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Abstract

Purpose—To generate personalized forecasts of how patients with open-angle glaucoma (OAG) 

experience disease progression at different intraocular pressure (IOP) levels, to aid clinicians with 

setting personalized target IOPs.

Design—Secondary analyses using longitudinal data from 2 randomized controlled trials.

Participants—571 participants with moderate or advanced OAG from the Collaborative Initial 

Glaucoma Treatment Study (CIGTS) or the Advanced Glaucoma Intervention Study (AGIS).

Methods—Using perimetric and tonometric data from trial participants, we developed and 

validated Kalman filter models for fast-, slow-, and non-progressing patients with OAG. The 

Kalman filter can generate personalized and dynamically-updated forecasts of OAG progression 

under different target IOP levels. For each participant, we determined how mean deviation (MD) 

would change if the patient maintains his/her IOP at one of seven levels (6, 9, 12, 15, 18, 21, or 24 
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mmHg) over the next 5 years. We also model and predict changes to MD over the same time 

horizon if IOP is increased or decreased by 3, 6, and 9 mmHg from the level attained in the trials.

Main Outcome Measures—Personalized estimates of the change in MD under different target 

IOP levels.

Results—There were 571 participants (mean (standard deviation (SD)) age 64.2 (10.9) years) 

who were followed for a mean (SD) of 6.5 (2.8) years. Our models predicted that, on average, fast-

progressors would lose 2.1, 6.7, and 11.2 dB MD under target IOPs of 6, 15, and 24 mmHg, 

respectively over 5 years. In contrast, on average, slow-progressors would lose 0.8, 2.1, and 4.1 dB 

MD under the same target IOPs and time frame. When using our tool to quantify the OAG 

progression dynamics for all 571 patients, we found no statistically significant differences over 5 

years between progression for blacks vs. whites, males vs. females, and CIGTS vs. AGIS 

participants under different target IOPs (P>0.05 for all).

Conclusion—This is the first clinical decision-making tool we are aware of that generates 

personalized forecasts of the trajectory of OAG progression at different target IOP levels. This 

approach can help clinicians determine an appropriate and personalized target IOP for patients 

with OAG.

The American Academy of Ophthalmology (AAO) Preferred Practice Pattern for Primary 

Open-Angle Glaucoma (OAG) emphasizes the importance of setting a target level of 

intraocular pressure (IOP) for patients with glaucoma. By establishing a target IOP level, 

clinicians can gauge whether the interventions they are performing are effectively lowering 

the IOP to a level that is deemed safe or not and whether additional interventions are 

necessary.

While there is consensus among the glaucoma community that establishing a target IOP is 

useful in patient management, it is unclear what the optimal target IOP for a given patient 

should be. Traditionally, clinicians have used the results of landmark glaucoma clinical 

trials, past experience, and their gestalt to aid with target IOP selection. However, selecting a 

target IOP lower than what is required for a particular patient can lead to exposure to 

unnecessary medical and surgical interventions, which may have side effects, be fraught 

with complications, and be costly. Likewise, by selecting a target IOP higher than what is 

actually required, the patient is at risk for experiencing disease progression. Hence, 

improving the selection of the proper target IOP level can be very useful in managing 

patients with OAG.

An ideal method for selecting the proper target IOP would consider the glaucoma 

progression dynamics of a population of similar patients to capture how they progress at 

different IOP levels along with the unique disease progression dynamics of the particular 

patient in question. This would be used to generate personalized forecasts of disease 

progression under different IOP levels. These assessments can be dynamically updated each 

time the patient undergoes additional glaucoma testing. Furthermore, since patients vary 

from one another on a host of factors including sociodemographic characteristics, overall 

health and life expectancy, ability to tolerate different interventions, and preferences for 

aggressiveness of glaucoma control, a decision-making tool that informs clinicians about the 

glaucoma progression trajectories at different target IOP levels is more valuable than a tool 
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that determines only one specific target IOP level for a particular patient. This would enable 

the clinician and patient to jointly decide on the most appropriate target IOP based on his or 

her unique circumstances and preferences.

We describe a novel technique using Kalman filtering (KF) to develop a personalized and 

dynamically updated menu of target IOPs for patients with OAG. Kalman filtering is a 

technique that has been used for decades by the aerospace industry to help guide flights1. 

More recently, this technique has been used to forecast disease progression in patients with 

conditions such as diabetes2,3 and prostate cancer4. It incorporates disease progression 

dynamics from an underlying population of patients with the condition of interest along with 

past measurements from the specific patient of interest to generate personalized disease 

forecasts. This technique also allows for updating of the forecasts each time additional 

readings are obtained.

METHODS

Data Sources

We used data from the Collaborative Initial Glaucoma Treatment Study (CIGTS) and the 

Advanced Glaucoma Intervention Study (AGIS) to parametrize and validate our models. 

Briefly, CIGTS is a multicenter clinical trial involving 607 participants with newly-

diagnosed moderate OAG who were enrolled in 1993–1997 and followed for 5–9 years. The 

patients were randomized to either glaucoma medications or trabeculectomy. AGIS enrolled 

591 participants with advanced OAG in 1988–1992 and followed them for 8–11 years. The 

patients were randomized to receive argon laser trabeculoplasty (ALT) or trabeculectomy. 

The participants in both trials were followed with tonometry and perimetry measurements 

obtained every 6 months during their follow-up time. Details about the study methodology 

of these trials have been described elsewhere5,6. CIGTS and AGIS data were de-identified 

prior to our accessing it, and the University of Michigan Institutional Review Board 

approved this study.

Inclusion/Exclusion Criteria

Both trials required participants to have a diagnosis of OAG in ≥1 eye, with elevated IOP at 

trial entry. For this study, we included only those persons from the trials who had been 

randomized to either receive medical therapy or ALT. Persons who had been randomized to 

trabeculectomy were excluded because incisional surgery can dramatically affect IOP and 

disease progression dynamics, and this adds complexity to the training of our forecasting 

algorithms. Furthermore, during follow-up, trial participants who later required incisional 

surgery were censored at the time they underwent trabeculectomy. We also excluded persons 

who had fewer than 4 IOP measurements or 4 visual field tests using a Humphrey Field 

Analyzer (Carl Zeiss Meditec, Dublin, CA). When both eyes of a participant met the 

eligibility criteria, we randomly selected one of the two eyes for inclusion in our analyses. 

After these exclusions, there were 571 eyes of 571 participants (266 from CIGTS and 305 

from AGIS) who met the eligibility criteria.
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Kalman Filter

At the heart of our decision support tool, we harnessed KF methodology7. A KF is a 

powerful statistical method that processes large amounts of quantitative data to forecast the 

trajectory of a system. This technology has been critical to aerospace engineering, including 

guiding Apollo missions to the moon1. More recently, it has been used to forecast the 

development or worsening of chronic diseases4,8–12, and we have used it to forecast OAG 

progression13.

The following example explains how this method works. Consider the prediction of where a 

spacecraft, presently in motion at point [x,y,z] in space, will be located in the future (e.g., 

10, 20, 30, 40 seconds later) relative to a docking bay. Every 10 seconds, a new 

measurement of the spacecraft’s location [x,y,z] is obtained. All measurements possess some 

error (noise). Traditional regression models use a dataset of prior flights using similar 

spacecrafts and provide a linear relationship between independent (e.g., current location) and 

dependent (future location [x,y,z]) variables so as to minimize the mean squared error. 

However, these models were not designed for dynamic updates to the model as new 

measurements are taken. Instead, with KF each time a measurement is obtained, the model 

updates an estimate of the dependent variables based on input variables to minimize mean 

squared prediction error at each future stage. The effective estimates of current and future 

locations of the spacecraft require that the functions relating inputs (previously measured 

locations of the spacecraft) and outputs (future location) are connected over time. This is 

captured as a dynamic model of internal “state” variable transitions that describes how the 

process (motion of the spacecraft) changes over time. In addition to the [x,y,z] location, the 

internal state variables of a good model may include first and second derivatives on [x,y,z] 

position (velocity and acceleration, respectively). A set of equations relates the measured 

input variables to the full set of internal state variables, so that the system modeled (current 

and future motion of the spacecraft) can be optimally updated with each new measurement 

obtained. Such updating compares the newly obtained measurement (location of the 

modeled spacecraft) to what would have been expected from the population at that point in 

time (e.g., prior flights for similar spacecrafts) and what has been learned from the process 

modeled (e.g., as more measurements are obtained, the technique may reveal that the 

spacecraft being modeled is faster or slower than average similar spacecrafts). In addition, 

the method allows the model to include inherent randomness in the “motion” of the state and 

models of randomness in the observations specific to the measurements (the variability in 

manually measuring the spacecraft’s location).

Forecasting OAG trajectory is analogous to determining a spacecraft’s trajectory over time: 

the type of spacecraft is analogous to sociodemographic characteristics of the patient (e.g. 

age, sex, race), and other risk factors known to affect OAG progression. The position (or the 

state of the system) at the past, present, and future is analogous to the mean deviation (MD) 

and pattern standard deviation (PSD) on standard automated perimetry (SAP), and the IOP 

at different points in time. These variables help illuminate the disease’s current state and 

how it is changing over time. Moreover, the error or noise in the location measurements of 

our spacecraft analogy is akin to the error associated with SAP and IOP measurements. 

Randomness in the motion of the spacecraft (e.g., due to unmodeled friction) is akin to the 
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inherent variability among patients on how OAG progresses. Additional information about 

our KF models is described in prior publications13,14.

Variables incorporated in our model for OAG—For each participant, we obtained all 

IOP, MD, and PSD measurements over the course of his/her participation in the trial. We 

incorporated these measurements together with their velocities and accelerations into the 

disease state vector so that interacting effects can be exploited, allowing the model to 

directly capture how changes in a given variable (e.g., IOP) affect the others (e.g., MD and 

PSD).

Parametrizing the Model

Eligible participants from CIGTS and AGIS were randomly divided into equally sized 

training and testing sets. We used the training set to parametrize and calibrate our KF models 

(described below); the testing set was used to evaluate the performance of our filtered 

forecasting technique. The two sets included similar numbers of (1) participants from 

CIGTS and AGIS, (2) persons with different OAG severities, (3) blacks and whites, and (4) 

males and females. We employed an expectation maximization algorithm15 to parametrize 

our KF model. We generated 25 different random sets of training and testing data; each time 

we parametrized the model on the training set and tested it on the testing set. The KF model 

exhibited unbiased error across all random sets, which means it is robust to the partition used 

to parameterize it. In the Results section, we present the results of one of these 

randomizations.

Characterizing Patients as Fast/Slow/Non-progressors

In addition to developing a KF model using data on all patients in the training set (called 

KA), we also trained 3 separate KF models to forecast OAG progression for fast (KF), slow 

(KS), and non-progressors (KN) in the training set. These customized models allow for more 

accurate prediction of OAG dynamics once a patient can be properly identified as a fast, 

slow, or non-progressor.

There is presently no gold standard for characterizing which patients with OAG are fast-

progressors. As researchers have done previously, we defined fast progression as an MD loss 

of >1 dB/year16–19. The sensitivity loss associated with MD worsening at a rate of 1 dB/year 

is approximately 10 times greater than the normal age-related decline20. To integrate 

progression classification status into the KF, for each patient in the training set, we 

calculated the slope obtained from a linear regression of his/her entire history of MD 

readings and then classified the patient as a fast-progressor if the decline in MD was >1 dB/

year, slow-progressor if the decline in MD was 0–1 dB/year, and non-progressor if there was 

no MD decline.

Using the first 5 six-month periods of follow-up for each patient, the KF adapts to the 

unique disease progression dynamics for that particular patient before it begins forecasting 

disease trajectory under different target IOP options. Previous research suggests that 

judgments about OAG progression should not be made without considering at least 5 SAP 

results due to fluctuating performance and other sources of noise18. Although the KF 
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methodology is leveraged to reduce the measurement error, providing 5 data points to warm 

up and learn each patient’s specific disease dynamics enhances the model accuracy. After 5 

sets of readings, each patient is classified as a fast-, slow-, or non-progressor based on the 

slope obtained from a linear regression of the patient’s first 5 MD readings. Thereafter, 

subsequent forecasts of future values of MD, PSD, and IOP are generated based on the 

corresponding specific KF model we developed for modeling fast (KF), slow (KS), and non-

progressors (KN). Each time a new test result is obtained, the model reassesses a patient’s 

progression status by considering the slope of the last 5 MD measurements. Thus, a 

particular patient may transition between classification as a non-progressor, slow-progressor, 

and fast-progressor as she is followed over time, and the most appropriate of the 3 KF 

models is employed to make the next set of predictions.

Validation Method

After developing, parameterizing, and calibrating our models using data from the training 

dataset, we tested all patients in the testing dataset to determine the accuracy of our KF 

models for predicting the future OAG progression trajectory for each patient relative to 

actual values observed in the trials. We filtered the first 5 measurements of each patient 

using the KA model. Starting at period 5 (at which we first determine a patient’s progression 

classification status), we employed the more specific of the 3 KFs and predicted how the 

patient’s OAG was likely to progress over the following 5 periods (2.5 years) - i.e., periods 6 

to 10 – along with computing the prediction error (defined as the predicted values minus the 

observed values) at each of those 5 periods. At the period 5 time point, the model identified 

24 fast-progressors, 113 slow-progressors, and 58 non-progressors in the testing dataset.

Menu of Target Intraocular Pressures

Next, we integrated into our KF models a control variable which allowed us to modify one 

of the state variables in the model at each time period. This enabled us to forecast what 

would happen to MD at each future time period assuming the IOP were to remain constant 

at a specified level.

We analyzed the data on target IOP in two ways:

Pre-specified target IOP levels—In this analysis, for each patient in the testing dataset, 

we forecasted changes in MD, assuming that the IOP remained consistently at one of the 

following 7 target IOP levels over the next 5 years: 6, 9, 12, 15, 18, 21, and 24 mmHg. This 

enables the clinician and patient to have a menu of target IOP options to select from 

spanning from very aggressive IOP control to non-aggressive IOP control for which they can 

observe what will happen to MD over time. These predictions are tailored to each individual 

patient to generate personalized forecasts. In the Results section, we present sample output 

graphs for a fast and a slow-progressing patient from the testing dataset. Similar graphical 

output was generated for every patient in the testing dataset.

Relative changes to IOP—In this analysis, we used our KF models to assess how 

changing a patient’s IOP affected his/her MD over time. We did so by employing eight IOP 

control policies for all patients in the testing dataset: increasing a patient’s IOP by 3, 6, and 
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9 mmHg, keeping the IOP at the same level, and lowering the IOP by 3, 6, 9, and 12 mmHg 

compared to the IOP measured in period 5. For all 8 policies, we predicted how MD 

changed over the next 5 years and calculated the difference between the predicted values in 

periods 6 through 15 and the values at period 5. If the lowering of the IOP by the four 

specified levels above resulted in hypotony (an IOP <6 mmHg), we excluded such 

participants from those specific analyses (1, 9, 63, and 147 patients from the testing set were 

excluded under -3, -6, -9, and -12 mmHg IOP control policies with this additional criterion). 

This analysis generated graphical output that provides insight into how changing IOP 

(relative to its current value) affects MD. We compared MD progression under different IOP 

control policies for (1) fast vs. slow-progressors, (2) blacks vs. whites, (3) males vs. females, 

and (4) CIGTS vs. AGIS participants in the testing dataset. We calculated p-values for each 

two groups (e.g., blacks vs. whites) using 2-sample Student’s t-tests to compare the mean 

MD change under all eight IOP control policies. For all analyses, p-values <0.05 were 

considered statistically significant.

RESULTS

There were 571 eyes of 571 participants who met the study inclusion criteria. The mean 

(standard deviation (SD)) age of the participants at trial entry was 64.2 (10.9) years. There 

were 299 females (52%) in this study and the racial composition included 288 (50%) blacks, 

263 (46%) whites, and 20 persons (4%) of other races/ethnicities. The sample included 305 

participants (53%) from AGIS and 266 participants (47%) from CIGTS. The mean (SD) 

number of IOP measurements and SAP tests per participant was 11.2 (5.1). (Table 1)

To calibrate, parameterize, and validate our models, we randomly split the 571 eyes into two 

similar sets: a training set consisting of 286 eyes (50%) and a testing set of 285 eyes (50%) 

twenty-five times. Table 1 shows the results of one of these 25 splits.

Validation of Kalman Filter Prediction

Figure 1 depicts the box and whisker plots for MD prediction error for all testing set patients 

and stratified by progression type. As the figure demonstrates, the mean prediction error is 

relatively small for the entire testing sample (−0.04 dB), as well as for patients designated 

fast-progressors (0.23 dB), slow-progressors (−0.06 dB), and non-progressors (−0.10 dB). 

Similar results were obtained for IOP (data not shown).

Menu of Target IOP Options

Figure 2 shows data for a sample fast-progressing patient from the AGIS trial. The first 5 

readings are filtered using the KA model to identify that this particular patient fits our rule 

for classification as a fast-progressor. As the figure demonstrates, at entry into AGIS, the 

patient’s baseline IOP was 20 mmHg and her MD was −7.2 dB. By period 5, although the 

patient’s IOP had dropped to approximately 15 mmHg, her MD had declined to −13.0 dB. 

Our KF model predicts that if this patient were to maintain her IOP at 15 mmHg over the 

next 5 years, she would experience a further decline in her MD of about 5.7 dB over that 

time frame to a level of −18.7 dB in period 15. Our tool also shows what would happen to 

this patient’s MD should her IOP be maintained at different levels higher or lower than 15 
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mmHg. Lowering her IOP to 6 mmHg and maintaining it at that level over the 5 years of 

follow-up would result in a decline of MD of only 1.1 dB. However, if her IOP increased 

from 15 to 24 mmHg and was maintained at that level, she would lose 10.1 dB over the 5-

year time frame.

Figure 3 presents data for a slowly progressing patient from the CIGTS trial. For this patient, 

at period 5, his IOP was 15 mmHg and his MD was −8.9 dB. If the patient’s IOP was 

lowered to 6 mmHg and maintained there, our filtered forecasting model, KS, predicts his 

MD after 5 years will drop only 1.0 dB from −8.9 to −9.9 dB; if his IOP stayed at 15 mmHg 

during the next 5 years, his MD would drop 2.0 dB from −8.9 to −10.9 dB; and if his IOP 

were to rise from 15 to 24 mmHg and stay at that level over the 5 years, his MD would drop 

3.0 dB from −8.9 to −11.9 dB. In contrast to the fast progressing patient described above 

who loses 1.1, 5.7, and 10.1 dB MD under target IOPs of 6, 15, and 24 mmHg, respectively, 

our models predict this second patient will only lose 1.0, 2.0, and 3.0 dB MD under the same 

target IOPs.

Our filtered forecasting tool predicts that, on average, fast-progressors in the testing set 

would lose 2.1, 6.7, and 11.2 dB MD under target IOPs of 6, 15, and 24 mmHg, respectively 

over 5 years. In contrast, on average, slow-progressors would only lose 0.8, 2.1, and 4.1 dB 

MD under the same target IOPs and time frame.

How Changes in Intraocular Pressure Affect Changes in Mean Deviation

While Figures 2 and 3 present examples of the personalized output our tool provides to 

clinicians about specific patients, Figure 4 shows the average change in MD over the next 5 

years for different levels of change in IOP for all the patients in our testing dataset. The 

mean MD in period 5 (i.e., prediction period 0) for fast (n=24) and slow-progressors (n=113) 

was −12.2 dB and −6.8 dB, respectively. Both groups have similar mean IOPs in period 5 of 

17.5 mmHg. As expected, our tool shows that the MD declines more rapidly for the fast-

progressor group than the slow-progressing patients under all different levels of IOP increase 

or decrease (Figure 4). For instance, Figure 4 shows that lowering the IOP by an additional 3 

mmHg relative to the IOP value in period 5 causes a slow-progressing patient to lose 2 dB 

MD over 5 years, on average, whereas a fast-progressing patient loses, on average, 6.5 dB 

MD over the same follow-up period.

Figure 5 (available at www.aaojournal.org) demonstrates how MD changes when IOP is 

maintained at different levels over the 5 years of follow-up for (a) blacks vs. whites, (b) 

males vs. females, and (c) participants of CIGTS vs. AGIS in the testing dataset. Our 

prediction models found no statistically significant difference between these groups at the 

final time point (all p-values were >0.05).

DISCUSSION

Using an engineering technique called Kalman filtering, we parameterized, calibrated, and 

validated a novel glaucoma forecasting tool that can generate a menu of personalized and 

dynamically-updated target IOPs. The tool considers the underlying progression dynamics 

of a population of patients from AGIS and CIGTS along with past and current values of IOP, 

Kazemian et al. Page 8

Ophthalmology. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MD, and PSD from the patient of interest to forecast how each patient’s glaucoma will 

progress over time if the patient’s IOP was maintained at one of seven different target IOP 

levels. The resulting menu of target IOPs generated from the model can be used by 

clinicians to make informed decisions of how aggressively to lower IOP accounting for the 

unique circumstances and preferences of the patient. Likewise, clinicians can use the tool to 

educate patients with OAG of what will likely happen to their peripheral vision at different 

levels of IOP.

These analyses highlight the importance of recognizing and aggressively treating patients 

with OAG who are behaving like fast-progressors. As demonstrated in Figure 2, this rapidly 

progressing patient clearly needs a very low target IOP to prevent progression to blindness. 

Without a tool such as ours, clinicians might select an initial target IOP of 12 mmHg or 

higher for a patient such as this. Yet, our tool forecasts that if the IOP was lowered to and 

maintained at 12 mmHg, this particular patient would still lose 4.1 dB of MD over the next 5 

years; so, depending on his circumstances, he likely would benefit from an even lower target 

IOP. Using a prediction tool such as ours to identify this early in the disease course might 

inform the clinician and patient to opt for more aggressive lowering of IOP with incisional 

surgery rather than treatment with medications.

In contrast to the fast progressing patient described above, our model shows that slow-

progressors and non-progressing patients such as those who are behaving like the one 

depicted in Figure 3 may not require such aggressive IOP control. Without a tool like ours to 

help guide decision-making, a clinician might select an initial target IOP of mid-teens for a 

patient such as this one. Yet, our tool shows how, for this patient, if her IOP was maintained 

at 15 mmHg she would lose 2.0 dB of MD over the next 5 years, but if her IOP was instead 

maintained at 18 mmHg or 21 mm Hg, she would lose only slightly more MD (2.3 or 2.7 dB 

of MD, respectively) during that same time frame. Depending on the patient’s age and 

circumstances, the clinician and patient may decide that it is not worth subjecting her to the 

necessary medical, laser, or surgical interventions to maintain an IOP at 15 mmHg rather 

than one that is a few points higher.

Early identification of which patients with OAG would most benefit from aggressive 

lowering of IOP and which ones would fare well with minimal IOP reduction would benefit 

patients and society. Chronic use of glaucoma medications to lower IOP is known to cause 

ocular and systemic side effects and can be very costly21. Moreover, many common 

incisional glaucoma surgeries to lower IOP are fraught with complications, some of which 

can be sight-threatening22. Incisional glaucoma surgery is also expensive and burdensome to 

patients and their caregivers. Thus, strategies to minimize the unnecessary lowering of IOP 

in patients who do not require such a low IOP would be very useful. Likewise, studies have 

demonstrated that patients who progress from mild OAG to severe OAG experience a 

reduction in health-related quality of life23 and are at greater risk of falls and fractures24. 

The costs of caring for patients with advanced OAG are also considerably higher than 

persons with mild OAG. For all these reasons, it is important to employ tools such as KF to 

help clinicians and patients with selection of an appropriate target IOP considering their 

unique circumstances and preferences.
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Our study has several limitations. First, we parameterized and validated our model using 

data on patients with moderate or advanced OAG. Further research is needed to study its 

effectiveness for patients with less severe disease. Second, we incorporated data from 

tonometry and perimetry into our models but have yet to consider structural data from 

optical coherence tonometry or other parameters known to be risk factors for disease 

progression such as central corneal thickness. Unfortunately, information on these factors 

was not adequately captured in AGIS and CIGTS for us to consider them in the models. We 

hope to perform additional testing on our forecasting tool using other data sources that have 

information on these important factors and, hopefully, this will enable us to refine the menu 

of target IOPs generated by our tool. Third, we limited our present analyses to trial 

participants who did not undergo incisional glaucoma surgery. Now that we have established 

that our tool is capable of generating reasonable target IOPs for those treated with medical 

and laser therapies, we plan to perform additional analyses to see whether it performs 

equally as well for patients undergoing incisional surgery, where there is often an abrupt 

change in IOP. Finally, our tool forecasts over a 5-year time frame. Ideally, forecasts would 

extend out 20 years or longer as disease progression can occur over decades. The CIGTS 

and AGIS trials did not follow patients that long, so it would be difficult to judge how well 

our tool forecasts beyond 5 years. We are in the process of incorporating our forecasting 

algorithms into a user-friendly decision support tool that will enable clinicians to upload 

tonometric and perimetric data on patients with OAG into the tool and it will generate a 

personalized real-time forecast of the trajectory of change in MD under different target IOP 

levels for each patient. Clinicians will be able to share these forecasts with the patients they 

are treating to determine an appropriate target IOP for each patient.

In conclusion, using KF we were able to generate a personalized, dynamically-updated 

menu of target IOPs that clinicians can use to enhance their ability to care for patients with 

OAG. The use of personalized menus of target IOPs may limit over- and under-treatment of 

disease and help clinicians and patients make more informed decisions about the level of 

aggressiveness to lower IOP in a given patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prediction Errors of KF, KS, and KN Models for All Patients in the Testing Dataset 
after Stratification by Progression Status
MD = mean deviation; dB = decibels. Each 6-month prediction interval is from Period 5.

The figure shows prediction errors for the three customized Kalman filter models separately, 

as well as all combined. It shows that overall and for all 3 progression status groups, the 

mean MD prediction error is rather small with the forecasts within 1 dB of the actual 

observations from the trial. The largest prediction errors were when the model forecasted far 

into the future for subset of patients who were fast-progressors. Patients were required to 

have 10 or more IOP, MD, and PSD measurements for inclusion in this analysis.
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Figure 2. Example of Forecasting Glaucoma Progression Under Different Target Intraocular 
Pressure Levels for a Fast Progressing Patient in the Sample
IOP = intraocular pressure; MD = mean deviation; mmHg = millimeter of mercury; dB = 

decibels.

The figure shows the KF forecast of what would happen to MD over the next 5 years if this 

particular patient’s intraocular pressure were maintained at levels of 6, 9, 12, 15, 21, or 24 

mm Hg beginning at period 6. Raw readings are observed values of IOP and MD from the 

AGIS and CIGTS trials. Filtered readings are the estimated values by our Kalman filter 

models.
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Figure 3. Example of Forecasting Glaucoma Progression Under Different Target Intraocular 
Pressure Levels for a Slow Progressing Patient in the Sample
IOP = intraocular pressure; MD = mean deviation; mmHg = millimeter of mercury; dB = 

decibels.

The figure shows the KS forecast of what would happen to MD over the next 5 years if the 

patient’s intraocular pressure were maintained at levels of 6, 9, 12, 15, 21, or 24 mm Hg 

beginning at period 6. Raw readings are observed values of IOP and MD from the AGIS and 

CIGTS trials. Filtered readings are the estimated values by our Kalman filter models.
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Figure 4. Kalman Filter Forecasts of How Changes in Intraocular Pressure of Different 
Magnitudes Affect Changes in Mean Deviation Over Time for Fast and Slow Progressing 
Patients
MD = mean deviation; IOP = intraocular pressure; mmHg = millimeter of mercury; dB = 

decibels; Avg = average.

Prediction period 0 corresponds to 2.5 years after enrollment in the trials. The lines and the 

bounds around each line represent the mean and the 95% confidence interval around it, 

respectively. The mean starting MD (i.e., MD in prediction period 0) for fast and slow-

progressors are −12.2 dB and −6.8 dB, respectively. Both groups have equal mean IOPs of 

17.5 mmHg in prediction period 0. The figure shows forecasts of what would happen to MD 

over the next 5 years for fast and slow-progressors (using the KF and KS models, 

respectively) if their IOPs remained unchanged, increased 3, 6, or 9 mmHg or decreased 3, 

6, 9, or 12 mmHg from the level measured at prediction period 0. For all levels of change in 

IOP, fast-progressors will have statistically significant lower MD after 5 years (P < 0.0001).
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