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This state-of-the-art review article aims to highlight the most recent evidence about the therapeutic options of surgical necrotizing
enterocolitis, focusing on the molecular basis of the gut-brain axis in relevance to the neurodevelopmental outcomes of primary
peritoneal drainage and primary laparotomy. Current evidence favors primary laparotomy over primary peritoneal drainage as
regards neurodevelopment in the surgical treatment of necrotizing enterocolitis. The added exposure to inhalational anesthesia
in infants undergoing primary laparotomy is an additional confounding variable but requires further study. The concept of the
gut-brain axis suggests that bowel injury initiates systemic inflammation potentially affecting the developing central nervous
system. Signals about microbes in the gut are transduced to the brain and the limbic system via the enteric nervous system,
autonomic nervous system, and hypothalamic-pituitary axis. Preterm infants with necrotizing enterocolitis have significant
differences in the diversity of the microbiome compared with preterm controls. The gut bacterial flora changes remarkably prior
to the onset of necrotizing enterocolitis with a predominance of pathogenic organisms. The type of initial surgical approach
correlates with the length of functional gut and microbiome equilibrium influencing brain development and function through
the gut-brain axis. Existing data favor patients who were treated with primary laparotomy over those who underwent primary
peritoneal drainage in terms of neurodevelopmental outcomes. We propose that this is due to the sustained injurious effect of
the remaining diseased and necrotic bowel on the developing newborn brain, in patients treated with primary peritoneal
drainage, through the gut-brain axis and probably not due to the procedure itself.

1. Introduction

Necrotizing enterocolitis (NEC) is a devastating disease of
mainly premature neonates and the most common gastroin-
testinal emergency in the neonatal intensive care unit
(NICU). The overall incidence of NEC is about 1 in 1000 live

births [1]. More than 85% of all NEC cases occur in very pre-
mature (<32 weeks of postmenstrual age) and particularly in
the extremely low birth weight (ELBW) neonates [2]. NEC is
characterized by inflammation and ischemic necrosis of the
intestinal mucosa as well as by invasion of enteric gas-
forming organisms into the intestinal wall. The population
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of neonates at risk for developing NEC has increased due to
recent advances in neonatal care allowing for survival of a
greater number of extremely premature neonates [3, 4].

The two main therapeutic options in surgical NEC are
primary laparotomy (PL) and primary peritoneal drainage
(PPD). Both techniques are associated with significant
mortality and morbidity; however, it remains unclear which
should be the preferred method. Besides saving the maxi-
mum bowel length/surface area, neurologic sequelae is a
major concern and is thought to be associated with the
level of systemic inflammatory response impacting on the
patient’s nervous system.

The purpose of this article is to review the existing
evidence for the treatment of surgical NEC comparing PPD
to PL as the initial approach, focusing mainly on the neuro-
developmental outcomes. The treatment, prognosis, and
neurodevelopmental outcomes will be outlined first. The
pathobiology of NEC and gut-brain axis (GBA) with pro-
posed molecular pathways will be discussed next, in depth.

1.1. Treatment and Prognosis. The treatment of medical NEC
focuses on intensive supportive care along with antimicrobial
therapy, discontinuation of feeding with initiation of paren-
teral nutrition, and expectant management [5]. Therapeutic
management of surgical NEC with intestinal perforation
may range from peritoneal drain placement to multiple
laparotomies with or without ostomy creation [6, 7]. The
modality chosen is heavily reliant on patient’s stability as well
as the surgeon’s experience with each approach. It remains
unclear which procedure is associated with the optimal out-
comes for the patients.

According to the limited existing data, mainly from ret-
rospective studies, PPD alone is associated with increased
overall mortality compared with PPD followed by secondary
laparotomy or PL. However, this treatment may have been
applied to neonates with the highest degree of overall illness
(Figure 1) [8–10]. Two separate meta-analyses additionally
showed increased mortality rates in PPD compared to PL
[11, 12], but no statistically significant difference was found
in the meta-analysis of Rao et al. [13].

Rao et al. used the standards of the Cochrane Neonatal
Review Group in the interpretation of the data [13]. The
authors suggested that the significantly prolonged time to full
enteral feeds in the PPD group may be explained by the con-
tinued presence of necrotic gut and the associated inflamma-
tion [13]. We believe that the sustained injurious effect of the
remaining diseased and necrotic bowel may influence the
newborn brain through the GBA. Therefore, it is imperative
to review the current literature concerning the neurodevelop-
mental outcomes in medical and surgical NEC, the pathobi-
ology of NEC, and the molecular basis of GBA.

1.2. Neurodevelopmental Outcomes. Several studies have
shown significant neurodevelopmental compromise among
survivors with NEC [14, 15]. Neonates with NEC that
are managed surgically may have a higher incidence of
neurodevelopmental dysfunction compared with neonates
that are treated medically only [16–19] (Figure 2). Merhar
et al. reported that preterm infants with surgical NEC/

spontaneous intestinal perforation (SIP) had more severe
brain injury on brain magnetic resonance imaging (MRI) at
term compared with infants with medical NEC [20].

In regard to the impact on neurodevelopment, Blakely
et al. have conducted the only prospective, multicenter
cohort study evaluating neurodevelopmental outcomes at
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Figure 1: Mean mortality rates in the primary peritoneal
drainage only, primary peritoneal drainage followed by secondary
laparotomy, and primary laparotomy surgical approaches in
preterm neonates with necrotizing enterocolitis in three different
studies. In-hospital and overall mortality rates were included
[8–10] (n = 194,735).
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Figure 2: Adjusted odds ratio in two studies for mental
developmental index< 70 and psychomotor developmental index
< 70 in surgical and medical necrotizing enterocolitis [16, 17].
Patients with medical necrotizing enterocolitis have equal possibility
for mental developmental index or psychomotor developmental
index< 70 compared to the control group without necrotizing
enterocolitis. Patients with surgical necrotizing enterocolitis were
more likely to have mental developmental index or psychomotor
developmental index< 70 compared to the control patients (n1 =
1155, n2 = 2948).
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18 to 22 months in ELBW neonates with NEC or SIP that
were treated surgically with either PPD or PL. PL appears
to be associated with better neurodevelopmental outcomes,
and this may be related to lower rates for the combined out-
come of mortality or neurodevelopmental impairment (NDI)
compared to those who underwent PPD [21]. A preoperative
diagnosis of NEC (versus SIP) was associated with adverse
neonatal outcomes (death and death or prolonged total PN)
but not with NDI. There was no statistical significant differ-
ence in the combined outcome of death and NDI or NDI
alone between infants with NEC and SIP [21]. Therefore,
the better neurodevelopmental outcome in the PL group
was not affected by including both NEC and SIP cases in
the population of the study. However, since the pathophysi-
ology of NEC and SIP is different, it is important to launch
a large multicenter clinical trial that includes only NEC cases
in order to provide the clearest possible NDI outcome
between the two surgical approaches in NEC. The risk of
NDI was similarly increased among infants with surgical
NEC and SIP in a retrospective study [22]. On the other
hand, there is existing evidence supporting worse neurodeve-
lopmental outcomes in neonates with intestinal perforation
caused by NEC, as compared with SIP [23]. As a result, the
better neurodevelopmental outcome of PL may be more rel-
evant for NEC, rather than SIP cases.

Roze et al. concluded that neonates with NEC treated
with PL and enterostomy are associated with worse neurode-
velopmental outcomes by the age of 6–13 years compared to
neonates that received PL and primary anastomosis [24].
Major surgery including laparotomy in VLBW infants is
associated with worse neurodevelopmental outcomes com-
pared with infants who underwent minor surgery includ-
ing peritoneal drainage. The role of general anesthesia is
implicated but remains unproven [25]. Increased neuroapop-
tosis and subsequent neurocognitive or behavioral deficits
were induced from the administration of general anesthetic
agents to developing animals [26, 27]. However, spinal
anesthesia did not produce increased neuroapoptosis in
developing rats [28].

The Victorian Infant Collaborative Study Group
included in their study extremely preterm or ELBW infants
who underwent surgery and required general anesthesia dur-
ing their primary hospitalization. They were assessed for sen-
sorineural impairments at 5 years of age. The overall rate of
sensorineural disability was significantly higher in children
who had been operated on compared with those who had
not [29]. Filan et al. included in their study preterm infants
that were categorized into either a nonsurgical group or a
surgical group. After adjustment for birth gestation, BW z-
scores, sex, and duration of intermittent positive pressure
ventilation, there was no difference in the white matter injury
and mental developmental index (MDI) at 2 years [30].

1.3. Pathobiology of NEC. The pathogenesis of NEC is
multifactorial and likely secondary to immune responses
to intestinal microbiota by the premature intestinal tract,
leading to inflammation and injury [31]. Gut microflora is
different between preterm and full-term infants with a
paucity of commensal bacteria at early gestational age

(GA) [32]. Nonphysiologic initial microbial colonization of
the premature gut and early dysbiosis is strongly involved
in the pathogenesis of NEC [33, 34]. Preterm infants with
NEC have significant differences in the diversity of the
microbiome compared with preterm controls [35]. The
gut bacterial flora changes remarkably prior to the onset
of NEC with a predominance of pathogenic organisms
[35–37]. Vaginal or cesarean delivery seems to have an influ-
ence on the diversity and function of the infant’s microbiota
[38]. Single nucleotide polymorphisms in several genes,
including the interleukin- (IL-) 4 receptor [39], IL-18 [40],
and the nuclear factor kappa B1 (NF-κB1) variant [41], are
associated with the severity of NEC. The binding of NF-κB
to the inhibitor kappa B (I-κB) contributes to the tolerance
of the gastrointestinal tract to certain commensal bacteria
[42]. Once NF-κB dissociates from I-κB, it is able to enter
the nucleus, where it controls the transcription of inflamma-
tory mediators [43, 44]. This dissociation is mediated by the
toll-like receptor 4 (TLR4). TLR4 is overexpressed in the gut
epithelial cells of premature neonates. Recognition of lipo-
polysaccharide (LPS) by TLR4 is associated with an increase
in the expression of NF-κB and proinflammatory mediators
[45]. Recently, a study noted a novel association between a
hypomorphic variant in an autophagy gene (ATG16L1) and
NEC in premature infants [46]. Decreased autophagy arising
from genetic variants may confer protection against NEC
[46]. Injury to Paneth cells (PCs) contributes to the patho-
genesis of NEC. These specialized epithelia protect intestinal
stem cells from pathogens stimulating their differentiation,
stabilizing the intestinal microbiota, and repairing the gut
[47]. Destruction of PCs can lead to bacterial invasion and
severe inflammation [47]. Brain TLR4 activation by LPS
entering the systemic circulation after enteric bacterial trans-
location is another potential role of this receptor in the model
of GBA [48].

1.4. Molecular Basis of GBA. It has been proposed that bowel
injury might initiate systemic inflammation potentially
affecting the developing central nervous system (CNS) [16].
The concept of a GBA has existed for more than 3 decades
[49]. The Human Microbiome Project aims to reveal oppor-
tunities to improve human health through monitoring or
manipulation of the human microbiome [50] and has been
associated with recent and rapid advances in GBA-related
research [51]. The data on the GBA is primarily associative,
and more work needs to be done in order to support causal-
ity. The hypothalamic-pituitary axis (HPA), the autonomic
nervous system (ANS), and the CNS are integrated periph-
eral components of the GBA [52]. The sympathetic and
enteric nervous systems are mainly responsible for the inter-
action between the peripheral and the central components of
the GBA in a bidirectional model [53, 54]. The limbic system,
and specifically the hippocampus, is the locus inside the CNS
that is mainly responsible for gut control as shown in studies
in neonatal mice [55–57]. Neurobehavioral disorders during
childhood seem to be associated with hippocampal injury in
preterm infants [58]. The enteric nervous system (ENS)
residing within the intestinal wall communicates with the
CNS through the vagus nerve, root, and nodose ganglia
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[54, 59]. Gut microbes might influence brain development
and function through the ENS [53]. Alterations in behavior
and cognition are associated with the differential microbial
composition, since some gut-microbial products can act as
“neuro-nucleo-modulins” and thereby affect the epigenetic
landscape of their host’s brain cells which, in turn, has
effects on host behavior [60]. Signals about microbes in
the gut are transduced to the brain and the limbic system
via the ENS, ANS, and HPA [61]. The afferent and effer-
ent vagus nerves play an important role in this bidirec-
tional communication [62, 63]. The efferent vagus nerve
is associated with the regulation of cytokines in the gut
leading to inflammation and loss of the intestinal epithelial
barrier function allowing bacterial invasion [63, 64]. The
function of dendritic and T cells that are located throughout
the intestinal wall and can regulate an inflammatory or anti-
inflammatory response is modulated by neuropeptides such
as vasoactive intestinal polypeptide and norepinephrine
[65] (Figure 3).

Gut microbes and probiotic bacteria influence brain
development and function [53, 66–68]. Trials of probiotics

in neonates showed a reduction in the relative risk for
NEC [66–68] that may be due to the release of inhibitors
of tumor necrosis factor-alpha (TNF-α) and NF-κB from
the probiotic bacteria [69, 70]. Blocking the transport of
damaging biomolecules via the GBA is another potential
mechanism favoring the use of probiotics in the prevention
of brain injury [71, 72].

Experimental models of intestinal injury have shown that
alteration in gut microbiota may cause brain injury and
inflammation. Induced precocious gastrointestinal barrier
maturation caused low-grade systemic inflammation and
altered short-chain fatty acid utilization in the brain in
suckling rats [73]. Changes in neural tissue microstructure,
particularly in white matter structural integrity, were found
to be associated with diet-dependent changes in gut micro-
biome populations [74]. Imbalances of the HPA axis caused
by intestinal microbes resulted in an anxiety-like behavioral
phenotype in mice [75]. The antidepressant effects of two
enantiomers of ketamine in chronic social defeat stress
model of depression in mice may be partly mediated by
the restoration of the gut microbiota [76].
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Figure 3: Proposed mechanism in the pathobiology of the gut-brain axis. The vagus nerve contributes to the bidirectional communication
between the enteric nervous system and the limbic system inside the central nervous system. Gut microbes may influence brain
development and function through the enteric nervous system. Brain TLR4 activation by LPS entering the systemic circulation is a
potential role of this receptor in the model of gut-brain axis [34].
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Intestinal microbiota is affected by the administration of
antibiotics. There is currently a high degree of variability in
the antibiotic regimen for the treatment of NEC, with no reg-
imen appearing superior over another [77]. Prolonged
administration of antibiotics is related to adverse neonatal
outcomes [78]. Antibiotics with anaerobic coverage, such as
clindamycin, are associated with the development of intesti-
nal strictures [79, 80]. Bowel structural changes, such as
the development of intestinal strictures, may predispose
to alterations in the gut microbiome population. In addition,
studies have suggested that an overall reduction in the diver-
sity of microbiome as seen following prolonged antimicrobial
therapy is associated with NEC [81, 82]. This finding can be
explained by the direct influence of the antibiotic administra-
tion in the equilibrium of the intestinal microbiota. Changes
in the microbiota population may also initiate systemic
inflammation inside the CNS through the GBA. The type of
initial surgical management of NEC has an impact on the
length of functional gut. The diseased and necrotic bowel is
present in patients treated with PPD, compared to those
treated with PL, and may lead to brain injury and inflamma-
tion through the GBA. Ongoing antibiotic administration
may contribute to further CNS inflammation in patients
treated with PPD.

In summary, predicting outcomes in neonates with
severe NEC is challenging, due to the multiple coexisting
comorbidities of the premature patients. Currently, from
the limited existing body of evidence, it appears that medical
NEC is associated with more favorable neurodevelopment
compared with surgical NEC [16–19] and there is significant
NDI among survivors [14, 15]. Primary anastomosis in PL is
associated with better neurodevelopmental outcomes than
stoma formation [24]. PPD alone is associated with increased
overall mortality compared with PPD followed by secondary
laparotomy or PL [8–10].

The only, to date, prospective cohort addressing the
neurodevelopment following PPD versus PL including data
from 16 clinical centers within the National Institute of
Child Health and Human Development Neonatal Research
Network showed that PL is associated with better neurodeve-
lopmental outcomes and is related to lower rates for the com-
bined outcome of mortality or NDI compared with PPD in
patients with NEC or SIP [21].

We believe that PL is associated with more optimal neu-
rodevelopment because it prevents the sustained injurious
effect of the remaining diseased and necrotic bowel on the
newborn brain through the GBA in patients with NEC.

2. Conclusion

The fulminant nature of advanced NEC in fragile neonates
is a limiting factor in assessing the neurodevelopment out-
comes following PPD versus PL approaches. The added
exposure to inhalational anesthesia in infants undergoing
PL is an additional confounding variable, but requires further
study. In regard to neurodevelopment, it appears that exist-
ing data favor patients who were treated with PL over those
who underwent PPD. We propose that this is due to the sus-
tained injurious effect of the remaining diseased and necrotic

bowel on the developing newborn brain, in patients treated
with PPD, through the GBA and probably not due to
the procedure itself.
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