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Summary
To accelerate genomics research and molecular breeding applications in chickpea, a high-

throughput SNP genotyping platform ‘Axiom�CicerSNP Array’ has been designed, developed

and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified

4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected

using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on

p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a

total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The

developed Axiom�CicerSNP Array was used for genotyping two recombinant inbred line

populations, namely ICCRIL03 (ICC 4958 9 ICC 1882) and ICCRIL04 (ICC 283 9 ICC 8261).

Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03)

and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising

13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for

ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason

phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on

genetic map. Higher precision and potential of this array is expected to advance chickpea

genetics and breeding applications.

Introduction

Ongoing climatic changes that are affecting crop yields drastically

and increasing food demand from ever increasing world popu-

lation would certainly make the scenario worst by 2050 when the

world population would be crossing the count of 9 billion. In

order to feed this huge population and meet the future demands,

it has become necessary to understand the factors involved in

affecting the growth and yield of the crops. Chickpea (Cicer

arietinum L., 2n = 16) is the second most important grain legume

after common bean and third important pulse grown on low-

input marginal lands and known to play a key role in food and

nutritional security globally (Jukanti et al., 2012). Besides its

ability to fix atmospheric nitrogen that improves the soil

nutritional profile, chickpea further plays a pivotal role in yield

and nutritional profile of other crops when involved in crop

rotation programme (Gan et al., 2010). Currently, global chick-

pea acreage in 56 countries covers more than 13.98 mha area

and accounts for a production of 13.23 million tons annually

(FAO 2014). With the impact of various abiotic and biotic stresses,

current average chickpea productivity is <1 t/ha, which is far less

than its actual potential yield of 6 t/ha under optimum growing

conditions. Among these abiotic stresses, terminal drought alone

is known to reduce the annual production by 40% (Ahmad et al.,

2005). During the last five decades, conventional breeding efforts

could enhance the chickpea productivity from 0.6 t/ha (1960) to

0.9 t/ha (2014) (FAO 2014). However, this increase is not enough

to meet the significantly increasing global demand. Therefore,

intervention of modern technology for enhancing the crop

productivity has become essential. Success stories of application

of genomic approaches in enhancing the production among

different crop species confirm the potential of genomics-assisted

breeding (GAB) (Kole et al., 2015; Varshney et al., 2005).

Inspired by the success of GAB, chickpea community also started

to deploy markers for developing superior lines and were able to

develop improved lines with enhanced yield under rainfed

conditions in JG 11 background (Varshney et al., 2013a) and

lines resistant to fusarium wilt and ascochyta blight in the genetic

background of C 214 (Varshney et al., 2014a). Very recently,

efforts to deploy genomic selection for yield-related traits in

chickpea have also been initiated (Roorkiwal et al., 2016).

Advances in next-generation sequencing (NGS) and high-

throughput genotyping technologies have enabled the use of

these technologies at lower cost and offered opportunities to

deliver high-throughput data to capture millions of variations in

genome level. With the availability of draft genome sequence

(Varshney et al., 2013b) and large-scale resequencing efforts

(Thudi et al., 2016a,b), large number of single nucleotide

polymorphism (SNP) markers have become available. SNPs, due

to their abundance at genome-wide level, biallelic and
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reproducible nature, are considered to be the most desirable,

precise and efficient tools for developing high-density genome

scans (Gupta et al., 2008; Wang et al., 1998). SNPs are often

efficiently used to determine the functional relevance of genomic

regions/candidate genes responsible for complex traits in many

crop plants such as rice (Parida et al., 2012), maize (Pace et al.,

2015; Riedelsheimer et al., 2012; Weber et al., 2008) and barley

(Mora et al., 2016).

In order to use huge genomic resources for breeding applica-

tions, there is a dire need of low-cost, high-throughput geno-

typing platforms to construct high-density genetic maps and

undertake QTL analysis. Recent development in the array tech-

nology has brought down the cost of high-throughput genotyp-

ing platforms, thus making it accessible to most of the researchers

and breeding communities engaged in genetic studies and crop

improvement applications. SNP genotyping platforms can be used

for genetic diversity studies, foreground selection, fine mapping,

association mapping, genomic selection and evolutionary studies.

As a result, SNP arrays with large number of SNPs distributed

throughout the genome have been developed and used for

various applications including association mapping, genetic

diversity and genomic selection in several agronomically impor-

tant crops (see Rasheed et al., 2017).

With the availability of high-quality chickpea genome (Varsh-

ney et al., 2013b) and various large-scale resequencing projects

(Thudi et al., 2016a,b; unpublished data), millions of SNPs have

become available in chickpea. This information can be further

exploited to access the genome-wide sequence variations, which

can help to expedite the process of development of improved

lines in chickpea. With an objective to utilize SNP resource for

chickpea improvement, the current study deals with the devel-

opment of a high-density SNP array with genome-wide dis-

tributed SNPs. This array has been used for genotyping two

chickpea intraspecific recombinant inbred line (RIL) populations to

assess the utility of the developed SNP array in genetics and

breeding applications. In brief, Axiom�CicerSNP Array is expected

to provide a solid foundation for establishing the high-throughput

genotyping, which is of great importance for research as well as

breeding applications.

Results

SNP selection and Axiom®CicerSNP Array design

The resequencing data generated from 429 genotypes were

aligned to the chickpea reference genomes for SNP discovery. The

alignment of sequencing data resulted in the identification of

total 4.9 million SNPs distributed across genome.

As described in the ‘Methods’ section and Figure 1, after

applying seven filter criteria on identified SNPs from resequencing

data, a total of 70 463 high-quality SNPs were selected. Further

on the basis of p-convert value of ≥0.3, generated by in silico

validation of SNPs using Axiom GTv1 algorithm, 61 174 SNPs

were selected for further processing. Finally, a custom array

consisting of a total of 50 590 SNPs was developed that includes

final data set of high-quality SNPs along with previously validated

70 and 32 SNPs from QTL-seq (Singh et al., 2016) and skim

sequencing (Kale et al., 2015), respectively. In the selected set of

SNPs, 22.23% SNPs were from coding region of the genome and

spanning across 3673 different genes of eight chickpea linkage

groups.

Figure 1 Design and development workflow of Axiom�CicerSNP Array. Tiling to array included three major steps (i) SNP detection, (ii) SNP selection that

included quality filtration and SNP validation and (iii) final tiling on array.
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Genome-wide distribution of selected SNPs of
Axiom®CicerSNP Array

Selected 50 590 SNPs cover all the eight pseudomolecules of

chickpea and provide a good representation of whole chickpea

genome (Figure 2a,b), with an average of 6323 SNPs/linkage

group (LG) (average distance of 6.86 Kb). Maximum number of

SNPs have come from CaLG04 (16 772; 33.15%), while mini-

mum number of SNPs have come from CaLG08 (1888; 3.73%).

As the upstream and downstream regions are not annotated in

chickpea genome assembly, these were not considered while

predicting SNP effect using SnpEff software. With respect to

genomic region in the Axiom�CicerSNP Array, as expected

maximum number of SNPs have come from intergenic regions

(31 653; 62.57%) followed by 11 245 SNPs (22.23%) from

coding regions and 7688 SNPs (15.20%) from intronic regions

(Figure 2b). The SNPs from coding region cover synonymous

coding (8902; 17.60%), nonsynonymous coding (2267; 4.48%),

stop gained (23), synonymous stop (14), stop lost (10), synony-

mous start (8), splice site donor (8), splice site acceptor (7) and

start lost (6).

Functional annotations of SNPs resulted in detailed classification

of involvement of SNP-carrying genes in (i) biological process, (ii)

molecular function and (iii) cellular component (Figure 2c). Under

‘molecular function’ category, the majority of SNP-carrying genes

were involved in binding and catalytic activities. Under ‘biological

process’ category, large number of SNP-carrying genes were

found to be involved in ‘cellular and metabolic processes’ and for

‘cellular component’ category, majority of the genes annotated

were found to be related to classes ‘cell’ and ‘cell parts’.

Validation and deployment of the Axiom®CicerSNP
Array

Two different RIL populations, namely ICCRIL03 and ICCRIL04,

were used to demonstrate the application of Axiom�CicerSNP

Array. ICCRIL03 consisting of 245 lines was genotyped with the

developed Axiom�CicerSNP Array. Three samples were removed

from the analysis due to below-threshold standard dish quality

control check (DQC < 0.82). Seven additional samples were

removed due to a lower call rate (<97%). An initial performance

validation of the Axiom�CicerSNP Array followed the Axiom best

practices genotyping workflow. SNPs were classified as described

in ‘Methods’ section (Figure 3), and results are summarized in

Table 1. Overall, 25.89% SNPs were found to fall in ‘PolyHighRes-

olution’ category, whereas 45.7% SNPs were found to fall in

‘MonoHighResolution’ category. A summary of the distribution of

all SNPs in the different classes and on different LGs is shown in

Table S1.

In the case of ICCRIL04, consisting of 230 lines, one sample

was excluded from the analysis due to lower dish quality control

check and 15 samples were removed due to a lower call rates.

Overall, 35.7% SNPs were found to fall in ‘PolyHighResolution’

Figure 2 Summary of distribution of SNPs selected for Axiom�CicerSNP Array: (a) SNPs distribution along the eight linkage groups of chickpea; (b)

distribution of SNPs in different genomic regions of chickpea genome.

ª 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 16, 890–901

Manish Roorkiwal et al.892



category, whereas 37.55% SNPs were found to fall in

‘MonoHighResolution’ category (Table 1 and Table S2).

Construction of genetic maps

Genotypic data generated using Axiom�CicerSNP Array were

used for the construction of genetic maps for ICCRIL03 and

ICCRIL04 populations. For ICCRIL03, a total of 15 140

high-quality SNPs were identified, of which 14 034 showed

expected 1:1 segregation at P ≤ 0.01. Finally, 13 679 SNPs were

successfully mapped to eight linkage groups (CaLG01–CaLG08)
covering 1033.67 cM (Table 2). The highest number of markers

were mapped on CaLG04 (5179), while the lowest number of

markers were mapped on CaLG05 (212). The distribution of

marker mapped on eight linkage groups is shown in Figure 4. The

total map distance for linkage groups varied from 62.24 cM

(CaLG08) to 226.43 cM (CaLG04). The highest average marker

density was observed for CaLG01, which had 25 markers/cM

followed by 23 markers/cM on CaLG04. The lowest average

marker density was observed for CaLG05, which had two

markers per cM. In summary, the genetic map has 13 markers/

cM on an average (Table 2).

Similarly for ICCRIL04 population, 20 018 high-quality SNPs

were identified, of which 8224 SNPs showed 1:1 segregation and

7769 SNPs could be mapped, covering 1076.35 cM across eight

linkage groups (Figure 5). Maximum number of markers were

mapped to CaLG01 (2001) followed by CaLG07 (1727), whereas

minimum number of markers were mapped to CaLG02 (154).

Highest average marker density was observed for CaLG04

(19.74 markers/cM), and minimum marker density of 1.85 mark-

ers/cM was observed for CaLG02. Overall, the map has an

average of 7.22 markers/cM (Table 3).

QTLs for drought tolerance-related traits

QTL analysis using genotyping and phenotyping data resulted in

the identification of a large number of QTLs for five groups of

drought component traits such as root traits, morphological

traits, phenological traits, yield and yield-related traits and

transpiration efficiency (TE) using QTL IciMapping software. In

the case of ICCRIL03, a total of 70 QTLs were identified that

included 26 QTLs for phenological traits, 11 QTLs for morpho-

logical traits, 21 QTLs for yield-related traits, 6 QTLs for drought

indices, 5 QTLs for root traits and 1 QTL for carbon isotope

Figure 3 SNP classification. Different categories of SNPs identified as a result of allele calling from Axiom Analysis Suite (1.1.0.616).

Table 1 Summary of SNP data generated in two RIL populations

using Axiom�CicerSNP Array

Categories

ICCRIL03 ICCRIL04

No. of SNP

markers %

No. of SNP

markers %

MonoHighResolution 23 120 45.70 18 998 37.55

PolyHighResolution 13 099 25.89 18 059 35.70

Other 7821 15.46 7548 14.92

NoMinorHom 2713 5.36 2950 5.83

HomHomResolution 1716 3.39 1632 3.23

Off-target variants (OTV) 990 1.96 347 0.69

CallRateBelowThreshold 806 1.59 729 1.44

AAvarianceY 139 0.27 88 0.17

BBvarianceX 102 0.20 135 0.27

BBvarianceY 71 0.14 79 0.16

AAvarianceX 13 0.03 25 0.05
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Table 2 Features of genetic map developed for ICCRIL03 (ICC 4958 9 ICC 1882) population using Axiom�CicerSNP Array and its comparison

with earlier studies

Linkage

group

Axiom�CicerSNP Array (Current study

2017) GBS (Jaganathan et al., 2015) SSRs (Varshney et al., 2014b)

Marker loci

mapped Map Distance (cM)

Marker loci

mapped

Map

Distance (cM)

Marker loci

mapped Map Distance (cM)

CaLG01 2610 104.02 109 101.27 31 99.27

CaLG02 1088 97.67 90 92.16 18 78.50

CaLG03 576 164.90 90 72.78 41 28.13

CaLG04 5179 226.43 386 112.10 45 111.90

CaLG05 212 94.15 39 59.41 22 33.24

CaLG06 1709 193.99 160 104.36 36 123.08

CaLG07 1837 90.27 60 96.59 27 96.11

CaLG08 468 62.24 73 88.62 21 51.28

Total 13 679 1033.67 1,007 727.29 241 621.51

Average 1709.88 129.21 125.88 90.91 30.13 77.69

Figure 4 High-resolution genetic map

comprising eight linkage groups (CaLG01–

CaLG08), with marked major QTL clusters, using

13 679 SNP markers for ICCRIL03 (ICC

4958 9 ICC 1882).

Figure 5 High-resolution genetic map ICCRIL04

(ICC 283 9 ICC 8261) with major QTL clusters

constructed using 7769 SNPs.
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discrimination (d13C) (Table S3). However, in the case of

ICCRIL04, 120 QTLs were identified, namely 48 QTLs for yield-

related traits, 41 QTLs for morphological traits, 21 QTLs for

phenological traits, 8 QTLs for root traits and 2 QTLs for drought

indices (Table S4). Of the 70 QTLs identified in ICCRIL03, 16 QTLs

(22.86% of total QTLs identified) were located on CaLG08

followed by CaLG04 and CaLG05 (20%, 14 QTLs each). However

for ICCRIL04, 33 QTLs (27.5% of total QTLs) were located on

CaLG08 followed by CaLG03 with 25 QTLs (20.83%). In total, 52

major QTLs were identified across all linkage groups for

morphological traits, which is quite high in comparison with

previous studies (Varshney et al., 2014b). Of these 52 QTLs, 16

QTLs were designated as robust QTLs based on phenotypic

variation explained (PVE) > 10%. QTLs for plant height (PHT, cm)

were detected in both RIL populations. However, QTLs for

primary branches (PBS) and secondary branches (SBS) were

specific to ICCRIL03 population, and QTLs for shoot dry weight

(SDW, g), plant width (PWD, cm) and plant stand (PS) were

specific to ICCRIL04 population.

In the case of ICCRIL03, three QTL clusters were observed.

Cluster one located on CaLG04 represented QTLs for 100-seed

weight (100-SDW, g), days to 50% flowering (DF), PHT, pods per

plant (POD), while other two clusters were located on CaLG08

responsible for DF, days to maturity (DM), harvest index (HI, %),

PHT and DF, DM, PHT traits, respectively. Similarly in the ICCRIL04

population, a total of nine QTL clusters were identified on

CaLG01 (one cluster: 100-SDW, SDW), CaLG02 (two clusters: a)

HI, PS, yield (YLD, g); (b) biomass (BM, g), drought tolerance index

(DTI), PS, YLD), CaLG03 (one cluster for DF and DM and another

cluster for DF, DM, HI), CaLG05 (one cluster: DF and seeds per

pod (SPD)) and CaLG08 (three clusters: a) DF, DM, HI, PHT, YLD;

b) DF, DM, HI, PHT; c) 100-SDW, DF, DM, PHT, POD).

On the basis of location/year, QTLs were further categorized in

two categories: (i) QTL for a trait appearing in more than one

location was considered as ‘stable’ QTL and (ii) QTL appearing for

>1 year or season was considered ‘consistent’ QTL (Tables 4 and

5). PVE for QTLs ranged from 4.8% to 66.49% in case of

ICCRIL03 population and 5.49% to 39.32% in case of ICCRIL04

population (Tables S3 and S4).

Root traits

A total of six root traits [root length density (RLD, cm/cm3), root

dry weight (RDW, g), rooting depth (RDp, cm), root surface area

(RSA, cm2), root volume (RV, cm3) and root dry weight/total plant

dry weight ratio (RTR, %)] were analysed and QTLs for five traits

one each for RLD, RSA, RV, RTR and RDp in ICCRIL03 with PVE

ranging from 6.55% (RSA) to 66.49% (RV) were identified

(Table S3). However, in case of ICCRIL04, one QTL was identified

each for RLD, RSA and RDp, and 2 QTLs for RDW and 3 QTLs for

RTR were identified with PVE ranging from 5.79% (RLD) to

8.08% (RDW) (Table S4). One robust QTL was observed for RV in

ICCRIL03 population (Table 4), whereas no robust QTL was

observed in case of ICCRIL04 (Table 5). In both the RIL popula-

tions, no consistent and no stable robust QTL was observed for

root traits (Tables 4 and 5).

Morphological traits

A total of 11 QTLs were identified in ICCRIL03 population for

morphological traits that included PHT (7 QTLs), PBS (3 QTLs) and

SBS (1 QTL). Overall, PVE ranged from 6.12% (PHT) to 13.51%

(PHT) (Table S3). In all, four robust QTLs were observed for PHT

(Table 4).

In the ICCRIL04 population, 41 QTLs for morphological traits

were identified, ofwhich 17QTLswere for PHT, 11QTLs for SDW, 9

QTLs for PS and 4 QTLs for PWD. PVE ranged from 5.49% (SDW) to

17.65% (PHT) among QTLs for morphological traits (Table S4). In

total, 12 robust QTLs were observed including two for SDWwhich

were found consistent as well as stable. In the case of PHT, eight

robust QTLs were observed, of which two QTLs were consistent as

well as stable. However, for PS, two robustQTLswere observed and

none of them was stable or consistent (Table 5).

Phenology-related traits

For phenological traits in ICCRIL03 population, a total of 26 QTLs

were identified for two traits, viz. DF (13 QTLs) and DM (13 QTLs),

with PVE ranging from 4.8% (DF) to 34.82% (DF) (Table S3). Of

total of 26 QTLs, six robust QTLs were found, three each for DF

and DM. Two QTLs each from DF and DM were both consistent

and stable (Table 4).

In ICCRIL04 population, a total of 21 QTLs were observed, of

which 10 for DF and 11 for DM with PVE ranging from 5.59%

(DF) to 39.32% (DF). A total of 12 robust QTLs were identified, six

for each DF and DM (Table S4). Three QTLs were found both

consistent and stable for DF. However for DM, two stable robust

QTLs and one additional stable and consistent QTL were observed

(Table 5).

Yield and yield-related traits

In total, 21 QTLs were identified for six traits, viz. 3 QTLs for 100-

SDW, 3 QTLs for POD, 1 QTL for SPD, 2 QTLs for BM, 8 QTLs for

HI and 4 QTLs for YLD in ICCRIL03 population (Table S4). PVE of

identified QTLs was ranged from 5.59% (HI) to 33.6% (SDW).

Overall, six QTLs were found to be robust, two for POD, one for HI

and three for 100-SDW (of which two were both stable and

consistent; Table 4).

In ICCRIL04 population, a total of 48 QTLs were identified for

six traits with PVE ranging from 5.49% (YLD) to 35.88% (HI)

(Table S4). There were 2 QTLs for SPD, 3 QTLs POD, 11 QTLs for

HI, 6 QTLs for 100-SDW, 13 QTLs each for BM and YLD. A total of

20 QTLs were found to be robust, five for YLD, three each for

100-SDW and BM, one each for SPD and POD and seven for HI.

Table 3 Features of genetic map developed for ICCRIL04 (ICC

283 9 ICC 8261) population using Axiom�CicerSNP Array and its

comparison with earlier studies

Linkage

group

Axiom�CicerSNP Array

(Current study 2017)

SSRs (Varshney

et al., 2014b)

Marker loci

mapped

Map

distance (cM)

Marker loci

mapped

Map

distance (cM)

CaLG01 2001 183.98 16 60.78

CaLG02 154 83.16 16 66.61

CaLG03 1063 144.19 22 69.44

CaLG04 1516 76.79 18 43.95

CaLG05 440 143.76 23 51.51

CaLG06 557 141.43 31 65.29

CaLG07 1727 200.30 24 104.92

CaLG08 311 102.74 18 70.57

Total 7769 1,076.35 168 533.07

Average 971.13 134.54 21 66.63
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Among yield traits, only two QTLs were found consistent for HI

(Table 5).

Drought indices and Transpiration efficiency

In the case of ICCRIL03, a total of six QTLs were identified, namely

four QTLs for DTI and two for drought susceptibility index (DSI)

with PVE ranging from 5.58% (DSI) to 8.13% (DTI) (Table S3).

However, in the case of ICCRIL04, only two QTLs for DTI were

observed and both were robust (Table 4). Overall, PVE for these

QTLs in ICCRIL04 population ranged from 18.63% to 28.49%

(Table S4). No QTL for drought indices was found stable and/or

consistent. In case of carbon isotope discrimination (d13C) as a

surrogacy trait for transpiration efficiency (TE), only single QTL

was identified in ICCRIL03 with PVE of 5.46% (Table S3), while in

the case of ICCRIL04, d13C was not measured.

Discussion

Molecular markers have been widely used for genetic diversity

assessment, evolutionary and mapping studies (Varshney et al.,

2007). Applicability of markers in breeding mainly relies on cost,

ease of automation and precision, making SNPs an indispensable

choice. Rapid progress in NGS technologies during last decade

enabled massive sequence data output at low cost in very less

time period (Thudi et al., 2012).

Due to limited availability of genomic resources until past

decade, chickpea was considered to be an ‘Orphan Crop’

(Varshney et al., 2012). Chickpea improvement efforts using

conventional breeding were able to enhance the chickpea

productivity but were not enough to meet increase in the global

demand. Availability of large-scale genomic resources and mark-

ers has offered an opportunity to utilize GAB for crop improve-

ment to enhance the rate of genetic gain (Varshney et al., 2005).

The past decade has witnessed tremendous application of GAB to

critically address some of the major issues in legume crops

(Varshney et al., 2013c).

For successful and effective deployment of GAB to develop

superior chickpea varieties, it becomes important to tap the

variations existing in the genome by successful mapping and

tagging these variations for agronomically important traits.

Success of GAB depends on the level of marker precision and

cost for genotyping. In the case of chickpea, different SNP

genotyping platforms have been developed for various applica-

tions (Gujaria et al., 2011; Hiremath et al., 2012; Roorkiwal

et al., 2013, 2014).

In recent past, NGS-based technologies have been effectively

used for genome sequencing and resequencing, enabling the

identification of millions of SNP markers in chickpea (Kale et al.,

2015; Thudi et al., 2016a,b). SNP genotyping arrays are user-

friendly and cost-effective for generation and analysis of geno-

typing data. Considering the utility of these arrays, the present

study focused on the development of high-density SNP array and

its utility for genetics and breeding applications in chickpea. In

brief, whole-genome resequencing of 300 lines of the reference

set and >100 lines of elite chickpea varieties at 5–139 coverage

led to the generation of >4.9 million SNPs. With the application

of different filter criteria ensuring distribution of SNPs across all

the eight linkage groups and with further inclusion of SNPs from

skim sequencing, a high-quality ‘Axiom�CicerSNP Array’ was

developed. High-density Axiom�CicerSNP Array with 50 590

high-quality nonredundant SNPs produced 95.92% and

93.04% sample success rate, and average QC call rate of

99.81, among two chickpea intraspecific populations ICCRIL03

and ICCRIL04, respectively. The total missing data in case of

ICCRIL03 population was 0.5% and 0.4% in ICCRIL04 popula-

tion. On an average, the triplicates showed >99% concordance

among the results (includes all calls for triplicates and minimum

duplicates).

Table 5 Detailed comparison of robust QTLs for drought tolerance-related traits identified using high-density genetic map in the current study

with the earlier studies for ICCRIL04 (ICC 283 9 ICC 8261)

Traits

Axiom�CicerSNP Array (Current study 2017) SSRs (Varshney et al., 2014b)

Total QTLs Consistent QTLs Stable QTLs PVE (%) Total QTLs Consistent QTLs Stable QTLs PVE (%)

Morphological traits

Shoot dry weight (SDW, g) 2 0 0 10.08–17.12 – – – –

Plant height (PHT, cm) 8 2 2 11.05–17.65 2 1 – 11.27–31.32

Plant width PWD (cm) – – – – 1 – – 15.84

Plant stand (PS) 2 – – 12.5–16.9 – – – –

Phenological traits

Days to 50% flowering (DF) 6 3 3 10.68–39.32 4 2 1 10.66–18.97

Days to maturity (DM) 6 1 3 11.91–37.5 4 – 1 10.47–16.79

Yield-related traits

100-seed weight (100-SDW, g) 3 – – 13.49–16.84 1 1 – 17.14–26.67

Biomass (BM, g) 3 – – 10.24–15.52 – – – –

Harvest index (HI, %) 7 2 – 10.25–35.88 2 – – 12.06–14.04

Pods/plant (POD) 1 – – 14.17 1 1 – 12.13–14.37

Seeds/pod (SPD) 1 – – 15.58 – – – –

Yield (YLD, g) 5 – – 10.58–15.47 3 – – 10.06–18.55

Drought indices traits

Drought tolerance index (DTI) 2 – – 18.63–28.49 2 – – 11.27–12.12

Total 46 20

PVE, phenotypic variation explained; –, No robust QTL identified.
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Chickpea crop improvement efforts are severely affected by

the narrow genetic diversity among cultivated chickpea genepool.

Some of the previously generated intraspecific genetic maps with

only few hundred markers also indicate the narrow genetic base

in chickpea (Gaur et al., 2011; Jamalabadi et al., 2013; Mill�an

et al., 2010; Radhika et al., 2007; Varshney et al., 2014b). For

instance, Varshney et al. (2014b) after screening ~3000 markers

could find only couple of hundred polymorphic markers and

ultimately were able to map 241 and 168 markers on ICCRIL03

and ICCRIL04, respectively. With the availability of NGS technol-

ogy, Jaganathan et al. (2015) using GBS approach could identify

828 novel SNPs and were able to integrate additional 743 SNPs to

develop a genetic map with 1007 mapped markers spanned

around 727.29 cM. However, the current study by using SNP

array successfully mapped 13 679 markers spanning around

1033.67 cM (Table 2). Similarly, another advanced map was

developed in the current study using 46-fold more markers (7769)

spanning 1076.35 cM map distance in comparison with genetic

map constructed by Varshney et al. (2014b) for ICCRIL04

(Table 3). Varying levels of marker densities were recorded for

different LGs in both the maps and the average intermarker

distances were 0.08 cM and 0.14 cM in the case of ICCRIL03 and

ICCRIL04, respectively. Genetic maps generated in current study

will not be only useful in ordering future genetic maps but also a

higher marker density obtained here will aid in the selection of

appropriate markers for various molecular breeding applications.

QTL analysis includes identification of markers/genomic

regions, associated with the genetic variation influencing eco-

nomically important traits (Mackay et al., 2009). Markers asso-

ciated with QTLs aid in improving the accuracy of genetic

selection by identifying favourable genotypes. Use of

Axiom�CicerSNP Array on two RIL populations resulted in

identifying a large number of QTLs for five groups of drought

tolerance-related traits such as root traits, morphological traits,

phenological traits, yield and yield-related traits and TE. In total,

70 QTLs for ICCRIL03 and 120 QTLs for ICCRIL04 were identified.

In the case of ICCRIL04, more than twofold robust QTLs (46) were

identified in comparison with the previous study (Varshney et al.,

2014b). In the present study, 13 main-effect QTLs for root traits

were identified. Unlike our previous study (Varshney et al.,

2014b) where 18 main-effect QTLs for root traits were observed

distributed all over the linkage group except for CaLG02, we

observed the absence of main-effect QTLs for root traits on

CaLG01, CaLG02 and CaLG06.

While analysing for both RIL populations (ICCRIL03 and

ICCRIL04), common QTLs were identified for four root traits

(RLD, RSA, RTR and RdP). However, it was interesting to note that

except for RLD, QTLs for these traits were identified on different

linkage groups in the RIL populations. Additionally, QTLs for RV

and RDW were found only in ICCRIL03 and ICCRIL04, respec-

tively. The possible reason behind this contrasting identification of

QTLs in two RIL populations could be either the presence of

several small-effect QTLs or break of robust QTLs into many small-

effect QTLs due to higher number of markers in the current study.

SNP arrays have been used for the validation of genome

sequence assembly by comparing genetic position with the

physical position (Sim et al., 2012). As an application of the

Axiom�CicerSNP Array, while working on different mapping

populations comparison of genetic with physical positions of the

SNP can be used for further validation and improvement of

assembled chickpea genome. Some studies in maize and apple

have clearly shown the possibility of improvement of genome

assembly using large number of markers by applying array-based

genotyping for high-resolution genetic mapping (Bianco et al.,

2016; Ganal et al., 2011). In addition, high-density SNP arrays

have also been used for various breeding applications and high-

resolution genetic mapping using genome-wide association

studies (GWAS). Several SNP arrays including medium- to high-

throughput have been developed and used for GWAS and

breeding applications in groundnut (Pandey et al., 2017), rice

(Chen et al., 2014; McCouch et al., 2010; Singh et al., 2015; Yu

et al., 2014) and wheat (Maccaferri et al., 2015).

From the cost perspective, SNP array platforms are found to

be efficient and cost-effective in comparison with other geno-

typing platforms. In the case of chickpea, 828 unique SNPs were

identified across 208 RILs using GBS with a cost US $40–45 per

sample (Jaganathan et al., 2015). Similarly, application of skim

sequencing costing about US $100, resulted in the identification

of >80 K SNPs across 232 lines (Kale et al., 2015). However, use

of the Axiom�CicerSNP Array can provide genotyping data for

50 590 SNPs for a cost of US $52 per sample as per

the negotiated agreement between Affymetrix and ICRISAT for

the chickpea community. Therefore, SNP array developed in the

present study has a potential to generate low-cost data points.

Furthermore, SNP arrays produce robust and reliable data with

less missing values, in comparison with GBS where the presence

of large proportion of missing values and the presence of false

homozygotes can be observed (Bianco et al., 2016). It is also

important to mention that SNP array data are generated in

simple allele calls and can directly be used for further analysis,

suggesting minimal computational skills requirement. However,

advanced computational skills are required to handle GBS and

skim sequencing data, to analyse the generated data that

further aid to the postprocessing cost to the data analysis

(Bajgain et al., 2016). Hence based on these parameters, it can

be concluded that the Axiom�CicerSNP Array developed under

this study will be a valuable tool to dissect agronomically

important traits and for various molecular breeding applications

in chickpea. Implementation of developed array in ongoing

genomic selection attempts in chickpea (Roorkiwal et al., 2016)

will further enhance the precision and accuracies of the genomic

predictions.

In summary, the SNP array developed in this study is a most

awaited genomic resource for global chickpea research commu-

nity and will eventually accelerate the process and precision of

understanding trait genetics and molecular breeding for chickpea

improvement.

Methods

Plant material and phenotypic evaluation

Two different RIL populations, namely ICCRIL03, developed by

crossing ICC 4958 (a drought-tolerant genotype) and ICC 1882 (a

drought-sensitive genotype), and ICCRIL04 generated by crossing

ICC 8261 (a drought-tolerant genotype) and ICC 283 (a drought-

sensitive genotype), were used in this study.

Genomic DNA from parental genotypes and RILs were isolated

using high-throughput mini-DNA extraction (Cuc et al., 2008).

Estimation of quality and quantity of DNA was made using

spectrophotometer (Shimadzu UV160A, Japan).

Phenotyping data were collected for 20 different drought-

tolerant traits that included six root traits, six yield and yield-

related traits, five morphological traits, two phenological traits

and one physiological trait for both the RIL populations (ICCRIL03
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and ICCRIL04). These datasets have been described in earlier

studies (Varshney et al., 2014b).

SNP identification and array design

In order to select the SNPs for array, the resequencing data available

from a diverse set of 429 chickpea accessions from other studies

were used (unpublished). SNPs from earlier studies were filtered

using ‘in-house’ multiple sequence alignments scripts and SNPs

with no other SNP in the flanking 35 bp on both sides were

selected. These selected SNPs were then subjected to seven

different kinds of filters, namely (i) no SSR in flanking region, (ii)

no Indel in flanking region, (iii) only biallelic nature SNPs, (iv) minor

allele frequency of 0.05, (v) GC% to be 40%–70%, (vi) no

denaturing code permitted in the region and (vii) SNP quality score

≥30 to select best SNPs for the array. High-quality SNPs resulted

from these assorted criteria were further subjected to in silico

validation that involved preliminary screening of each selected SNP

on the basis of p-convert values generated using Affymetrix power

tool (APT) AxiomGTv1 algorithm to ensure a high-quality final

array. Probability of SNP conversion represented by p-convert value

was predicted using random forest model for both forward and

reverse probes of each SNP. The model takes into account factors

such as sequence of the probe, binding energy and expected

degree of nonspecific hybridization to multiple genomic regions.

High p-convert values of probes reflect high probability to convert

on the SNP array. In addition, few SNPs selected as part of earlier

studies such as results of skim sequencing (Kale et al., 2015) and

QTL-seq (Singh et al., 2016) were also included in the final list of

SNPs used for array imprinting.

Genotyping with Axiom�CicerSNP Array

In order to utilize the developed Axiom�CicerSNP Array, high-

quality DNA extracted from fresh leaves of both the populations,

ICCRIL03 with 245 lines and ICCRIL04 with 230 lines along with

parental genotypes, were used for genotyping. In brief, high-

quality total genomic DNA (100 ng) was randomly fragmented

(25–125 bp) and fragmented DNA was purified before hybridiz-

ing with Axiom�CicerSNP Array. Under stringent conditions,

nonspecific random ligations bound to targets were washed

off. In order to identify multicolour ligation event at the array

surface which points towards polymorphic nucleotide, array was

stained, imaged and processed using GeneTitan� Multi-Channel

(MC) instrument to generate the data.

Allele calling was performed using generated ‘.CEL files’ with

Axiom Analysis Suite (1.1.0.616). Axiom best practice workflow

was followed in order to get high-quality genotyping results

(Figure 1). Samples with DQC < 0.82 and QC call rate <97%
were not considered for further analysis. SNP QC was performed

under default parameter for diploid species type, that is cr-cutoff

≥97; fld-cutoff ≥3.6; het-so-cutoff ≥�0.1; het-so-otv-cutoff

≥�0.3; hom-ro-1-cutoff ≥0.6; hom-ro-2-cutoff ≥0.3. The whole

data were analysed at an ‘Inbred penalty score’ of 12. The results

generated were further processed using the SNPolisher package

that classifies SNPs into different classes as per Bassil et al.

(2015). These different classes include MonoHighResolution

(SNPs with genotyping data with QC pass but monomorphic

across the genotypes studied), PolyHighResolution (genotyping

data passed all QC with polymorphic SNPs), NoMinorHom (data

passed all QC but only two clusters could be observed), Off-

Target Variant (data with low-intensity cluster resulted from

mismatches between the probe and the sequences for that group

of genotypes) and Other (SNP with genotyping data with no clear

cluster pattern and could not be assigned any of the other

classes). PolyHighResolution SNPs were further filtered out for

reproducibility and variance. In addition, markers with complex

genotypes causing cluster splits are further filtered into additional

classes using ‘Variance’ filters.

In order to identify putative function of SNP-containing genes,

similarity search with a cut-off value of ≤1E-5 was performed

against existing NR protein sequences in the public database. In

order to determine the involvement in particular biological

function, these SNP-containing genes were annotated based on

the Gene Ontology (GO) terms associated with the blast results

using Blast2GO software (Conesa et al., 2005) that performs

BLASTX analysis followed by mapping and annotation step.

Genetic map construction

The genotyping data obtained were used for genetic map

construction. Initially, SNPs showing contrasting alleles between

the parental lines were selected. A chi-squared test was then

conducted for each SNP with a null hypothesis that two alleles at

a locus segregate with a ratio of 1:1 in RIL population. SNPs

showing significant deviation from 1:1 ratio (P < 0.01) were

removed from further analysis. The genetic map was constructed

from the selected SNPs using R/qtl program (Broman et al., 2003)

as follows: first, the preliminary map was constructed using

‘estimate.map’ function and duplicate markers were removed.

The genetic map was constructed using remaining markers with

maximum recombination frequency cut-off of 0.35 and minimum

LOD value of 6. The marker order was confirmed using ripple

function, while Kosambi function was used to calculate the map

distance. The Mapchart 2.2 software (Voorrips, 2006) was used

to visualize the final genetic map.

QTL analysis

The QTL analysis was carried out using QTL ICiMapping V3.3

software (Meng et al., 2015). For this, the genotyping data

obtained as a result of application of Axiom�CicerSNP Array in

the current study and the phenotyping data for 20 drought

tolerance-related traits (as mentioned in Varshney et al., 2014b)

were used. Composite interval mapping was carried out using

ICIM-ADD mapping method keeping other parameters as default.

The LOD threshold was set using 1000 permutations and P value

≤0.05. The results obtained were compared with earlier studies to

check the accuracy and further refinement.
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