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Abstract

Greenspace has been increasingly recognized as having numerous health benefits. However, its 

effects are unknown concerning sudden unexpected death (SUD), commonly referred to as sudden 

cardiac death, which constitutes a large proportion of mortality in the United States. Because 

greenspace can promote physical activity, reduce stress and buffer air pollutants, it may have 

beneficial effects for people at risk of SUD, such as those with heart disease, hypertension, and 

diabetes mellitus. Using several spatial techniques, this study explored the relationship between 

SUD and greenspace. We adjudicated 396 SUD cases that occurred from March 2013 to February 

2015 among reports from emergency medical services (EMS) that attended out-of-hospital deaths 

in Wake County (central North Carolina, USA). We measured multiple greenspace metrics in each 

census tract, including the percentages of forest, grassland, average tree canopy, tree canopy 

diversity, near-road tree canopy and greenway density. The associations between SUD incidence 

and these greenspace metrics were examined using Poisson regression (non-spatial) and Bayesian 

spatial models. The results from both models indicated that SUD incidence was inversely 

associated with both greenway density (adjusted risk ratio [RR] = 0.82, 95% credible/confidence 

interval [CI]: 0.69–0.97) and the percentage of forest (adjusted RR=0.90, 95% CI: 0.81–0.99). 

These results suggest that increases in greenway density by one km/km2 and in forest by 10% 

were associated with a decrease in SUD risk of 18% and 10%, respectively. The inverse 

relationship was not observed between SUD incidence and other metrics, including grassland, 

average tree canopy, near-road tree canopy and tree canopy diversity. This study implies that 
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greenspace, specifically greenways and forest, may have beneficial effects for people at risk of 

SUD. Further studies are needed to investigate potential causal relationships between greenspace 

and SUD, and potential mechanisms such as promoting physical activity and reducing stress.
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1. Introduction

Sudden unexpected death (SUD), commonly referred to as sudden cardiac death, is one of 

the leading causes of mortality in the United States (Adabag et al., 2010, Nanavati et al., 

2014, Stecker et al., 2014). It is estimated that SUD incidence is between 180,000 and 

450,000 each year in the US, although this estimate varies considerably depending on data 

sources, definition of SUD, methods of estimation and other factors (Adabag et al., 2010, 

Kong et al., 2011).

Currently, risk factors for SUD are not well understood. Underlying or pre-existing health 

conditions, such as coronary heart disease, hypertension, diabetes mellitus, dyslipidaemia 

and ventricular hypertrophy, contribute to the occurrence of SUD (Adabag et al., 2010). 

Family history of sudden death, and socioeconomic and psychosocial status may also be risk 

factors (Adabag et al., 2010, Dekker et al., 2006, Mounsey et al., 2017, Ruberman et al., 

1984). Several studies also suggest that some environmental factors, such as air pollution 

and temperature, might trigger the occurrence of cardiac arrest or sudden death (Dales et al., 

2004, Dennekamp et al., 2010, Onozuka and Hagihara, 2017). Because of the high number 

of SUD cases and the low survival rate of sudden cardiac arrest, prevention measures are 

highly desired.

Greenspace refers generally to areas covered with trees, grass or other vegetation, and 

includes forests, parks, gardens, and street-side landscaping. It is increasingly recognized 

that greenspace has many benefits to human health. Many studies have shown that exposure 

to greenspace was associated with a lower risk of obesity (Lee et al., 2017), diabetes (Astell-

Burt et al., 2014, Bodicoat et al., 2014, Brown et al., 2016, Dalton et al., 2016, Ngom et al., 

2016), hypertension (Brown et al., 2016), and cardiovascular disease (Bijnens et al., 2017, 

Lane et al., 2017, Paquet et al., 2014, Pereira et al., 2012, Tamosiunas et al., 2014, Yitshak-

Sade et al., 2017). The protective benefits provided by greenspace regarding these health 

outcomes are attributed to its many ecosystem services, such as filtering air pollution and 

noise, relieving stress and depression, promoting social contact and physical activity, and 

reducing temperature extremes (de Jesus Crespo and Fulford, 2017, Egorov et al., 2017, 

Maas et al., 2009, Markevych et al., 2017, Oliveira et al., 2011, Pugh et al., 2012, Roe et al., 

2013, Shanahan et al., 2016). Since these health outcomes are also related to SUD, we 

hypothesized that exposure to greenspace might be associated with a lower risk of sudden 

cardiac arrest.

The main objective of this ecological study is to explore the relationship between SUD 

incidence and local greenspace using spatial techniques. Using the Sudden Unexpected 
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Death in North Carolina (SUDDEN) case registry in Wake County, North Carolina (https://

www.med.unc.edu/medicine/cardiology/sudden), we first conducted analyses to identify 

spatial patterns of SUD cases and other relevant variables. Then, we applied Bayesian spatial 

models as well as Poisson regression models to examine the associations between SUD 

incidence and multiple greenspace metrics at the census tract level.

2. Methods

2.1 Study area

The study area is Wake County, central North Carolina (Figure 1). With a subtropical 

climate, Wake County has moderate temperatures in the spring, fall, and winter but high 

temperatures in summer. With a population of about one million, Wake County is the 

second-most populated county in North Carolina and one of the fastest growing counties in 

the US. The population is composed of 68.5% White, 21.2% Black, and 6.9% Asian based 

on the data from the US Census Bureau in 2016. Wake County also has a large number of 

residents who may be at risk for sudden cardiac arrest. According to health statistics for 

2010, cardiovascular disease was the second cause of death in North Carolina, responsible 

for 30% of all deaths in that year (Tchwenko, 2012).

2.1 Sudden unexpected death data

The SUD cases in Wake County from March 1, 2013 to February 28, 2015 were collected 

through the Sudden Unexpected Death in North Carolina (SUDDEN) project, which was 

approved by the Institutional Review Board (IRB) at the University of North Carolina at 

Chapel Hill (Study #14-2036). SUD cases were screened from all deaths aged 18 to 64 

attended by emergency medical services in Wake County. The identification criteria were 

described previously (Mounsey et al., 2017, Nanavati et al., 2014) and are briefly illustrated 

in Figure S1. For each SUD case, the location of the death event was recorded by a Global 

Positioning System (GPS). Personal information for each case, including home address, age, 

gender, race and medical history, was also recorded. Based on the incident location, SUD 

cases were mapped in a Geographic Information System (GIS) using ArcGIS 10.3 (ESRI, 

CA); then cases were aggregated by census tract using 2010 boundaries obtained from the 

US Census Bureau. SUD incidence was calculated using total population aged 18 to 64 

multiplied by 2 years as the denominator.

2.3 Demographic and socioeconomic status data

Demographic and socioeconomic status data were obtained for 187 census tracts in Wake 

County from the US Census Bureau’s five-year American Community Survey data summary 

centered on 2014. The variables included total population, the percentages of populations at 

different age groups from 18 to 64, male and female populations, the percentage of 

households in poverty, the percentage of unemployment, household median income values, 

the percentage of married households, the percentage of non-family households, and the 

percentages of white, black and Asian populations. Population density was calculated using 

the total population in a census tract divided by its area.
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2.4 Greenspace metrics

Multiple metrics were calculated to measure greenspace in each census tract, including 

average land cover composition and pattern, tree canopy specifically along major roads, and 

greenway density. The land cover composition metrics estimate overall outdoor greenness 

that may buffer environmental hazards, reduce stress and promote healthful lifestyles in the 

local vicinity of the residence. The percentage of near-road tree canopy was selected as an 

exploratory metric due to the potential for tree cover along busy roadways to trap or dilute 

airborne vehicular pollutants downwind of travel lanes (Baldauf 2017; Brantley et al., 2014). 

Greenway density was considered in this study because greenway trails may promote 

physical activity and reduce stress. We calculated the diversity of tree canopy to understand 

if the pattern of tree distribution has any influence on SUD.

Land cover components by census tract were calculated using the National Land Cover 

Dataset (NLCD) 2011 (Homer et al., 2015), which was created by the Multi-Resolution 

Land Characteristics (MRLC) consortium by classifying 2011 Landsat Thematic Mapper 

satellite imagery with a spatial resolution of 30 meters (https://www.mrlc.gov/

nlcd2011.php). We reclassified this dataset as described previously (Wu and Jackson, 2016) 

and calculated the percentages of nine major land cover classes: water, open land, developed 

land (e.g., buildings and pavement), barren land, forest, shrubland, grassland, agriculture and 

wetland (Figure S2).

The NLCD 2011 Cartographic Canopy dataset (http://www.mrlc.gov/nlcd11_data.php) was 

used to calculate average tree canopy for each census tract (Figure S3). The canopy dataset 

includes individual tree coverage throughout the study area, whereas the forest class in the 

land cover dataset reflects only larger tree patches. It was also created based on 30m Landsat 

satellite imagery. In this dataset, each pixel has a value indicating tree canopy coverage 

between zero and 100 percent. Average tree canopy by census tract was calculated by 

summing the product of each pixel value and the number of pixels with that value, divided 

by the total number of pixels in the census tract.

In addition, we calculated the Shannon diversity index (H′) to indicate pattern in tree canopy 

coverage according to the equation (Shannon and Weaver, 1998):

where s is the number of canopy coverage values, i is the index of canopy coverage values, 

pi is the proportion of individual coverage value i, and ln is the natural logarithm. Each pixel 

has 101 possible values from 0 to 100.

Near-road tree canopy was calculated according to the approach described previously (Wu 

and Jackson, 2017). Briefly, we obtained a GIS polyline layer for major roadways (>54 

mph) from NavTEQ™ (Chicago, IL). Then we created 50 and 100m buffers around the road 

centerlines and used these to clip the NLCD tree canopy dataset. The average percent tree 

canopy within the road buffers in each census tract was calculated as the percentage of near-
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road tree canopy. Road density was calculated using the total length of major roads in a 

census tract divided by the total area of that census tract.

Greenway data contained in a GIS polyline layer were obtained from the GIS division of 

Wake County Government, North Carolina. The data include greenways, trails, and multi-

use trails in Wake County (Figure S4). The data were imported into ArcGIS to calculate 

greenway density. This metric captures the length of greenway per square kilometer, which 

was calculated using the total length of greenways (including trails) in a census tract divided 

by the total area of that census tract.

Considering that air quality might be a confounder in the relationship between SUD and 

greenspace, we calculated weighted road density, a simple index of traffic-related air 

pollution (Rose et al., 2009). We included major roads and lower-speed roads (speed limits 

>= 35 miles [56 kilometers] per hour) and, using a weight ratio of 10: 1, calculated the index 

following a published procedure (Rose et al., 2009).

2.5 Spatial pattern analysis

To examine whether census tracts with a higher number of SUD cases were clustered, 

Global Moran’s Index (Moran’s I), a common index to indicate the spatial autocorrelation of 

individual variables, was calculated using ArcGIS 10.3 (Moran, 1950). For the Global 

Moran’s I statistic, the spatial autocorrelation is weak when the index value is close to zero. 

A general equation for calculating Global Moran’s I can be found in the literature (Moran, 

1950, Waller and Gotway, 2004). We calculated Moran’s I for key variables including SUD 

incidence, the percentages of forest, grassland and developed land, average tree canopy, 

near-road tree canopy, greenway density and major road density.

We also carried out Kernel Density Estimation (KDE) using ArcGIS 10.3 to find where SUD 

events were clustered. KDE is a statistical method to estimate the probability density of a 

feature (e.g., SUD cases) in an area around the events. It generates a smoothly curved 

surface (a raster layer) to fit over each point using a weighted distance function, such as a 

Gaussian kernel (Gatrell et al., 1996, Silverman, 1986). In the process of KDE, the search 

radius was set at 0.1° (~ 11 km); the default was used for other parameters. After the kernel 

density layer was created, we reclassified the density into five classes: highest, higher, 

intermediate, lower and lowest. The area with the highest density is the hotspot of SUD 

events. Then we calculated SUD cases and incidence in the census tracts with the highest 

density and compared them with those in the remaining census tracts.

2.6 Statistical analysis

Poisson regression models—Since the SUD cases are count data and not significantly 

over-dispersed, we selected Poisson regression models to examine the relationship between 

the incidence of SUD and exploratory variables. Before the models were constructed, we 

plotted histograms to show the distribution of each variable (Figure S5), then explored the 

relationship between SUD and key variables using Pearson correlation analysis and scatter 

plots (Figure S6).
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We assumed that the number of SUD cases in each census tract followed a Poisson 

distribution, namely, E(Y)= Var(Y)= μ. Where Y is the count of SUD cases, E(Y) and μ are 

the expected number of the SUD count, and Var(Y) is the variance of the SUD count. A 

general equation of a Poisson regression model can be written as below (Kleinbaum et al., 

2013):

where i is the index of a census tract, r is SUD incidence, l is the population at risk 

multiplied by time (here, time is 2 years), ln is the natural logarithm and ln(li) is used as the 

offset term; x1, … , xn are the exploratory variables and β1,…, βn are the regression 

coefficients of the exploratory variables. First, we included one greenspace variable per 

model as the exploratory variable to obtain unadjusted associations between SUD incidence 

and greenspace metrics; then we examined the interactive effects of greenspace metrics and 

median household income on SUD incidence. Next, we adjusted the model for SES (the 

median household income), race (the percentage of Asian population) and population 

density. These variables were chosen because their models had smaller values for the Akaike 

information criterion (AIC). We also adjusted the model for weighted road density to take 

the potential confounding effect of traffic-related air pollution into account. Pearson 

correlation analysis and variance inflation factors (VIF) were used to examine and avoid 

multicollinearity among exploratory variables. Only one of two highly-correlated variables 

was considered if multicollinearity was determined (e.g. r >0.6 or VIF>5) (Wu et al., 2015).

The associations between SUD incidence and the exploratory variables were indicated by 

risk ratio (RR, the ratio of SUD incidence between two exposure groups), initially 

corresponding to a one unit change in the exploratory variables (equal to a one percent 

change in greenspace values). Because a one percent change in greenspace values leads to 

very tight RR values (close to 1) and is not highly meaningful as an intervention, we 

changed the greenspace unit definition to ten percent by dividing the values of these metrics 

by ten. A positive association was assumed if the RR was above 1.00, while a negative or 

inverse association was assumed if the RR was below 1.00. The significance level was 

selected at 0.05.

Bayesian spatial model—Considering the possibility for significant spatial 

autocorrelation, we further developed a Bayesian spatial model to examine the association 

between SUD incidence and greenspace metrics. The model is derived from the Poisson 

regression model described above. Similarly, we assumed that the count of SUD cases 

follows a Poisson distribution and used the same dependent variable and exploratory 

variables as in the first model. Differently, we included an unstructured random effect term 

U and a structured spatial random effect term S to account for spatial autocorrelation.
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where, Si is assumed to follow an intrinsic conditional autoregressive (ICAR) distribution 

with mean  and variance . Here,  is a function of a spatial weight matrix ω. If a census 

tract i and another census tract j are adjacent, ωi,j =1; otherwise, ωi,j =0.  was assumed to 

follow an inverse Gamma distribution . Ui follows a normal 

distribution with mean equal to 0 and variance equal to , which has the same distribution 

as . β0 was assigned a uniform prior, namely, β0 ~ dflat (). The regression coefficients, β1 

… , βn were assumed to follow a normal distribution with mean (μβ = 0) and variance 

( ). Based on the literature (Lawson, 2013), common selected values were set for 

parameter as, bs and τβ, respectively, to get weakly informative priors. Similar to the Poisson 

regression model, we identified the best fitted model as the one with the lowest value for the 

Deviance Information Criterion (DIC).

The model was fitted by a Markov chain Monte Carlo (MCMC) sampling approach in 

OpenBUGs 14.3. The spatial weight matrix was created in ArcGIS 10.3 with the Adjacency 
For WinBUGS Tool (https://www.umesc.usgs.gov/management/dss/adjacency_tool.html) 

developed by the U.S. Geological Survey. We ran the MCMC chain for each model 

parameter for 5000 iterations and removed the first 2000 iterations as a “burn-in” period. 

Then, samples from every third iteration were kept for a total of 1000 samples. The trace 

plots and autocorrelation plots of these parameters were monitored to diagnose the 

convergence of the MCMC iterations.

To examine how the choices of prior parameters affect model outcomes, a sensitivity 

analysis was conducted following the literature (Wu et al., 2014). We used the same model 

described above, with percent forest as the exploratory variable and the same three control 

variables. Previously, we assumed that the regression coefficient followed a normal 

distribution and set the prior parameters μβ = 0 and τβ = 0.0001. In this sensitivity analysis, 

we changed the value of τβ to 0.001, 0.01 and 0.1 and 1, respectively. The model outcomes, 

including the regression coefficient and RR, were compared to evaluate the influence of the 

choice of prior values.

3. Results

3.1. Description of SUD data and greenspace metrics

In total, 396 SUD deaths were identified in 148 of 187 Wake County census tracts during 

March 2013 to February 2015. For 366 cases, the event and home addresses were the same, 

accounting for 92.4% of the cases. For 26 cases, the incident and home addresses were 

different. The average number of SUD cases per census tract was 2.12, with a maximum 

number of 13 cases. The average incidence of SUD in these census tracts was 0.32 case per 

1000 persons per year (Table 1, Figure S7).

In these census tracts, forest is one of the major land cover classes, accounting for 23.06% 

on average, and less than only open land (33.65%) and developed land (29.71%). Grassland 

is a very small percentage, with a mean of 2.99%. Average tree canopy coverage ranges 

from 5.85% to 94.72%, with a mean of 49.33%. Near-road tree canopy accounts for 36.91% 
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on average within the 100 m road buffer, slightly higher than that within the 50 m road 

buffer. Mean greenway density for these census tracts is 1.09 km per km2 (Table 1).

3.2 Spatial pattern analysis of SUD data and greenspace metrics

Figure 1 showed the general location of each SUD event. Cases were more frequent in 

central Wake County. Spatial autocorrelation analysis using Moran’s I indicated that SUD 

cases were significantly spatially clustered (Moran’s I = 0.182, p<0.001). The analysis also 

showed that other key variables (e.g., forest and grassland pixels, and average tree canopy 

values per pixel) were also significantly spatially clustered (Table S1). The SUD hotspots 

identified using KDE are shown in Figure 2. The central area in red covers 31 census tracts 

with an average of 3.43 cases each and a mean incidence of 0.53 cases per 1000 persons per 

year. These values are much higher than those for the remaining census tracts (which had an 

average of 1.79 cases each and 0.27 cases per 1000 persons per year).

3.3 Relationship between SUD and greenspace metrics

Pearson correlation analysis showed that SUD incidence had significant and negative 

correlations with greenway density and percent forest, and also with average tree canopy and 

near-road tree canopy in both 100 m and 50 m buffers. SUD incidence did not have 

significant correlations with the percentage of grassland or the diversity of tree canopy 

(Table 2). Greenspace metrics were moderately correlated with median household income 

(e.g., r=0.349, p<0.001 for percent forest; r=0.194, p=0.008 for greenway density). There 

was no evidence of interaction between any greenspace metric and medium household 

income in our analysis (Table S2).

The results from Bayesian spatial models showed that SUD incidence had significant and 

negative associations with greenway density and percent forest, but not with other 

greenspace metrics. Adjusted risk ratios (RR) for SUD incidence corresponding to a one 

km/km2 increase in greenway density and a ten percent increase in forest were 0.82 (95% 

CI: 0.69 – 0.97) and 0.90 (95% CI: 0.81 – 0.99), respectively (Figure 3). Sensitivity analysis 

of the priors in the Bayesian spatial models indicated that changing the prior values of the 

regression coefficients did not change the model results (Table S3).

Similar results were observed from Poisson regression models. Greenway density (adjusted 

RR =0.82, 95% CI: 0.69 – 0.97) and forest (adjusted RR =0.90, 95% CI: 0.81 – 0.99) still 

had significant negative associations with SUD incidence but other greenspace metrics did 

not (Figure S8). When weighted road density was included in the models, the associations 

between SUD incidence and greenspace metrics did not change appreciably (Figure S9). The 

results are similar when other weight ratios, such as 4:1 and 16:1 were also tested. The 

associations between SUD incidence and greenspace metrics were also not affected when 

the percentage of the population in a specific age group was included in the models (Table 

S4 and Table S5).

3.4 Relationship between SUD and other variables

In addition to greenspace metrics, SUD incidence was significantly and negatively correlated 

with median household income and the percentages of married households, white population 
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and Asian population (Table 2). However, SUD incidence had positive correlations with 

major-road density, unemployment rate and the percentage of black population. No 

significant correlations were observed between SUD incidence rate and the percentages of 

open land, developed land, grassland or agricultural land (Table 2). Associations between 

SUD incidence and major-road density and the percentages of developed land and grassland 

were further examined with two models. Neither Poisson regression models nor Bayesian 

spatial models showed that SUD incidence had significant associations with these three 

variables (Figure 3 and Figure S8).

4. Discussion

In this study, we found that SUD cases were clustered in space, and SUD incidence had 

significant negative associations with greenway density and percent forest. Bayesian spatial 

models showed that the adjusted risk ratios associated with greenway density and percent 

forest were 0.82 and 0.90, respectively, indicating that the increases in greenway density by 

one km/km2 and in forest by 10% were associated with the decrease in SUD incidence by 

18% and 10%, respectively. To our knowledge, this is the first study to examine the spatial 

patterns of SUD cases and explore potential associations between SUD incidence and 

greenspace. These findings provide new insights in SUD prevention by exposure to the 

natural environment, specifically neighborhood greenway trails and forest.

The greenspace metrics that we studied may affect health through a number of possible 

pathways, including physical activity promotion and stress reduction. Greenway trails 

provide attractive and safe places for walking, biking, or jogging, and create opportunities 

for social interaction and engagement with nature. Therefore, access to greenways can have 

significant beneficial effects on human health (Coutts, 2008, Shafer et al., 2000). Health 

benefits of forests are also well recognized. Studies showed that forest visits can reduce 

stress and promote psychological and physical rehabilitation (Karjalainen et al., 2010). The 

relationship between physical activity and sudden death is complicated (Kohl et al., 1992). 

On one side, vigorous physical activity such as sports can increase the risk of SUD and is 

regarded as a potential trigger of SUD (Kohl et al., 1992, Reddy et al., 2009). On the other 

side, light habitual physical activity or regular exercise might lower the risk of SUD (Kohl et 

al., 1992, Whang et al., 2006). Our results indicate that nearby greenway trails and forest 

area may promote increased physical activity and lower the risk of SUD. Emotional stress is 

another major risk factor for SUD (Critchley et al., 2004, Vlastelica, 2008). Greenway 

access and forest visits have shown to effectively reduce stress (Karjalainen et al., 2010), 

which may be another explanation for the observed inverse relationships.

The lack of an association between SUD incidence and average tree canopy was unexpected; 

it suggests that tree cover in more highly developed parts of the study area (>=20% 

impervious cover at the 30m-pixel resolution, where forest is not classified) may not provide 

the ecosystem service of promoting physical activity or otherwise lead to reduced stress in 

the study population. One possible explanation is that tree canopy in these areas offers 

limited public accessibility. It is also possible that forest patches, with their larger size and 

less developed settings, are preferred destinations, and that they confer health-promotional 

benefits that trees in more developed areas do not.
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Tree canopy specifically along busy roads can reduce ambient levels of traffic-related air 

pollution (Baldauf, 2017, Brantley et al., 2014), which is a well-known link to 

cardiovascular disease (Brook et al., 2004, Mills et al., 2009). Previously, we found that 

near-road tree canopy was inversely associated with childhood autism (Wu and Jackson, 

2017). Therefore, we hypothesized that near-road canopy may also have an inverse 

relationship with SUD incidence through improving local air quality. However, the results 

from this study did not indicate any significant associations between SUD incidence and our 

near-road tree canopy metric at either buffer size.

Previous studies support spatial pattern as an important factor in the role of greenspace in 

health (Akpinar et al., 2016, Jorgensen and Gobster, 2010, Tsai et al., 2016). We examined 

the relationship between the diversity of tree canopy and SUD incidence but did not find that 

fine-scale variations in tree coverage were associated with the risk of SUD. However, the 

significance of the 30m forest cover variable indicates that larger patches of forest are 

important compared with average tree canopy.

Rapid urbanization has been linked to many health issues (Gong et al., 2012, Moore et al., 

2003). In the process of urbanization, both developed land and road density increase, leading 

to psychological stress (Lederbogen et al., 2011) and environmental degradation (Gong et 

al., 2012, Orishimo, 2012). These factors may increase the risk of SUD (Adabag et al., 

2010). However, to date, little is known about the relationship between urbanization and 

SUD incidence. In our study, the percentages of developed land and road density were not 

associated with SUD incidence, suggesting that urbanization might not be a risk factor for 

SUD.

One major strength of our study is that we explored the links between SUD and multiple 

greenspace metrics, including percent forest, grassland, average and near-road tree canopy, 

and diversity of tree canopy. In contrast to the commonly-used normalized difference 

vegetation index (NDVI), the metrics used in our study may reveal the different effects and 

pathways exerted by different types of greenspace on human health. For example, near-road 

tree canopy may have benefits to human health by buffering traffic-related air pollutants and 

noise, while greenways can promote physical activity to improve health. However, NDVI 

does not discern tree cover from herbaceous cover, and thus is less helpful in determining 

possible mechanisms (e.g., hazard buffering versus health promoting) for health benefits of 

greenspace.

Another major strength of our study is that we used both a spatial model (Bayesian spatial 

model) and a non-spatial model (Poisson regression model) to examine associations between 

SUD incidence and greenspace. Though results from the two types of models are very 

similar, the spatial model has some advantages over the non-spatial model. First, many 

variables showed spatial autocorrelation and the effects of spatial dependence are considered 

in the spatial model. Second, the Bayesian approach was used to fit the spatial model, which 

takes the uncertainty of unknown parameters into account. In addition, the posterior 

distribution of parameters estimated with the Bayesian approach provides more information 

about the parameters than the Poisson regression model, which provides only a few point 

estimates (e.g., mean and 95% CI). Therefore, the Bayesian spatial model is preferred in this 
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analysis. To our knowledge, it is rarely used in studies examining the relationships between 

greenspace and non-communicable diseases. Our study provides a good example of using 

such a method in this field. Furthermore, multiple SES metrics by census tract were 

available for our study; these include median household income, marriage status and 

employment rate. As a result, we were able to control for potential confounding effects of 

these metrics at an aggregate level.

The primary challenge of this study was obtaining accurate information about exposure to 

greenspace. Though we used multiple greenspace metrics, it is unknown how frequently the 

study subjects visited greenway trails and forest and how long they were exposed to 

greenspace. Furthermore, our analysis was conducted at the census tract level rather than the 

individual level, thus, the effect of greenspace on human health at the census tract level may 

be different from that at the individual level. The significant associations between SUD and 

a few greenspace metrics in our study do not imply any cause-effect relationship. They 

provide useful information for initially examining influential factors and generating 

hypotheses rather than deriving definitive conclusions. Though we controlled for several 

variables in the models, we cannot rule out other factors that might affect the links between 

greenspace and SUD incidence, such as family medical history. A minor issue is that the 

year of land cover and tree canopy datasets (2011) is different from the year that SUD cases 

were collected (2013–2015). Exposure to greenspace may be a long-term process, and land 

cover change may influence the measurement of greenspace metrics, thus influencing the 

model results. However, we compared major land cover classes in 2006 with those in 2011 

and found that they changed slightly and are highly correlated at census tract level (Table 

S6). As a result, this issue is unlikely to affect our results significantly. It should be 

mentioned that the greenspace metrics were calculated based on address of SUD incidence 

(where people died) instead of home address where the environment is more likely to affect 

people’s health. However, both addresses were the same for most cases (92.4%) and the 

results of the models based on home address were similar to those based on the event 

address (Figure S10). We used the event address for the primary address in the models to 

maintain consistency with the address used for spatial pattern assessment.

5. Conclusions

By exploring relationships between SUD and multiple greenspace metrics with robust 

approaches, we found that SUD incidence was inversely associated with greenway density 

and percent forest after controlling for confounding factors such as household income, 

population density and race. Major mechanisms underlying the statistically beneficial effects 

of greenspace on SUD need to be further investigated, particularly focusing on physical 

activity promotion and stress reduction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sudden unexpected death (SUD) was spatially clustered in Wake County, NC, 

USA

• SUD incidence was inversely associated with greenway density and percent 

forest

• The inverse relationship was not observed between SUD and other greenspace 

metrics

• Major mechanisms, such as promoting physical activity, need further 

investigation
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Figure 1. 
The study area and the spatial distribution of SUD cases in Wake County.
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Figure 2. 
Kernel density estimation of SUD cases in Wake County.
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Figure 3. 
The association between SUD incidence and key exploratory variables examined by 

Bayesian spatial models. The models were adjusted for population density, median 

household income and the percentage of Asian population.
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