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Proteins fold to their lowest free-energy structures, and hence the
most straightforward way to increase the accuracy of a partially
incorrect protein structure model is to search for the lowest-energy
nearby structure. This direct approach has met with little success for
two reasons: first, energy function inaccuracies can lead to false
energy minima, resulting in model degradation rather than improve-
ment; and second, even with an accurate energy function, the search
problem is formidable because the energy only drops considerably in
the immediate vicinity of the global minimum, and there are a very
large number of degrees of freedom. Here we describe a large-scale
energy optimization-based refinement method that incorporates
advances in both search and energy function accuracy that can
substantially improve the accuracy of low-resolution homology
models. The method refined low-resolution homology models into
correct folds for 50 of 84 diverse protein families and generated im-
proved models in recent blind structure prediction experiments. Anal-
yses of the basis for these improvements reveal contributions from
both the improvements in conformational sampling techniques and
the energy function.
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The number of protein families for which computational
models with reasonable accuracy can be built has steadily

increased in the current structure- and sequence-rich era (1).
Homology-modeling methods can in some cases produce models
with sufficient accuracy for the inference of structure–function
relationships, but in many cases starting models contain signifi-
cant errors. Increasing the accuracy of such models is the goal of
protein structure refinement and for the last decade has been a
grand challenge for structural biology (2–8).
Structural averaging of molecular dynamics (MD) simulation

trajectories (9, 10) and modeling with strong restraints to a high-
resolution reference model (4, 5) have been shown to consis-
tently improve model accuracy when starting models are close to
the native structure. However, when starting models contain
significant errors, the conformational phase space exceeds by
orders of magnitude what can be explored using such methods,
and little or no accuracy increase is observed (2). In contrast,
coarse-grained conformational search and unrestrained simula-
tions can sample more extensively but suffer from inaccuracy in
energy functions and thus more often degrade than improve
model quality (3, 8, 11). Because of the stringent and often con-
flicting requirements of energy function accuracy and extensive
sampling, the substantial improvement of distant comparative
models remains an outstanding challenge.
Here we describe a protein structure refinement method based

on large-scale energy optimization that improves structure models
with significant errors such as comparative models built from
structures of distant homologs with sequence identity less than
30%. Study of the basis for this improved performance reveals
contributions from improvements in both the sampling method-
ology and the energy function.

Results
Approach Summary. In devising a refinement method capable of
improving models far from the native structure, we were guided
by the following considerations. First, large-scale structural
changes are on a time scale that is likely too long for all-atom
MD simulations to currently access, and an effective approach
should involve moves that introduce discrete (rather than con-
tinuous) structural changes to enable energy barrier hopping.
Second, since such moves will be generally unfavorable in stan-
dard all-atom representations, a lower-resolution coarse-grained
model is appropriate for sampling. Third, since a coarse-grained
model is necessarily less accurate than an all-atom model, the
overall refinement trajectory should be guided by an all-atom
energy function. Finally, since structural changes may need to
occur at multiple noninteracting regions, an iterative refinement
approach should improve success.
We implemented these considerations in a refinement method

within the Rosetta modeling suite (12) that carries out large-scale
sampling of the energy landscape using a two-stage protocol. The
first stage introduces structural variation in the starting model,
generating a population of diverse structures in different low-energy
minima. The second stage utilizes an evolutionary algorithm to
guide this model population toward the lowest all-atom energy (and
hence likely more accurate) state. The second stage consists of
50 iterations; in each iteration, new structures are sampled, and the
population is updated favoring lower all-atom energy structures
while maintaining the structural diversity. For evaluation of the
effectiveness of the protocol, we consider both the lowest-energy
structures from each of the five largest clusters at the end of the
iteration and a single model generated through structural averaging
of models close to the lowest-energy cluster representative followed
by constrained minimization (SI Appendix provides details); we refer
to the former as “cluster representatives” and the latter as the
“refined structure” in the remainder of the text.
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Protein structure refinement by direct global energy optimi-
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structural biology due to limitations in both energy function
accuracy and conformational sampling. This manuscript dem-
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can significantly improve protein comparative models based on
structures of distant homologues.
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To generate models at the diversification stage and at every it-
eration of the evolution stage, multiscale Monte Carlo (MC)
modeling implemented in RosettaCM (13) was used with sampling
carried out in a coarse-grained representation and model evaluation
in an all-atom representation. The conformational search utilizes a
“broken-chain” kinematics setup of the protein chain that allows
large structural changes in internal coordinates to local regions [or
regions predicted as unreliable (14)] without disruption of the re-
mainder of the structure (13). Two types of structural perturbations
are applied during MC search: “mutation” replaces backbone tor-
sions with those from a generic fragment library (15), and “cross-
over” replaces the Cartesian coordinates of the backbones of a
segment with those from another structure in the current pool of
models (only mutation operators are used at the diversification
stage) (13). Distance restraints are employed during sampling in the
coarse-grained representation (but not in the subsequent all-atom
model evaluation) to control the amount of structural variation and
are weighted based on their frequency in the sampled population—
frequently violated restraints are down-weighted. At the diversifi-
cation stage and at each iteration at the evolution stage, after the
coarse-grained conformational search, side-chains are built onto the
backbones, and iterative side-chain and backbone optimization is
carried out in an all-atom representation using the recently
improved implicit solvent energy function (16). The energy of a
model following all-atom optimization determines whether it is
accepted into or rejected from the evolving population at each
iteration of the evolution stage. Details of the method can be
found in Methods.

Refinement Performance Evaluation. We first establish that the
method described in the previous section can improve starting
models distant from the native structure. This is a nontrivial
property: Because of the high dimensionality of the search space,
there are many more ways to make a model worse than to make
it better. We then evaluate the factors determining success in
this endeavor.
To benchmark the approach, we identified 44 proteins from

previous CASP (critical assessment of techniques for structure
prediction) (17) and CAMEO (continuous automated evaluation of
models) (18) experiments, with diverse topologies and size ranging
from 60 to 200 amino acids. In all 44 cases, the best homology
models had substantial structural errors (SI Appendix, Table S1).
For CASP targets, we selected as starting models the best models
submitted by any server group [analogous to the CASP refinement
category (3)]; for CAMEO targets we selected the best Robetta
server (19, 20) model. The benchmark-set targets cover a broad
range of starting model quality and sequence identity to homologs
of known structures (SI Appendix, Fig. S1). The challenge of im-
proving these models is analogous to that in CASP refinement ex-
periments, where model generation already uses all available
information from homologous structures [input models are gener-
ally more accurate than any single template (17)]; thus improving
their accuracy consistently is a nontrivial challenge.
The results on the benchmark set show that the approach can

significantly improve the input structures. The quality of the
refined structure is compared with the input structures according
to three different model backbone quality metrics in Fig. 1A
(side-chain accuracy is given in SI Appendix, Fig. S2). We define
a model as having a “correct fold” if two of three metrics are
better than the thresholds shown as dashed lines in Fig. 1A. With
this definition, in over 44 cases, refinement increases the number
of correct folds from two to 24, and for 32 of the cases at least
one of the cluster representatives had the correct fold. These
improvements are greater than those of the best submissions in
previous CASP refinement challenges in 75% of cases (SI Ap-
pendix, Table S2). (To be fair, the earlier predictions, unlike
ours, were completely blind, but our automated approach had no
knowledge of native structures.) Repeated refinement calcula-
tions did not in general yield improved results; in most cases the
runs converged on similar structures (SI Appendix, Fig. S3), and
in the remainder, model selection was a nontrivial challenge. An

important application of model refinement is increasing suitability
for solving X-ray crystal structures by molecular replacement
(MR). Refinement improved the MR log likelihood gain (LLG)
(21) by greater than 15 units for 8 of 10 CASP targets for which
diffraction data were available (SI Appendix, Table S3). MR is
generally successful if the LLG is greater than 60; of the 10 targets,
the number with LLG > 60 increased from one before refinement
to four after refinement.
To further benchmark the refinement protocol, we applied it

to a second benchmark set (set2, listed in SI Appendix, Table S4)
consisting of 40 recent (since October 2015) CAMEO targets. As
input we selected comparative models generated for CAMEO by
the Robetta server. The sequence and structure databases used
in the refinement procedure were chosen to be identical to those
used by Robetta during the CAMEO model generation process;
this ensures that any improvement in model quality is a result of
the protocol and not the availability of additional sequence or
structure information. The results were qualitatively similar to
those with the first benchmark set (Fig. 1B); the small decrease
in performance likely reflects increases in average protein size
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Fig. 1. Performance of refinement protocol on benchmark set. (A) Benchmark
set1—44 proteins from CASP and CAMEO rounds up to September 2015. The
starting homology models were generated by multiple different servers.
(B) Benchmark set2—40 proteins from CAMEO rounds since October 2015. The
starting homologymodels were generated by the Robetta server (19, 20). In each
panel, model quality is compared between input models (x axis) and refined
models (y axis) using three different model accuracy metrics. (Top) SphereGrinder
(SG); (Middle) GDT-HA; (Bottom) rmsd (SI Appendix). For SG and GDT-HA, higher
values are better, and the native structure has a value of 100. Models with values
better than the thresholds indicated by the dashed lines (SG > 80, rmsd < 2.5 Å,
and GDT-HA > 60) for two of the three metrics are considered “correct folds.”
Points represent the single refined model; the error bars represent the range of
model qualities of the five cluster representatives. Blue, proteins with less than
120 residues; red, proteins with 120 or more residues. The refinement protocol
consistently improves input models in both benchmarks.
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and the use of Robetta in model generation (the models start out
in energy minima of the Rosetta energy function). Over bench-
mark set1 and set2 combined, the refined structure has the
correct fold by the definition above for 40 of 84 targets, and one
of the cluster representatives, for 50 of 84 targets.
It is instructive to consider several specific examples of the

structural changes that occur during refinement. The most dramatic
improvement in the first benchmark was for TR822 (Fig. 2A), in
which refinement recovers not only the native β-strand pairing
pattern but also improves the locations of these strands, increasing
model accuracy by over 30%. The input structure for TR624 and
TR827 (Fig. 2 D and E) has roughly correct topology but with
large deviations in secondary structure orientations, likely
originating from significant sequence changes in homologous
structures, which are largely corrected by the energy-guided
refinement. The TR574 and TR705 (Fig. 2 B and C) cases
show that the approach can improve both secondary structure
and loop regions.
The refinement protocol was further tested in a completely blind

setting on 43 targets from the tertiary structure prediction and re-
finement categories of the latest CASP (CASP12). Excluding
membrane proteins and oligomers with extensive subunit interfaces
(four targets in total), for 29 of the remaining 39 cases, accuracy was
improved for the best of the five cluster representatives with in-
creases of more than 20% in five cases (SI Appendix, Fig. S4).
Nevertheless, the performance was generally less consistent com-
pared with that of the benchmark; large proteins (over 200 residues)
and oligomers—excluded in the benchmark—were rarely improved
and sometimes degraded in quality (SI Appendix, Fig. S5). Our
large-scale sampling approach likely fails in these cases due to the
very large size of the conformational space; as noted above, there
are many more ways to move away from any point in a high-
dimensional space than toward it. The other approaches with
more consistent results in CASP12 were quite a bit more conser-
vative, staying relatively close to the input structure, and hence both
the improvements and the decreases in model quality had smaller
overall magnitudes (22).

Contributions to Successful Refinement. The CASP12 results show
there is still considerable room for improvement of the re-
finement method, particularly for larger proteins. To understand
the origin of successful refinement and to guide further methods
development, the set of targets for which the sampling problem is

tractable (monomeric proteins with <200 residues) can be used
as a laboratory to systematically investigate the contributions to
successful refinement. We carried out a series of control exper-
iments on benchmark set1, replacing aspects of the search
strategy and the energy function with alternatives one at a time
to isolate the factors responsible for the structural improvement.
To make the comparisons simpler and quantitative, we use a
single metric—SphereGrinder (SG) (23)—which best captures large-
scale structural improvements (3, 8, 11, 22); over the benchmark set
the SG values are correlated with both the rmsd and the GDT-HA
(global distance test-high accuracy) (24) (SI Appendix, Fig. S6).
A first set of control experiments was carried out to elucidate

the contribution from different aspects of the conformational
sampling method (Fig. 3). To investigate the importance of the
use of different resolution representations in our multiscale
modeling approach (rather than using an exclusively all-atom
representation), we carried out control calculations using as
all-atom representation methods: (i) refinement by explicit water
MD simulation with parameters optimized for high-resolution
refinement (MD) (9), (ii) iterative all-atom optimization of
protein core coupled with discrete side-chain optimization (Re-
lax) (25, 26), and (iii) Monte Carlo sampling combining contin-
uous backbone and side-chain movements (BBGauss) (27). The
second and third controls use the same all-atom energy function
as our multiscale approach. None of the control methods pro-
duced significant improvements in the starting models (Fig. 3A).
In particular, while consistent improvements were obtained with
refinement using explicit water MD simulation (MD), which is
quite powerful for refinement of close-to-native models (3), they
were quite small; only 7 of the 44 benchmark cases passed the
“correct fold” threshold defined above. All-atom representations
make it difficult to escape local energy minima around the input
structure (SI Appendix, Fig. S7 A and B), due to the high prob-
ability of introducing unfavorable interactions accompanying any
large perturbation to the structure. (The coarse-grained repre-
sentation is much more tolerant of clashes.) Simulation param-
eters can be adjusted to encourage diversification for an exclusively
all-atom representation approach, but focusing back in on the
lowest-energy structure by annealing (7) or with unrestrained sim-
ulation (8) is challenging; even when sampling is successful,
selecting one single representative from a massive simulation tra-
jectory is a nontrivial challenge (8, 9). Incorporating restraints from
physical intuition into replica-exchange MD simulation (28) has
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yielded good results for proteins with less than 100 residues (29); it
is unclear how this approach will work for larger proteins or starting
models with more substantial structural errors.
Control experiments on the components of the input model

diversification stage highlight the importance of the kinematic
setup of the protein chain and the set of structural perturbations
incorporated into coarse-grained sampling. While keeping the
energy function unchanged, the performance of the standard
approach was compared with that of three alternatives. AbInitio
resembles Rosetta de novo modeling (30) in which the protein is
treated kinematically as a continuous chain, and sampling is
uniform across the protein chain. AbFocus is the same as AbI-
nitio, except that five times more intensive sampling is carried
out in the regions predicted to be unreliable. FixedCore resembles
RosettaCM (13) and other local reconstruction-based refinement
methods (4, 5) in using error estimation and a broken-chain
kinematics setup, but mutations are only allowed in unreliable
regions. These alternatives produce either smaller (FixedCore) or
lower-consistency improvements (AbInitio and AbFocus) (Fig. 3A;
see SI Appendix, Fig. S7 A and B for more details). When the
evolution stage is carried out using a first-generation pool gener-
ated from any of the three approaches, the resulting models are
quite a bit worse.

A final series of control experiments was used to explore the
robustness of the approach to the details of the global optimi-
zation control logic. The evolution protocol was varied by
changing structural operators, parent-selection logic, or pop-
ulation update logic, keeping the remaining components identi-
cal to the standard approach (SI Appendix, SI Methods and Fig.
S7C). Improvement over the starting population occurs in all
cases, implying that our results are not the outcome of overfit
search parameters. The only exception—where performance is
significantly poorer—results from eliminating protocol iteration
and instead generating the same amount of total models re-
peatedly from the first-generation structures: improvements
originate from propagation through multiple iterations rather
than a single huge improvement in one fortunate MC simulation.
The optimal number of iterations at the evolution stage—gen-
erating ∼100 new structures at each iteration—was found to be
∼40 iterations; while the all-atom energy continues to drop be-
yond this point the structures do not change much, as they are in
deep energy minima (Fig. 3B).

Energy Function Accuracy Is Critical for Structure Refinement by
Large-Scale Sampling. To address the role of energy function im-
provement in refinement success, a second set of control exper-
iments was carried out using different all-atom energy functions.
We pick three energy functions historically used as standard all-
atom energy functions in Rosetta: score12 (31), talaris2013 (re-
ferred to as ElecHBv2 in ref. 32), and REF2015 (referred to as
opt-nov15 in ref. 16), listed in order of development. REF2015,
used in this study, is the current default energy function in
Rosetta; all nonbonded atomic-level parameters were fully reopti-
mized to simultaneously reproduce small-molecule thermodynamic
properties as well as protein properties. Fig. 4A shows a remarkable
improvement in model quality with the energy function improve-
ments from talaris2013 to REF2015: energy function improvement
was clearly essential to the success of our global optimization-based
refinement method.
A more detailed view of how improvements in the energy func-

tion guide sampling is provided by energy landscape exploration
analysis using a priori knowledge of the native conformation. While
the energy function-based model discrimination improves from
score12 to talaris2013 to REF2015 (red bars in Fig. 4B), as we
progress from talaris2013 to REF2015, the improvement in energy
function in addition leads to improvement in sampling (blue bars
in the figure), which is not the case in the step from score12 to
talaris2013. There is an enhanced driving force guiding sampling to
the native structure in REF2015 that likely originates primarily from
an improved Lennard-Jones (LJ) model that captures the energetics
of hydrophobic core formation more accurately (SI Appendix, Table
S5). For most of the cases shown in Fig. 4C (SI Appendix, Fig. S8,
for other metrics), while the native conformation is one of the
lowest-energy states in the entire landscape in all energy functions,
REF2015 is the only one with sufficient gradient to guide the iter-
ative sampling process toward the native structure starting from an
inaccurate input structure; this driving force is important in chal-
lenging refinement problems, as less sampling is needed to converge
on the correct structure. The optimization of REF2015 utilized in
addition to small-molecule thermodynamic data, an evaluation
metric measuring both the shape of the folding funnel (the differ-
ence in energy between the native structure and nearby structures)
and discrimination power (the difference in energy between the
native structure and far away structures), and the improvement in the
gradient toward the native state, perhaps resulting from the former,
appears to be the dominant source of improvement in refinement.

Discussion
We have demonstrated that protein structure models can be
improved by energy-guided large-scale sampling and traced how
success in refinement depends on the sampling protocol and
energy function. In previous studies this concept—exploring the
energy landscape with iterative multiscale modeling—was lim-
ited either by strongly restraining input structures (4–6), carrying
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out only a few iterations (33), or using experimental data to
guide the search (34). The major stumbling block was that
without restraints on the input structure or experimental data to
guide the search, inaccuracies in the energy function would cause
structures to drift away rather than toward the native structure
(33). As noted above, because of the high dimensionality of the
space, there are far more ways to degrade a model than to im-
prove it. The folding funnels (examples shown in Fig. 4C) show
that with recent improvements, the Rosetta implicit solvent
energy function can have sufficient accuracy to guide sampling
into the native energy basin. Best results are obtained when the
improved energy function is coupled with a robust and rapid
all-atom relaxation method (26) using an iterative multiscale
representation approach; thorough relaxation of perturbed coarse-
grained models is critical, otherwise close-to-native models could
be rejected from the structural pool. Advances in sampling tech-
niques developed in Rosetta for homology modeling (13) and ex-
perimental data-guided search (35), including local error estimation,
broken-chain kinematics, and multiscale modeling, clearly facilitate
exploring the complicated energy landscape. The refinement pro-
tocol can readily incorporate additional structural information for
more complex or larger proteins. For example, a simpler version of
the protocol was recently used in the computation of protein struc-
tures using sequence coevolution information (35). The all-atom

energy function and coevolution restraints were optimized together,
considerably improving the input models built by de novo modeling
or coevolution pattern search to an accuracy where functional in-
sights become possible.
The failures of the approach on specific targets reveal areas

for improvement. The assumption behind the approach is that
the global energy minimum is located near the monomeric native
conformation and that this minimum can be discovered through
large-scale energy-guided sampling. The approach will fail if the
global energy minimum is not a monomer (SI Appendix, Fig.
S5A), as was the case for a number of CASP12 targets whose
biological units were homo- or hetero-oligomers. Insufficient
sampling is another cause of failure (SI Appendix, Fig. S5 B and
C): refinement attempts failed to improve targets with starting
models with totally different folds, with over 200 residues and/or
complex topologies, and with significant sequence registration
errors in secondary structures. Of these causes of failures, se-
quence registration errors are perhaps the most tractable issue to
address (SI Appendix, Fig. S5C). The problem of refining larger
proteins is more challenging due to the exponential increase in
the size of the search space with increasing chain length—con-
sistent success in refinement of larger proteins may ultimately
require significant increases in computing power, a more ad-
vanced sampling strategy, or further energy function improve-
ments so there is a stronger guiding energy gradient further from
the native structure.
Sampling problems also occur in the very close-to-native re-

gime where the MC moves in the coarse-grained representation
may be too coarse to achieve the small changes required to im-
prove the structure. This is evident in the smaller improvements
in the GDT-HA metric during refinement, which penalizes devia-
tions as small as 0.5 Å from the native structure (the other two
metrics are tolerant to deviations of this magnitude). The GDT-HA
values of many of the refined models are around 60% or less, in-
dicating room for improvement, which will likely be necessary for
greater success in molecular replacement (SI Appendix, Table S3).
Combining with more continuous MD simulation for higher-reso-
lution refinement, already demonstrated in previous CASPs to be
effective in consistent refinement of close-to-native models (9), is a
promising direction. While we have demonstrated that implicit
solvent models are suitable for refinement from distant starting
structures, closer to the native state explicit water molecules can
become important in determining the precise conformations of
loops; such effects will be missed by our current approach but could
perhaps be captured by incorporating explicit solvent MD simula-
tions at a final stage.

Methods
Sampling Operators. Two types of sampling operators are used: a mutation
operator and a crossover operator. The sampling operators first set up a “star
fold tree” kinematics for propagating changes to the starting conformation
in a coarse-grained representation by breaking the chain at the beginning of
each unreliable region and loop with more than three residues, as defined
by a secondary structure assignment software DSSP (36). There are then
three sampling stages: (i) stage1, a MC simulation in internal coordinates in
which the degrees of freedom are the internal coordinates of the resulting
disconnected chains, and the rigid body transforms between them; (ii)
stage2, a MC simulation in Cartesian coordinates with moves consisting of
local segment replacements and minimization in Cartesian space, and strong
restraints between the termini of each chain segment to close the chain
breaks; (iii) stage3, all-atom refinement (26).

In the mutation operator, the primary MC moves are fragment insertions in
the loops or unreliable regions (see Diversification Stage section below), but
also to the other parts at a lower probability (10% of the frequency of the
unreliable regions) to further increase structural diversity. Stage1 consists of
12,000 MC-attempted three or nine residue fragment replacements as in
Rosetta de novo structure prediction (backbone torsion angles of randomly
selected segments are replaced with those of the fragment), and stage2,
700 attempted nine residue fragment insertions in Cartesian coordinates made
by superimposing the N and C-terminal residues of a randomly selected
fragment on the first and last residues of a randomly selected nine residue
insertion site. The fragments are obtained by the standard fragment-picking
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Fig. 4. Contribution of all-atom energy function improvements to re-
finement success. Full refinement calculations on benchmark set1 were
carried out using three different energy functions—score12 (29), talaris2013
(30), and REF2015 (16)—and results are shown for the best of the five cluster
representatives. (A) Stacked bars show fractions of targets with SG (Left) and
GDT-HA (Right) values above the thresholds indicated in the legends. Re-
finement with REF2015 produces better structures than with score12 or
talaris2013. (B) Distribution of refinement outcomes using the different
energy functions. Success—SG of lowest-energy structure sampled >80 and
energy gap of greater than 0.1 kcal/mol-residue between this structure and the
lowest-energy structure with SG < 80 (e.g., all four cases in C with REF2015).
Sampling issue—no structures sampled with SG > 80 (e.g., TR822 with score12 in
C). Scoring issue—lowest-energy structure (including structures from the native
biased simulations) with SG > 80 have energy gaps to the structures with SG <
80 of less than 0.1 kcal/mol-residue (e.g., TR569 with score12). (C) Full energy
landscapes for cases with large differences between energy functions. Model
quality is on the x axis (in SG), and energy is on the y axis; analyses with other
metrics are in SI Appendix, Fig. S8. Yellow line represents the input model
quality; red dots represent the entire set of structures sampled by standard ap-
proach; cyan dots represent the five models with lowest energy at the beginning
of evolution stage (for REF2015 only); black dots represent the final five cluster
representatives. Gray dots on the background are native biased simulations; the
global energy minimum is in blue dots.
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method developed for de novo modeling (15) from a July 2011 database.
Fragments from the target itself or its homologs are excluded for targets
whose native structure is deposited to Protein Data Bank before 2011.

In the crossover operator (used at the evolution stage), the MC moves consist
not only of fragment insertions but also chunk replacements. A chunk re-
placement substitutes one or more different chain segments of the conforma-
tion with corresponding segments from the five selected members in the current
pool of the evolution stage. Using more than two parents differs from typical
crossover operations in evolutionary algorithms; however, we expect this
“grouped crossover” increases sampling efficiency. Chunk replacements com-
prise 10% of the 12,000 MC attempts in stage1 (the remaining 90% are frag-
ment insertion) and 20% of the 700 MC attempts in stage2 (the remaining 80%
are local fragment superpositions).

Diversification Stage. The diversification stage begins by estimating residue-
level local errors in backbones and identifying unreliable regions based on
structural fluctuations in short MD simulations (20 trajectories of 20 ps) (37).
The residues are sorted based on the fluctuations in the MD simulations, and
those with the largest fluctuations are considered unreliable. The fraction of
residues that are selected as unreliable is a function of both protein size and
target difficulty, ranging from 10% for easy targets over 200 residues to
50% for hard targets under 100 amino acids (SI Appendix).

The diversification stage consists of multiple independent applications of
themutation operator to the input model. Two types of restraints are used to
constrain sampling (the restraints are solely for guiding the coarse-grained
sampling; they do not affect the all-atom modeling or model selection). In
restrained_sampling, all residue pairs in the structure are linearly restrained
to the values in the input model. In permissive_sampling, the restraints are
weighted based on the estimated residue-level error. Weights on residue
pairs in which one or both are in unreliable regions are set to near zero and
are weaker than in the restrained_sampling case even in the reliable regions
to allow for generating more diverse structures (SI Appendix). The 1,000 and
2,000 independent samples are generated using restrained_sampling and
permissive_sampling, respectively. For very small proteins under 70 residues,

Rosetta de novo structure calculations are also carried out and are filtered by
structural similarity to the input models [TM-score (38) > 0.5].

Each of the populations of models are then clustered, and the lowest-energy
members of each cluster are identified (the cluster representatives). The five
lowest-energy cluster representatives from the restrained_sampling runs and the
45 lowest-energy cluster representatives from the permissive_sampling runs are
then combined, giving a total pool size of 50. When de novo models are in-
cluded for proteins under 70 residues, 1, 9, and 40 cluster representatives are
selected from the restrained_sampling, permissive_sampling, and de novo
populations, respectively.

Evolution Stage. The evolution stage starts from the 50 selected models from
the diversification stage and proceeds in a series of iterations, maintaining a
pool of 50 structures. At each iteration, 10 members of the pool are selected
as seeds, and for each, 6 mutation operations and another 6 crossover op-
erations (with different combinations of randomly picked parents other
than seed) are carried out to generate a total of 120 trial structures. From
the original 50 parents and the newly generated 120 trial structures,
50 models are selected for the next iteration based on all-atom energy and
divergence from the other pool members. After 15–25 iterations, the un-
reliable regions and restraints are updated according to the structural var-
iation in the current population. Details of the evolution stage are described
in SI Appendix.

Implementation. All of the sampling operators in the study—for both di-
versification and evolution stages—are run using the HybridizeMover in
Rosetta (13). All of the scripts and instructions required for running the
protocol are available online; see SI Appendix for details.
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