these DEMs have been implicated in tumorigenesis of various types of tumors, such as miR-373-3p in breast, liver, gastric, esophageal, colon, prostate, pancreatic and lung cancer (27), miR-338-5p in colorectal (28) and liver cancer (29), miR-590-5p in cervical cancer (30), miR-623 in lung adenocarcinoma and miR-370-3p in glioma (31). Some of these DEMs have been identified in association with other human diseases. For example, miR-1 has been reported as a biomarker for predicting acute myocardial infarction (32). miR-4743 may serve as biomarker for the diagnosis of Major Depressive Disorder (MDD) (33).

Further, target genes of these DEMs were predicted and the pathway analysis was performed. The target genes are participated in diverse pathophysiological processes including cell organ size, cell differentiation, cell proliferation and cell migration, which may implicated in the pathogenesis of sIGUR. DEMs, including miR-373 (27), miR-338-5p (34), miR-590-5p (30,35,36), miR-623 (37) and miR-370-3p (31), have been reported involved in regulating the proliferation, migration and invasion of cancer cells, which was consistent with our findings. Further studies on the expression pattern and function of these target genes may advance our understanding of the implications of theses DEMs in sIGUR pathogenesis. To reveal miRNA regulation of pathways, miRNA-pathway network was built. Of note, key miRNAs and pathways (TGF-β, MAPK and Wnt) were identified (Fig. 4B). The TGF-β signaling pathway participates in diverse biological processes, including the formation of tissues and organs (38). miR-373 (39) and miR-590-5p (35) exerted their metastasis-inhibiting function via TGF-β signaling pathway. Wnt and MAPK signaling pathways are involved in the development of placenta (40). It has been shown that miR-370-3p (31) and miR-590-5p (36) suppressed the growth of glioma and liver cancer cells, respectively, by targeting Wnt/β-catenin. miR-623 suppressed the invasion of lung adenocarcinoma cells through inactivating MAPK ERK/JNK (37). These results lay a foundation and provide ideas for future in-depth studies, particularly related to the 14 miRNAs specifically changed in sIUGR.

In summary, we have shown the differential placental miRNA expression associated with sIUGR. In addition, the results of the pathway analysis and miRNA-pathway network analysis represented comprehensive information on the molecular mechanisms of sIUGR from the point of miRNAs. Further experimental studies to evaluate biologic effects of identified miRNAs are warranted.

Acknowledgements

This study was supported by Scientific Research Project of the Health and family planning commission of Zhejiang Province, China (2014KYA253).

References

  • 1.Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW, Wang K. A review of computational tools in microRNA discovery. Front Genet. 2013;4:81. doi: 10.3389/fgene.2013.00081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Du T, Zamore PD. Beginning to understand microRNA function. Cell Res. 2007;17:661–663. doi: 10.1038/cr.2007.67. [DOI] [PubMed] [Google Scholar]
  • 3.Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q. An analysis of human microRNA and disease associations. PLoS One. 2008;3:e3420. doi: 10.1371/journal.pone.0003420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–568. doi: 10.1016/j.gde.2005.08.005. [DOI] [PubMed] [Google Scholar]
  • 5.Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–770. doi: 10.1038/ng1590. [DOI] [PubMed] [Google Scholar]
  • 6.Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46:953–960. doi: 10.1016/j.clinbiochem.2013.01.026. [DOI] [PubMed] [Google Scholar]
  • 7.Chang YL, Chang SD, Chao AS, Hsieh PC, Wang CN, Wang TH. Clinical outcome and placental territory ratio of monochorionic twin pregnancies and selective intrauterine growth restriction with different types of umbilical artery Doppler. Prenat Diagn. 2009;29:253–256. doi: 10.1002/pd.2193. [DOI] [PubMed] [Google Scholar]
  • 8.Gratacós E, Lewi L, Muñoz B, Acosta-Rojas R, Hernandez-Andrade E, Martinez JM, Carreras E, Deprest J. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol. 2007;30:28–34. doi: 10.1002/uog.4046. [DOI] [PubMed] [Google Scholar]
  • 9.Weisz B, Hogen L, Yinon Y, Gindes L, Shrim A, Simchen M, Schiff E, Lipitz S. Perinatal outcome of monochorionic twins with selective IUGR compared with uncomplicated monochorionic twins. Twin Res Hum Genet. 2011;14:457–462. doi: 10.1375/twin.14.5.457. [DOI] [PubMed] [Google Scholar]
  • 10.Valsky DV, Eixarch E, Martinez JM, Crispi F, Gratacós E. Selective intrauterine growth restriction in monochorionic twins: Pathophysiology, diagnostic approach and management dilemmas. Semin Fetal Neonatal Med. 2010;15:342–348. doi: 10.1016/j.siny.2010.07.002. [DOI] [PubMed] [Google Scholar]
  • 11.Lewi L, Cannie M, Blickstein I, Jani J, Huber A, Hecher K, Dymarkowski S, Gratacós E, Lewi P, Deprest J. Placental sharing, birthweight discordance, and vascular anastomoses in monochorionic diamniotic twin placentas. Am J Obstet Gynecol. 2007;197:587.e1–8. doi: 10.1016/j.ajog.2007.05.009. [DOI] [PubMed] [Google Scholar]
  • 12.Lewi L, Gucciardo L, Huber A, Jani J, Van Mieghem T, Doné E, Cannie M, Gratacós E, Diemert A, Hecher K, et al. Clinical outcome and placental characteristics of monochorionic diamniotic twin pairs with early- and late-onset discordant growth. Am J Obstet Gynecol. 2008;199:511.e1–7. doi: 10.1016/j.ajog.2008.04.022. [DOI] [PubMed] [Google Scholar]
  • 13.Nevo O, Many A, Xu J, Kingdom J, Piccoli E, Zamudio S, Post M, Bocking A, Todros T, Caniggia I. Placental expression of soluble fms-like tyrosine kinase 1 is increased in singletons and twin pregnancies with intrauterine growth restriction. J Clin Endocrinol Metab. 2008;93:285–292. doi: 10.1210/jc.2007-1042. [DOI] [PubMed] [Google Scholar]
  • 14.Yinon Y, Ben Meir E, Berezowsky A, Weisz B, Schiff E, Mazaki-Tovi S, Lipitz S. Circulating angiogenic factors in monochorionic twin pregnancies complicated by twin-to-twin transfusion syndrome and selective intrauterine growth restriction. Am J Obstet Gynecol. 2014;210:141.e1–7. doi: 10.1016/j.ajog.2013.09.022. [DOI] [PubMed] [Google Scholar]
  • 15.Chu S, Mao Q, Shapiro S, De Paepe ME. Placental endoglin levels in diamniotic-monochorionic twin gestations: Correlation with clinical and placental characteristics. Placenta. 2013;34:261–268. doi: 10.1016/j.placenta.2012.12.012. [DOI] [PubMed] [Google Scholar]
  • 16.Shi X, He Z, Gao Y, Luo Y, Gou C, Fang Q. Placental expression of PHLDA2 in selective intrauterine growth restriction in monozygotic twins. Placenta. 2014;35:428–430. doi: 10.1016/j.placenta.2014.03.006. [DOI] [PubMed] [Google Scholar]
  • 17.Loke YJ, Galati JC, Morley R, Joo EJ, Novakovic B, Li X, Weinrich B, Carson N, Ollikainen M, Ng HK, et al. Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins. Epigenetics. 2013;8:1069–1079. doi: 10.4161/epi.25908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1. doi: 10.1186/gb-2003-5-1-r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798. doi: 10.1016/S0092-8674(03)01018-3. [DOI] [PubMed] [Google Scholar]
  • 20.Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database Issue):D277–D280. doi: 10.1093/nar/gkh063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM. Whole Pathway Scope: A comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics. 2006;7:30. doi: 10.1186/1471-2105-7-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537–1545. doi: 10.1101/gr.6202607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Bao Y, Gao Y, Jin Y, Cong W, Pan X, Cui X. MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus. Mol Genet Genomics. 2015;290:1885–1897. doi: 10.1007/s00438-015-1047-1. [DOI] [PubMed] [Google Scholar]
  • 24.Montenegro D, Romero R, Kim SS, Tarca AL, Draghici S, Kusanovic JP, Kim JS, Lee DC, Erez O, Gotsch F, et al. Expression patterns of microRNAs in the chorioamniotic membranes: A role for microRNAs in human pregnancy and parturition. J Pathol. 2009;217:113–121. doi: 10.1002/path.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204:178.e12–21. doi: 10.1016/j.ajog.2010.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta. 2011;412:2167–2173. doi: 10.1016/j.cca.2011.07.029. [DOI] [PubMed] [Google Scholar]
  • 27.Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med. 2015;13:162. doi: 10.1186/s12967-015-0523-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Yong FL, Law CW, Wang CW. Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer. 2013;13:280. doi: 10.1186/1471-2407-13-280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Chen Y, Chen J, Liu Y, Li S, Huang P. Plasma miR-15b-5p, miR-338-5p, and miR-764 as biomarkers for hepatocellular carcinoma. Med Sci Monit. 2015;21:1864–1871. doi: 10.12659/MSM.893082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Chu Y, Ouyang Y, Wang F, Zheng A, Bai L, Han L, Chen Y, Wang H. MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. J Cell Biochem. 2014;115:847–853. doi: 10.1002/jcb.24726. [DOI] [PubMed] [Google Scholar]
  • 31.Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, Chen Q, Tian D. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting β-catenin. Brain Res. 2016;1644:53–61. doi: 10.1016/j.brainres.2016.04.066. [DOI] [PubMed] [Google Scholar]
  • 32.Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391:73–77. doi: 10.1016/j.bbrc.2009.11.005. [DOI] [PubMed] [Google Scholar]
  • 33.Qiao-li Z, Jim L, Xin-yang S, Wei Guo, Lin Zhao, Hui-min Fan, Ai-fang Zhong, Wei Niu, Yun-hua Dai, Li-yi Zhang, et al. A preliminary analysis of association between plasma microRNA expression alteration and symptomatology improvement in Major Depressive Disorder (MDD) patients before and after antidepressant treatment. Eur J Psychiatry. 2014;28:252–264. doi: 10.4321/S0213-61632014000400006. [DOI] [Google Scholar]
  • 34.Ju JA, Huang CT, Lan SH, Wang TH, Lin PC, Lee JC, Tian YF, Liu HS. Characterization of a colorectal cancer migration and autophagy-related microRNA miR-338-5p and its target gene PIK3C3. Biomark Genomic Med. 2013;5:74–78. doi: 10.1016/j.bgm.2013.07.006. [DOI] [Google Scholar]
  • 35.Jiang X, Xiang G, Wang Y, Zhang L, Yang X, Cao L, Peng H, Xue P, Chen D. MicroRNA-590-5p regulates proliferation and invasion in human hepatocellular carcinoma cells by targeting TGF-β RII. Mol Cells. 2012;33:545–551. doi: 10.1007/s10059-012-2267-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Shan X, Miao Y, Fan R, Qian H, Chen P, Liu H, Yan X, Li J, Zhou F. MiR-590-5P inhibits growth of HepG2 cells via decrease of S100A10 expression and inhibition of the Wnt pathway. Int J Mol Sci. 2013;14:8556–8569. doi: 10.3390/ijms14048556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Wei S, Zhang ZY, Fu SL, Xie JG, Liu XS, Xu YJ, Zhao JP, Xiong WN. Hsa-miR-623 suppresses tumor progression in human lung adenocarcinoma. Cell Death Dis. 2017;8:e2829. doi: 10.1038/cddis.2017.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627–644. [PubMed] [Google Scholar]
  • 39.Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 2012;31:4150–4163. doi: 10.1038/onc.2011.571. [DOI] [PubMed] [Google Scholar]
  • 40.Rossant J, Cross JC. Placental development: Lessons from mouse mutants. Nat Rev Genet. 2001;2:538–548. doi: 10.1038/35080570. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine Reports are provided here courtesy of Spandidos Publications

RESOURCES