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Abstract

Formic acid is corrosive and a sensitive and selective sensor could be useful in industrial, medical, 

and environmental settings. We present a chemiresistor for detection of formic acid comprised of 

single-walled carbon nanotubes and nickel bis(ortho-diiminosemiquinonate) (1)—a planar metal 

complex that can act as a ditopic hydrogen-bonding selector. Formic acid is detected in 

concentrations as low as 83 ppb. The resistance of the material decreases on exposure to formic 

acid, but slightly increases on exposure to acetic acid. We propose that 1 assists in partial 

protonation of the CNT by formic acid, but the response toward acetic acid is dominated by inter-

CNT swelling. This technology establishes CNT-based chemiresistive discrimination between 

formic and acetic acid vapors.
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Formic acid, the simplest organic acid, is highly pungent and corrosive with a Permissible 

Exposure Limit (U.S. OSHA PEL) of 5 ppm. An inexpensive, real-time, electronic sensor 

for formic acid vapors can protect worker health and limit formicary corrosion of metal 

components.1 Formic acid sensors can also be useful in diagnosing health conditions,2–4 

monitoring air quality,5–7 tracking the spread of invasive formicine ant species such as 

Nylanderia fulva (“tawny crazy ant”),8 and enabling automated pest control. Sensors would 

facilitate the adoption of formic acid as a hydrogen carrier for energy storage.9 While much 

work has been done on low-power aqueous-phase pH sensors,10–13 volatile acidity detectors 

have been less explored. A selective formic acid detector should be able to discriminate it 

from other polar compounds. For example, formic and acetic acid are present in similar 

quantities in environmental and human breath samples and their discrimination has utility.
2,14

Carbon nanotube (CNT)-based chemiresistors are an attractive platform for developing gas 

sensors. Although colormetric15–17 and metal-oxide and -nitride chemiresistors18 for formic 

acid detection exist, CNT chemiresistors are cost-effective, low-power, and operational at 

room temperature.19–21 CNT chemiresistors can be straightforwardly integrated with 

electronic devices, making them ideal candidates for distributed sensor networks.22,23 While 

strong acids have been shown to protonate and p-dope CNTs (Figure 1a),22,24–27 there have 

been few reports of the chemiresistive response of CNTs to carboxylic acids. Specifically, 

vertically aligned CNT arrays have a chemicapacitive response to formic acid.28 Chemical-

vapor-deposition-grown graphene becomes more conductive upon exposure to acetic acid 

vapor.29 A single-CNT field effect transistor (FET) responds to propanoic acid vapors upon 

functionalization with guanine-rich single-stranded DNA.30 However, these device 

architectures require greater manufacturing and operating complexity than chemiresistors 

based on solution-processed networks of CNTs. Networks of covalently-modified CNTs 

have been reported to increase in resistance, non-selectively, on exposure to acetic acid or 

other volatile organics via a swelling mechanism.31,32 Studies on CNT-based vapor sensors 

discriminating between formic and other carboxylic acids are lacking.

We have investigated planar ditopic complexes as selectors to improve the sensitivity and 

selectivity of CNT-based sensors toward formic acid. We hypothesized that selectors bearing 

ditopic hydrogen-bond donors could promote protonation of CNTs by carboxylic acids by 

stabilizing the carboxylate anion (Figure 1b). Looking to Nature’s formate dehydrogenase 

for selector inspiration, the highly conserved Arg587 residue is known to be crucial in 

formate binding as a ditopic hydrogen bond donor.33 Structurally related ureas/thioureas are 

receptors for carboxylates.34–36 For CNT-based chemiresistors, previous work has shown 

that thioureas can act as effective selectors for cyclohexanone, and the N-aryl substituents 

are key to tranducing a chemiresistive response to CNTs through non-covalent π-π 
interactions.37,38
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In this study, we used square planar complexes 1 and 2 (Figure 2a)39 as selectors. The N-H 

moieties can participate in ditopic H-bonding with carboxylate,40 while the molecular 

planarity should enhance electronic communication though π-π interactions.41,42 Adding 0–

4 equiv. of tetrabutylammonium acetate to 1 in d6-dimethylsulfoxide (DMSO) results in a 

distinct shift of the N-H protons from 8.8 to 9.2 ppm (see Supporting Information, Figure 

S2). This behavior is consistent with competitive H-bonding to acetate and DMSO. UV-Vis-

NIR absorption spectra of 1 in N,N-dimethylformamide (DMF) solution show a marked 

decrease in the LLCT band at 784 nm after exposure to CNTs, indicating strong CNT 

adsorption of 1 (Figure S7).

Chemiresistors made from CNT networks non-covalently functionalized with selector were 

exposed to formic acid at 37 ppm in N2 at room temperature (2% of its saturated vapor 

pressure from a calibrated oven held at 40°C). Analyte exposures were set at 1 minute 

followed by a 9 minute purge. Devices made with 1 or 2 exhibited semi-reversible 2% 

increases in conductivity, whereas devices made with N,N′-diphenylthiourea (3), urea (4), or 

no selector increased conductivity less than 0.4% (Figure 2b). Because benchtop DMF 

solutions of 1 remained stable for weeks while those of 2 formed brown particulate, further 

sensing experiments were conducted with 1 as the selector. An experiment using air (35% 

relative humidity) as the carrier gas instead of N2 for CNT/1 sensors gave a similar response.

We then demonstrated the sensitivity of CNT/1 chemiresistors to formic acid (Figure 3a). 

The response is linear for over nearly three orders of magnitude. This dynamic range 

includes the industrially relevant OSHA PEL of 5 ppm. The experimental limit of detection, 

83 ppb, could conceivably be lowered by using longer exposure times.

We established the selectivity of CNT/1 chemiresistors by exposure to a variety of other 

volatile organic compounds at 2% of their saturated vapor pressure from a 40°C analyte 

oven (Figure 3b). Trifluoroacetic acid (TFA), dichloroacetic acid, and acetone induced 

increases in conductivity per exposure of 16%, 0.23%, and 0.15%. Acetic acid and ethanol 

resulted in small decreases in conductivity (−0.05% and −0.07%). Water did not cause any 

change in conductivity. The strong conductivity increase upon TFA exposure correlates with 

the high acidity of TFA (pKa = 0.0). Dichloroacetic acid, while a strong acid (pKa = 1.25), 

has lower volatility and thus a relatively low conductivity increase. Acetic acid is less acidic 

than formic acid (pKa = 4.75 vs 3.75), and the chemiresistive decrease in conductivity is 

consistent with swelling of inter-CNT gaps, similar to the responses observed for ethanol in 

this study. Acetic acid vapor also decreased conductivity in previous CNT network 

chemiresistive sensors.31,32 As a result, this sensor is selective for formic acid and stronger 

acids over acetic acid. This selectivity (and reversibility of the response) make CNT/1 
chemiresistors unique from sensors based on strong Brønsted bases, which would be 

irreversible and not distinguish between various carboxylic acids.5,15

To interrogate the mechanism of this chemiresistive response, CNT/1 was examined with 

Raman spectroscopy (Figure S8). While the weak CNT D-band (~1340 cm−1) is obscured 

by overlapping signals from 1, the CNT G-band is distinct near 1590 cm−1 under ambient 

air. Under saturated formic acid vapor, however, the G-band shifts to higher energy by 0.5 

cm−1 (Figure 4b). Other sharp Raman features of CNT/1 are not similarly shifted (Figure 
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S9). Based on previous studies of CNTs in acidic solution,24,43 this shift corresponds to an 

introduction of approximately one hole per 640 carbon atoms in the CNT sample upon 

formic acid vapor exposure. Identical measurements of a sample of CNT without 1 showed 

no shift in the G-band (1589 cm−1) under ambient air or formic acid vapor (Figure 4a). 

These Raman observations are consistent with 1 facilitating protonation and p-doping of the 

CNTs.

To investigate the effect of π-stacking between the CNT and 1, we turned to computational 

models. Although 1 has nontrivial electronic structure as a result of ligand-based radical 

character, previous studies have shown accurate modeling using density function theory 

(DFT).44,45 Thus, a segment of (6,6)-CNT and 1 were geometry-optimized using a 2-layer 

ONIOM scheme in which 1 and the nearest C24 fragment (coronene) of the CNT were 

treated with restricted-spin, dispersion-corrected DFT while the remaining CNT atoms were 

modelled semiempirically. In the resulting structure, the metal complex adopts the curvature 

of the underlying CNT (Figure 5a). Furthermore, the short distance between the N atoms of 

the metal complex and the nearest CNT atoms (3.22 Å) supports a π-π interaction. The 

electronic structure was then examined via a single-point calculation, treating the whole 

model with DFT. The resulting density-of-states (DOS) plot shows a Fermi level of −5.94 

eV compared to −5.99 eV for bare (6,6)-CNT (Figure 5c). Thus, 1 donates partial electron 

density to the CNT, activating the CNT toward protonation with mild acids. For comparison, 

an analogous model of (6,6)-CNT/3 also showed short non-bonded N-C contacts (Figure 

5b), but the Fermi level shifts the opposite direction to −6.00 eV, indicating very slight 

withdrawal of electron density from the CNT. These results corroborate the experimental 

observation that CNT/1 chemiresistors respond to formic acid more readily than CNT or 

CNT/3 sensors.

In summary, square-planar metal complex selectors 1 and 2 leverage their chelating N-H 

moieties to facilitate protonation/p-doping of the CNT chemiresistor network by formic acid 

vapors. The resulting simple, low-power CNT/1 sensors can detect formic acid at 

concentrations relevant to industrial settings with short 1 minute exposure times. Although 

there is cross-reactivity with stronger acids, there is notably a smaller (and inverted) 

response to acetic acid, establishing the first CNT-based chemiresistive discrimination 

between formic and acetic acid vapors. Computational models also show that 1 can 

effectively π-stack and donate partial electron-density into the CNT network. We are 

interested in extending the use of 1, 2, and related metal complexes as selectors to detect and 

discriminate isosteres of carboxylate such as bicarbonate, phosphate, and arsenate in 

aqueous solution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Carbon nanotube protonation and p-doping by (a) strong acid or (b) carboxylic acid assisted 

by anion receptor.
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Figure 2. 
Formic acid vapor sensing (37 ppm) with CNT chemiresistors and (a) molecular selectors. 

(b) Each trace (vertically offset for clarity) is the average of four sensors with the standard 

deviation illustrated in a lighter shade; five cycles of one-minute exposure and nine-minute 

purge. The carrier gas is N2 unless otherwise noted. (c) Average conductivity change for 

each selector. Error bars represent one standard devation across 20 data points (five 

measurements each across four devices).
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Figure 3. 
Average conductivity change (N = 20) of CNT/1 upon one-minute exposures to (a) a range 

of formic acid concentrations and (b) various analytes at 2% of their saturated vapor from 

40°C analyte oven. For calibrated analytes, concentrations are listed parenthetically (ppm).
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Figure 4. 
Raman G-band of (a) CNT and (b) CNT/1 under under ambient air or air saturated with 

formic acid vapor (FA).

Lin and Swager Page 11

ACS Sens. Author manuscript; available in PMC 2018 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a) Structural models of (6,6)-CNT/1 and (b) (6,6)-CNT/3. (c) DOS plots of (6,6)-CNT with 

and without 1 or 3. Inset: magnified view of frontier states with Fermi levels indicated by 

vertical lines.
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