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Many microbes engage in social interactions. Some of these have
come to play an important role in the study of cooperation and
conflict, largely because, unlike most animals, they can be genetically
manipulated and experimentally evolved. However, whereas animal
social behavior can be observed and assessed in natural environ-
ments, microbes usually cannot, so we know little about microbial
social adaptations in nature. This has led to some difficult-to-resolve
controversies about social adaptation even for well-studied traits
such as bacterial quorum sensing, siderophore production, and
biofilms. Here we use molecular signatures of population genetics
and molecular evolution to address controversies over the existence
of altruism and cheating in social amoebas. First, we find signatures
of rapid adaptive molecular evolution that are consistent with
social conflict being a significant force in nature. Second, we find
population-genetic signatures of purifying selection to support
the hypothesis that the cells that form the sterile stalk evolve
primarily through altruistic kin selection rather than through
selfish direct reproduction. Our results show howmolecular signatures
can provide insight into social adaptations that cannot be observed in
their natural context, and they support the hypotheses that social
amoebas in the wild are both altruists and cheaters.
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Cooperative behavior, once associated primarily with animals
like social insects, is increasingly seen as widespread in na-

ture. Some social microbes are now providing excellent model
systems for the study of cooperation and conflict, because they
can be genetically manipulated or because their short lifetimes
facilitate experimental evolution over many generations. How-
ever, these systems have one major disadvantage. Unlike ani-
mals, which can be directly observed and assessed in their natural
environments, microbes usually need to be taken out of their
natural environments for observation. With a few exceptions (1,
2), we therefore know little about microbial social adaptations in
nature (3), resulting in multiple controversies over the natural
adaptive importance of even some of the best-studied phenom-
ena such as bacterial quorum sensing (4–7), siderophore pro-
duction (8, 9), and biofilms (10, 11).
The social amoeba Dictyostelium discoideum is a microbial

model system for cooperation and conflict (12, 13). In this spe-
cies, single-celled amoebas join together upon starvation to form
multicellular fruiting bodies (14). About 20% of the cells die in
the process of forming a stalk, which supports and promotes the
dispersal (15) of the other 80%, which differentiate into spores.
This appears to be an instance of kin-selected altruism (12, 16,
17). Laboratory studies also show the potential for extensive
cheating. Here we use “cheating” as shorthand for any compe-
tition within the fruiting body, with the essential point being that
when two or more clones aggregate together, they may be in
conflict over who gets to produce the reproductive spores (18,
19). However, the relevance of both kin selection and cheating in
the natural environment has been questioned (20–23).

It would clearly be useful to develop some alternative methods
for understanding microbial social behavior in the wild. Here we
deploy theories from population genetics and molecular evolu-
tion to search for, and find, molecular signatures that reflect
both kin selection and cheating in wild D. discoideum.

Cheating. In the laboratory, different D. discoideum clones readily
join the same fruiting body (18), despite some recognition and
segregation (24). Often one clone will show apparent cheating in
the sense of getting more than its proportional (fair) share of
spores (12, 25). Laboratory evolution under conditions of low kin
selection leads to an increase in the frequencies of cheating
mutants and a decrease in cooperation, as predicted by theory
(17, 26, 27). However, the importance of cheating in the wild is
uncertain, partly because relatedness is known to be quite high
(16) and partly because of two plausible alternative explanations
invoking adaptive trade-offs that would be hard to assess in nature.
First, there is a modest number of loner cells that do not join the
aggregation (28). A clone that produces fewer loner cells would,
other things being equal, contribute more spores in mixtures. It
could therefore appear to cheat when selection was really just
operating on the trade-off between loner cells and aggregators (20,
29). Second, a clone that makes more, smaller spores could appear
to cheat against a clone that makes fewer, larger spores, without
necessarily having gained any cheating advantage (21).

Significance

Microbes are surprisingly social organisms and are providing
model systems for the study of the evolution of cooperation
and conflict. Despite their many advantages in the laboratory,
such as experimental evolution, it is rarely possible to study
them in the field. We therefore know little about whether
cooperation and conflict are adaptively important in nature.
Here we use approaches from population genetics and molec-
ular evolution to test the adaptive relevance of social behavior
in a social amoeba. We find signatures of adaptation for both
kin selection and social cheating. This provides evidence that
these behaviors have been important in the natural evolution
of this species and more generally shows a way to study mi-
crobial social adaptation in the wild.

Author contributions: S.N., K.S.G., X.T., J.E.S., and D.C.Q. designed research; S.N. per-
formed research; S.N., K.S.G., X.T., J.E.S., and D.C.Q. analyzed data; and S.N., K.S.G.,
X.T., J.E.S., and D.C.Q. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

Data deposition: All data, including genome alignments for the 16 published Dictyoste-
lium discoideum genomes, along with the code that generated the statistics, are depos-
ited in Dryad Digital Repository (doi: 10.5061/dryad.43cp320).
1To whom correspondence should be addressed. Email: queller@wustl.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1720324115/-/DCSupplemental.

Published online March 5, 2018.

3096–3101 | PNAS | March 20, 2018 | vol. 115 | no. 12 www.pnas.org/cgi/doi/10.1073/pnas.1720324115

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1720324115&domain=pdf
http://www.pnas.org/site/aboutpnas/licenses.xhtml
https://doi.org/10.5061/dryad.43cp320
mailto:queller@wustl.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720324115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720324115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1720324115


If cheating is common in nature and also causes resistance to
cheating to evolve, as it does in the laboratory (30–32), this may
lead to evolutionary conflict and increased selection pressure. A set
of D. discoideum genes whose knockouts cause cheating showed an
unusual degree of balancing selection (in which rare alleles are
favored), one possible outcome of cycling or stalemate conflict (33).
However, this study did not show the more pronounced arms race
outcome of rapid adaptation via directional selection. Here we use
RNA-seq to screen specifically for genes that change expression in
chimeric mixtures of two clones. This is the precise context in which
cheating would be adaptive, so it may pinpoint the genes most likely
to function specifically in cheating or resistance to cheating.
Moreover, these would likely be facultative cheating or resistance
genes, the kind that would most likely be favored under high re-
latedness. (Obligate ones are less likely to be favored because,
when alone, they would still pay any cost of cheating without getting
any benefits.) We then test for rapid adaptive evolution in these
genes relative to other genes in the genome.

Kin Selection or Direct Selection. The importance of kin selection
and altruism in the wild has also been questioned. Instead of getting
kin-selected benefits by altruistically helping related spores to dis-
perse, stalk cells might instead be making the best of a bad job,
doing everything they can to reproduce directly (22, 23, 34). Some
evidence consistent with this view comes from the fact that the stalk
is made by cells with less glucose (35), that prestalk cells are sup-
pressed and perhaps poisoned by a chlorinated molecule produced
by prespore cells (22, 23), and that prestalk cells may actually re-
produce on rare occasions (36). An acknowledged weak point of this
hypothesis is how an effort to reproduce would lead to producing a
complex stalk (23). The question could be settled by evidence on
the relative importance of personal and kin effects in the field.
The two hypotheses differ in the proposed role of prestalk

cells: are they being selected to reproduce directly or instead
indirectly through giving aid to kin? This results in contrasting
predictions about the strength of purifying selection in prestalk
and prespore cells.
To test the hypothesis that indirect kin selection is irrelevant,

and all selection on prespore cells is through direct reproduction
(22, 23), we use theory about how selection operates on condi-
tionally expressed genes. Other things being equal, a gene should
be selected more weakly and be more variable in proportion to
the fraction of individuals that express it (37). For example,
genes preferentially expressed in rarer morphs of pea aphids
show relaxed purifying selection (38). In D. discoideum, where
80% of the cells in an aggregate become prespore cells, and 20%
become prestalk cells, purifying selection against mildly delete-
rious mutations will be four times less effective in prestalk cells
than in prespore cells. Other things being equal, genes expressed
primarily in prestalk cells should therefore be four times more
polymorphic than genes expressed mainly in prespore cells (37),
assuming similar initial distributions of mutant effects on fitness.
[Actually, the difference may be more extreme than 4:1 because
we have not accounted for the fact that, even in this direct se-
lection hypothesis, prestalk is viewed as a best-of-a-bad-job
strategy (22)]. Note that many other genes in the genome may
also be conditionally expressed, to unknown degrees. That is why
we do not use all genes in this test, but instead compare prestalk
genes against prespore genes—these are expressed in the same
circumstance (fruiting) but differ in their relative proportions.
The alternative kin-selection hypothesis is that all selection on

prestalk cells is indirect selection operating through effects on
related spores. Here, theory predicts that the effect of indirect
selection, relative to direct selection, is diluted by a factor of the
relatedness coefficient (39, 40). A probable empirical example is
that honeybee worker genes show lower nonsynonymous vari-
ability than queen genes (41). For D. discoideum fruiting bodies,
relatedness is high in nature, with two estimates based on molecular

markers yielding 0.97 and 0.86 (16). At these levels, prestalk genes
under pure kin selection should be only 1.03–1.17 times as variable
as prespore genes under direct purifying selection.

Results
Cheating. Using four pairs of wild clones, we searched for genes
changing expression in chimeric mixtures. For each clone pair,
the chimeric treatment involved mixing the two clones in equal
proportions under starving conditions so they would form fruit-
ing bodies. The controls were identical except that each clone
was allowed to form fruiting bodies on its own, starting from the
same total number of cells. We harvested RNA at the tight ag-
gregate stage, a key stage for stalk–spore differentiation, after
which gene expression patterns switch abruptly (42, 43). Using a
generalized linear model (GLM) that accounts for effects of
clone pair, library, and sequencing batch, we identified 79 genes
that consistently and significantly differed in expression between
chimeras and controls at false discovery rate = 0.10 (20 up-
regulated in chimeras, 59 down-regulated; Dataset S1). It is in-
teresting to note that the change in expression between chimeras
and controls was correlated (Pearson’s r = 0.311, P < 0.001) with
expression changes in a previous experiment where chimeras
differed only at the tgrB1 and tgrC1 cell adhesion loci that control
clonemate recognition (44), suggesting that our response is at
least partly influenced by that recognition system.
We tested the hypothesis that these chimera-biased genes

would show conflict-generated high rates of adaptive evolution
of coding sequence using the program DFE-α (45). It estimates a
modified McDonald-Kreitman (46) statistic, α, by measuring the
proportion of nonsynonymous sites between species that have
been fixed by selection, using within-species polymorphisms to
provide an expectation if they were due only to neutral evolution
and purifying selection. The program improves on typical
McDonald-Kreitman tests by allowing α to be estimated over
entire gene sets, yielding greater power, and by using the esti-
mated frequency distribution of polymorphisms to better account
for low-frequency deleterious alleles (47).
We used 15 D. discoideum genomes from Virginia and Texas

to estimate nonsynonymous and synonymous polymorphism
within species and the corresponding fixed differences relative to
a diverged Costa Rican outgroup clone, S6B, which is probably a
different species (48). As predicted by the conflict hypothesis,
adaptive evolution is significantly higher in the genes that change
expression in chimeras than in genes that do not (Fig. 1, α =
0.149 versus −0.723, P = 0.002 permutation test). This is primarily
due to genes up-regulated in chimeras, although they are not
significantly different from down-regulated ones (Fig. 1). We
found similar results using an alternative measure of adaptive
evolution, ωA (49) (Table S1). Balancing selection is another
possible outcome of cheating (33), but we found no support for
this in three measures of balancing selection. Chimera-biased
genes and other genes were not different, using permutation
tests, for either fst (P = 0.387) or Tajima’s D (P = 0.514). Fay and
Wu’s H (P = 0.0172) did show a difference, but one indicating
directional selection, in agreement with our other results. In this
case, the signature of selection was entirely due to genes up-
regulated in chimeras (P = 0.0096), and not those that were
down-regulated in chimeras (P = 0.759) (Table S1).

Kin Selection or Direct Selection. The results above support the
hypothesis of cheater-driven molecular evolution, but what about
altruism? To test the importance of direct selection versus in-
direct (kin) selection, we used previously identified (42) genes
with significantly greater expression in prestalk cells than pre-
spore cells, or vice versa. To eliminate effects of selection in
other contexts, we also tested a second set (n = 145, 113; see
Dataset S1), in which we removed genes with any expression
during the vegetative (single-cell) stage. We estimated their
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variability (Table S2) using the same 15 D. discoideum genomes
(33). Because the predictions apply only to nonneutral sites
(neutral mutations are not subject to purifying selection), we
focus on the nonsynonymous diversity, πN. If a large fraction of
nonsynonymous mutations were neutral, we would need to also
exclude those, but that is not the case. (From the DFE-α program
these fractions are low for prestalk and prespore genes combined:
f = 0.127 and f = 0.140, with and without vegetative expression,
respectively; Table S2.) For the two gene sets, the ratios of non-
synonymous diversity, πN, for prestalk genes to prespore genes
(prestalk πN: prespore πN) are 0.914 and 0.771. These are not
significantly different from the two predicted values under kin se-
lection (1.03, 1.17) but significantly differ from the value of 4 pre-
dicted by the direct selection hypothesis (Fig. 2 and Table S3).
The conclusion in favor of kin selection is not altered by two

potential caveats. First, the expected ratio for two sets of random
genes is a ratio of 1, close to our kin selection prediction, but the
prestalk and prespore genes are not random sets. Compared with
genes in the whole genome (πN = 0.00019), both sets of prespore

plus prestalk genes are significantly more variable (including
vegetative expression, πN = 0.00021, P = 0.04; without vegetative
expression, πN = 0.00027, P = 0.03, permutation tests). More-
over, the data very decisively reject the direct-selection pre-
diction of a ratio of 4 or higher. The maximum values obtained in
10,000 bootstrap samples were only 2.24 and 1.48 for our two
prestalk–prespore gene sets (Table S3).
Second, our direct-selection prediction of fourfold greater

variation in prestalk genes may be too extreme, given that even
our prestalk-enriched genes have some expression in prespore
cells. Selection on these prestalk genes may therefore include a
minority component of direct selection in prespore cells, which
should tend to make selection in the two gene sets somewhat
more similar. However, a far more conservative prediction is
available concerning the correlation between diversity πN and
degree of prestalk versus prespore expression. The kin selection
hypothesis predicts there should be little or no correlation be-
cause, with relatedness near 1, selection intensity would be roughly
equal in the two tissues. In contrast, since the direct selection
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Fig. 1. Genes that change expression in chimeric mixtures show elevated rates of adaptive evolution α. Each violin plot shows a Gaussian kernel-density plot
of 1,000 bootstrap replicates of α, the median, the interquartile range, and the 95% range or confidence interval (Table S1) (A) Bootstrap distributions for the
78 chimera-biased genes and for samples of 78 from genomic background genes. The chimera-biased genes show significantly higher α (P < 0.002 permu-
tation test). (B) Bootstrap distributions for the chimera-biased genes separated into the 19 up-regulated genes and 59 down-regulated genes, both of which
are significantly different from background genes (up-regulated P = 0.006, down-regulated P = 0.034, permutation tests).
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Fig. 2. Nonsynonymous diversity πΝ supports kin selection, not direct selection, in prestalk cells. Violin plots (Fig. 1) for distributions from 10,000 resamples of
the prestalk πN: prespore πN, the ratio of nonsynonymous nucleotide diversity πN for genes expressed significantly more in prestalk to πN for genes expressed
significantly more in prespore. (A) All prestalk-biased genes (n = 992) and prespore-biased genes (n = 879). (B) Prestalk-biased genes (n = 145) and prespore-
biased genes (n = 113) that are not expressed in the vegetative stage (Table S3).
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hypothesis implies stronger purifying selection on prespore genes,
prestalk genes should be more variable, and the correlation should
be positive. In fact, the correlation is weak and negative (with
vegetative expression τ = −0.062, P = 0.00025, without τ = −0.096,
P = 0.039; Kendall’s tau correlation between πN and log2 of the
prestalk: prespore expression ratio), again strongly rejecting the
direct selection hypothesis.

Discussion
Testing adaptation is rarely simple because it requires un-
derstanding how the organism interacts with its natural envi-
ronment. For social behavior, this is particularly difficult because
it requires understanding the natural social context. For animals,
we can at least observe their behavior in their natural environ-
ment. Microbes, however, are more difficult to observe, and they
are typically studied in laboratory environments that may not
accurately reflect their natural contexts.
For example, the social amoeba Dictyostelium discoideum has

usually been studied in a uniclonal social context, with most work
on the species being carried out on the clonal descendants of a
single natural isolate, NC4. This obscured the possibility of in-
teresting social behaviors, like cheating (18, 19) and kin recog-
nition (24, 50, 51), that only revealed themselves when multiple
clones were studied in mixtures. However, the studies are still
carried out in the laboratory and might therefore miss impor-
tant elements of the natural context. This has led to contro-
versies about the adaptiveness of both cheating and altruism in
D. discoideum (20–23).
Although one cannot usually observe microbial social adap-

tations operating in nature, molecular signatures of population
genetics and molecular evolution can sometimes provide an al-
ternative approach. Social conflict is expected to lead to rapid
evolution of genes involved in the conflict. In D. discoideum the
genes most likely to be specialized for cheating conflict are those
that change expression in chimeric mixtures. We show that these
genes do indeed show more rapid adaptive evolution, supporting
the natural importance of cheating. Note that these have not
been confirmed as cheating genes. However, that seems the only
obvious reason why this particular set of genes should show more
adaptive evolution. Similarly, the alternative hypotheses of kin-
selected altruism versus direct reproduction are predicted to
leave different signatures with respect to the amount of non-
synonymous variation in genes that are particularly expressed in
prestalk cells. The results strongly reject the direct selection
prediction and support the kin selection prediction. Thus, it
appears that both cheating and kin selection are not just labo-
ratory phenomena but are also important in the wild.
The main assumption underlying our analyses is that the ob-

served differences in evolution are due primarily to the relative
strengths of selection between the gene sets. Because we are
comparing gene categories in the same population, it is reasonable
to assume that other forces like drift and migration are equal. It is
less certain that mutations must be equal, specifically, the distri-
bution of selective coefficients of mutants. Although there is no
specific reason to believe this assumption should fail for our gene
sets, it is more questionable, and it is therefore good that kin se-
lection and cheating are supported by other kinds of studies.
With respect to kin selection, there is evidence for all three

components of kin selection. Stalk cells pay the large cost of
sacrificing their lives to produce a stalk. Other cells have been
assumed to benefit from the stalk by gaining more access to
dispersers, an assumption supported using a model arthropod
disperser in the laboratory (15). Finally, we know that re-
latedness within fruiting bodies is high in nature (16) in part due
to kin recognition (50) but probably also due to passive pop-
ulation structure (25, 52, 53).
However, high relatedness makes our other finding—evidence

for cheating in the wild—more surprising because most fruiting

bodies are clonal. However, it should be remembered that se-
lective forces that operate rarely, for example, certain pathogens,
can still exert important selective forces. There is also some prior
evidence with respect to cheating. We know that unequal con-
tribution to spores is common among laboratory clones (18, 19),
that mutants in many genes affect this (27), and that cheating
mutants spread readily under conditions of low relatedness (17,
27). High relatedness in the field must prevent some cheating,
especially from high-cost obligate cheaters that cannot fruit on
their own (16). However, this high cost does not apply to fac-
ultative cheaters that cheat by changing expression only when a
foreign partner is present, so selection might still favor some of
these cheaters. Our results suggest that this is indeed the case.
Additional supporting data come from several sources. A mu-
tation accumulation experiment showed that random mutations
tend to decrease cheating ability, which is the result expected if
cheating is a fitness component (54). The presence of kin rec-
ognition and segregation seems best explained as a partial so-
lution to the problem of foreign clones that might do harm (55).
Finally, clones in chimeras show possible cheating adaptations.
Chimeric slugs travel less far, consistent with cells trying to stay
out of the front region that will form the stalk (56). Chimeras
also produce more spores and higher spore-to-stalk ratios (19).
Alternative explanations are possible for most of these phenomena.
For example, chimeras could have reduced slug migration due to
lower cell–cell adhesion, a side-effect of mismatches at their kin-
recognition tgrB1/tgrC1 loci (57). Collectively, however, all these
phenomena build a consistent case for the importance of cheating
in the wild.
The use of molecular signatures like these might also be

employed in other controversies about microbial social evolution
(4–11). To be useful, it is necessary to identify a target set of
genes hypothesized to be subject to a particular kind of selection
and then measure a reliable signature of that kind of selection.
This might not always be feasible for some systems and ques-
tions, but this approach does add a valuable tool to other ap-
proaches such as making the laboratory setting more natural and
conducting experiments in the field (3). When it is feasible, the
method of using population-genetic or molecular-evolution sig-
natures is superior in one important respect. It yields a more
comprehensive record of selection, one that is automatically in-
tegrated over the full geographical range sampled and over very
long periods of time.

Materials and Methods
Amoeba Samples. To detect genes changing expression in chimeras, we tested
four pairs of D. discoideum strains or clones, originally isolated from soil
from Mt. Lake Biological Station in Virginia: QS6 with QS160, QS4 with
QS174, QS18 with QS154, and QS17 with QS157, a sufficient number to exclude
effects that are idiosyncratic to particular clone pairs. For molecular evolution
analyses we used the genomes of 16 strains. For polymorphism data, we used
15 D. discoideum strains, eight strains from Virginia and seven strains from
Texas, all those that were available after excluding populations with only one
strain (33). For divergence estimates, we compared these strains to a tropical
outgroup clone S6B from Costa Rica, probably a separate species (48).

Chimera-Biased Genes: RNA Sequencing. We prepared samples from four
strain pairs using the following procedures. We grew amoebas on SM/5 agar
plates [2 g glucose, 2 g BactoPeptone (Oxoid), 2 g yeast extract (Oxoid), 0.2 g
MgCl2, 1.9 g KH2PO4, 1 g K2HPO4 and 15 g agar per liter] with ∼2 × 105

spores and a food bacterium Klebsiella pneumoniae (250 μL at 1.5 optical
density). When amoebas were in log-phase growth, we used a sterile plastic
spatula to scrape cells from the plates into KK2 buffer and washed three
times to remove most of the food bacteria. For each replicate, we spread 108

cells in 1,000 μL KK2 onto 47-mm-diameter nitrocellulose filters (Millipore)
for each of the two unmixed clonal strains and 108 total cells for the
50:50 chimeric mix of strains, resulting in a trio of samples (two clonal, one
chimeric). When 90% of the cells were in the tight aggregate stage, we
washed cells off of each filter with KK2 buffer into a 5× volume of RNAlater
for storage at 4 °C . For each strain pair, we repeated this process three times

Noh et al. PNAS | March 20, 2018 | vol. 115 | no. 12 | 3099

EV
O
LU

TI
O
N



on different dates. We extracted RNA using a protocol for cytoplasmic RNA
purification from animal cells with a Qiagen RNeasy Mini Kit, with modifi-
cations based on Kaul and Eichinger (58). From here, we prepared se-
quencing libraries using the standard Illumina protocol for the poly-A–tailed
stranded mRNA library prep kit. We constructed three batches of libraries,
each run in one sequencing lane, with each containing a full replicate of the
experiment: two clonal and one chimeric sample for all four strain pairs.
Sequencing was done on an Illumina Hiseq2500 for 50-bp single-end reads
at the Washington University in St. Louis Genome Technology Access
Center (GTAC).

Chimera-Biased Genes: Alignment and Differential Expression. After quality
control of raw reads (removal of reads shorter than 12 bp and those with any
N nucleotides), reads from each library were mapped onto the D. discoideum
reference genome (downloaded Dec 2014 from Ensembl Protist v1.25). Be-
fore alignment, we masked the known duplicated region on chromosome
2 of the AX4 reference genome (2: 3016083–3768654) using bedtools v2.19.1
(59). We used GSNAP v2014-12–17 (60) using default alignment parameters,
except for only allowing a single alignment path to be followed to avoid
chimeric reads (npaths = 1). GSNAP uses an oligomer chaining method
combined with dynamic programming to align transcript reads to genomic
sequence and is splice junction aware. We derived splice junctions based on
the D. discoideum GFF3 gene feature annotations (downloaded September
2015) from dictybase.org (61). We used Picard v1.128 (downloaded from
broadinstitute.github.io/picard) to sort alignments and fix read groups. We
used R v3.2.1 (62) and Bioconductor package ShortRead v1.26.0 (63) to assess
sequence read quality statistics. We excluded one replicate of the strain pair
QS6 and QS160 from our analyses because the bamQA report generated by
ShortRead indicated it did not meet quality standards. We then used RSeQC
v2.5 (64) to look at alignment statistics and read distributions across genomic
features. We had aligned 5.7–28.1 million (median 10.3) read tags or reads
split by indels per library, and 4.9–27.3 million of these were aligned to
annotated coding genes.

We extracted read counts from uniquely mapped reads using HTSeq
v0.5.4p5 (65). Only reads with the correct strand orientation and mapping
quality above 20 were counted. We imported these counts into R and ex-
amined the correlation between replicates within each strain pair across all
expressed genes. The correlations across pairwise comparisons of replicates
within strains were generally very high (mean r = 0.94), while the excluded
sample showed a much lower correlation (r = 0.61), justifying our decision to
omit it from further analysis.

We used DESeq2 v1.8.1 (66) to test for evidence of significant differential
expression. We tested 9,089 genes, using a GLMmodel (count ∼ batch + pair +
condition), with sequencing lane and library preparation batch as the factor
batch, strain pair identity as the factor pair, and the clonal vs. chimeric con-
dition of aggregation as the factor condition. DESeq2 uses a negative binomial
distribution to model read counts and correct for sequencing library size using
median-of-ratios size factors and uses empirical Bayes shrinkage estimators
that correct count variance in individual genes based on other genes with
similar expression levels (66).

Prespore and Prestalk Genes. Our tests of the roles of direct and indirect (kin)
selection in the evolution of stalk cells require identification of sets of genes
with expression that is relatively specialized in prestalk and prespore cells. We
used the candidate prespore and prestalk genes reported by Parikh et al. (42)
with slightly reduced sample sizes after removing noncoding elements (see
below). This study had separated prestalk and prespore cells and performed
RNA-seq to determine which genes were significantly more expressed by
each cell type (42). To reduce the influence of selection that occurs during
the vegetative stage, we also tested a more restrictive set of 113 prespore
and 145 prestalk genes that had no gene expression detected in vegeta-
tive cells.

Polymorphism and Divergence. We tested whether our candidate chimera-
biased genes show high rates of adaptive evolution consistent with an
arms race scenario driven by social conflict. We cleaned and clipped raw
Illumina reads from the 16 D. discoideum strains using ngsShoRT v2.2 (https://
research.bioinformatics.udel.edu/genomics/ngsShoRT/). We generated mpileup
files that merged strains within each geographic location using samtools
v0.1.19 (67, 68), with adjusted mapping quality (-C 50) and a minimum
basecall quality of 30 (-Q 30). We used Varscan v2.3.9 (69) to call variants
from these merged mpileup files. We specified a minimum coverage of
20 reads per SNP and filtered for strand bias at a P value of 0.01. We then
resplit the VCF file by strain and reconstructed the sequences of over
12,000 genes using GATK FastaAlternateReferenceMaker. We used custom

scripts to convert these genomic FASTA files into coding sequences by re-
moving introns and reverse complementing as necessary. Because our
downstream tests assume that genes are coding, we removed noncoding
RNAs, pseudogenes, and transposable elements as annotated in the
D. discoideum genome (61, 70). This eliminated one of our chimerism genes
from further analyses.

We used PolyMORPHOrama (71) to estimate average pairwise nucleotide
diversity (π) using a Jukes-Cantor correction (72) and counted the numbers of
polymorphisms per site class, both nonsynonymous (Pn) and synonymous
(Ps). PolyMORPHOrama also generated the allele frequency spectra that we
used in estimates of Tajima’s D (73), Fay and Wu’s H (74), and other down-
stream analyses of molecular evolution (see below). Next, we created a
consensus FASTA of the 15 wild clones for each gene for comparison with
S6B as outgroup, using ancestral sequence reconstruction method imple-
mented by codeml (runmode = 0, CodonFreq = 2) in PAML v4.8 (75) and a
custom Perl script. From this, we used codeml (runmode = −2, CodonFreq =
2) to generate our pairwise estimates of Dn and Ds. We used vcftools
v0.1.12a (76) to estimate Weir-Cockerham’s fst (77) directly from VCF files.
We imported these data into R and identified the genes associated with
each variant using ChIPpeakAnno v3.2.2 Anno (78).

Molecular Evolution Analyses. We assessed the relative strength of purifying
selection on prestalk and prespore genes by taking the ratio of their
nonsynonymous π’s: prestalk πN: prespore πN. The mean π’s are calculated
for the numerator and denominator before dividing to reduce variance
and eliminate zero denominators. This ratio was tested against predicted
values of 4 for direct selection on prestalk genes, versus 1.025 and 1.165 for
indirect selection on prestalk genes (the reciprocals of two relatedness
estimates).

To test for adaptive selection on genes up-regulated in chimeras, we used
tests of selection based on the McDonald-Kreitman test (46), originally in-
stituted as a 2 × 2 Fisher’s Exact test to compare nonsynonymous (Pn) to
synonymous (Ps) polymorphism to nonsynonymous (Dn) to synonymous (Ds)
divergence for a single gene. Related metrics have been developed to
summarize the effects of numerous selective events over multiple genes.
These include: α, the proportion of nonsynonymous substitutions driven to
fixation by positive selection (45, 79, 80); ωa, the rate of adaptive fixation
relative to neutral fixation (80); and ƒ, the proportion of nonsynonymous
mutations that are effectively neutral. We generated these four parame-
ters for our gene sets with the maximum likelihood method of Eyre-Walker
and Keightley (45), implemented in the command-lined version of DFE-α
v2.15 (www.homepages.ed.ac.uk/pkeightl/). We used a custom Perl wrapper
to sum the allele frequency spectra generated by PolyMORPHOrama, in-
corporate divergence information, and perform either permutations
or bootstrapping.

Statistics. Confidence intervals for all molecular evolution parameters are
obtained by bootstrapping. From the i genes contributing to a statistic X,
we repeatedly drew samples (either 1,000 or 10,000; see below) of i genes
with replacement, recomputed X from each sample, and defined the
95% confidence interval as between the upper and lower 2.5% of the
distribution.

Statistical tests for molecular evolution parameters were either bootstrap
tests (tests against a predicted value Y) or permutation tests for differences
between two samples. For a test of a difference in a statistic between two
samples, X1–X2, based on i and j genes, we randomly drew, without re-
placement, samples (either 1,000 or 10,000; see below) of i and j genes from
the total of i + j genes and recalculated the difference X1–X2 for each. For
comparisons against the genomic background, we randomly drew, without
replacement, samples of i genes from the total of i + j genes. P values were
calculated as the proportion of times the permuted difference was more
extreme than zero in the direction predicted. For two-tailed bootstrap tests
of an estimate X1 against a predicted value Y, we repeatedly drew with
replacement samples of i genes from the i original genes and recalculated
X1. From this distribution, the percentage in the shorter tail cut off by Y,
doubled, is the two-tailed P value.

For π, Tajima’s D, Fay and Wu’s H, and fst, we drew 10,000 resamples.
Because α and other site frequency spectrum metrics required extensive
computation (rerunning the DFE-α program) for each replicate, we drew
1,000 resamples.
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