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Hydrogen sulfide (H2S), independently of any specific transporters, has a number of biological effects on the cardiovascular
system. However, until now, the detailed mechanism of H2S was not clear. Recently, a novel post-translational modification
induced by H2S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine
residues of target proteins by H2S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch
assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H2S induces
S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated
extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like
ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca2+ channels,
transient receptor potential channels and ATP-sensitive K+ channels) in the cardiovascular system. Although significant progress
has been achieved in delineating the role of protein S-sulfhydration by H2S in the cardiovascular system, more proteins with
detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review
mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins
may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate
the development and application of H2S-related drugs in the future.
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Abbreviation
ATP5A1, ATP synthase subunit α; CBS, cystathionine-β-synthase; CSE, cystathionine-γ-lyase; eNOS, endothelial NOS; ER,
endoplasmic reticulum; IRF-1, interferon regulatory factor-1; KATP, ATP-sensitive K+; Keap1, kelch-like ECH-associating
protein 1; KLF5, krüppel-like factor 5; MEK1, mitogen-activated extracellular signal-regulated kinase 1; MMTS, methyl
methanethiosulfonate; MSBT, methylsulfonybenzothiazole; NF-κB, nuclear factor κB; Nrf2, nuclear factor E2-related factor
2; PTEN, phosphatase and tensin homologue; PTP1B, protein tyrosine phosphatase 1B; SHR, spontaneously hypertensive
rats; SP-1, specific protein-1; SUR2B, sulphonylurea 2B; TFAM,mitochondrial transcription factor A; TRP, transient receptor
potential; VEGFR, VEGF receptor; WT, wild type
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Introduction
Hydrogen sulfide (H2S) is a colourless, flammable, water-
soluble gas with a characteristic smell of rotten eggs. H2S
was previously regarded as a toxic gas and environmental
hazard. However, recent publications have revealed that H2S
is synthesized in mammalian tissues, and freely travels
through cell membranes. H2S acts independently of any
specific transporters, and it has a number of biological effects
on various systems (Meng et al., 2015a; Cao and Bian, 2016;
Feliers et al., 2016; Ianaro et al., 2016; Katsouda et al., 2016;
Cheng et al., 2016b). Nowadays, H2S is regarded as the third
endogenous gasotransmitter followed by NO and CO (Hine
et al., 2015).

H2S is produced, via the cysteine biosynthesis pathway, by
three vital enzymes in mammalian species; these are
cystathionine-γ-lyase (CSE), cystathionine-β-synthase
(CBS) and 3-mercaptopyruvate sulfurtransferase
(MPST), and they have different distribution patterns in
different tissues (Table 1). CSE is the main enzyme for H2S
production in the cardiovascular system (Wang, 2012;
Wallace and Wang, 2015). Previous research found that H2S
has the potential to produce vasoconstriction or vasodila-
tation, angiogenesis, smooth muscle growth or apoptosis,
cardioprotection and other effects (Mani et al., 2013; Tsikas
and Cooper, 2014; Ping et al., 2015; Dunn et al., 2016;
Katsouda et al., 2016; Marino et al., 2016). Our studies have
suggested that H2S attenuates myocardial hypertrophy and
fibrosis in spontaneously hypertensive rats (SHR) (Meng
et al., 2015a,c; Meng et al., 2016), inhibits atherosclerotic
plaque formation and inflammation in the aorta of
apolipoprotein E�/� mice fed a high fat diet (Liu et al., 2013),
suppresses oxidative stress and apoptosis in myocardial
ischaemia and reperfusion injury (Meng et al., 2015b),
augments mitochondrial function and the anti-oxidative
capacity of endothelial cells (Xie et al., 2016a), and activates
nuclear factor E2-related factor 2 (Nrf2) to alleviate
diabetes-accelerated atherosclerosis both in vitro and in vivo
(Xie et al., 2016b). H2S also enhances the antioxidant activity,
and regulates NO formation and kinase activity to maintain
the homeostasis of the cardiovascular system (Liu et al.,
2015; Chen et al., 2016; Shimizu et al., 2016; Cheng et al.,
2016a). However, until now, the detailed mechanism of H2S
has not been clear. Recently, more and more researchers
revealed that some of the above effects could be attributed to
a novel post-translational modification induced by H2S,
named S-sulfhydration (Paul and Snyder, 2015a; Sen, 2017).

S-sulfhydration is a chemical modification on specific
cysteine residues of target proteins by H2S. In the presence of
H2S, the free thiol groups of cysteine residues with a low pKa

become covalently converted into a persulfides group
(Mustafa et al., 2009; Paul and Snyder, 2015a). S-sulfhydration
can be induced byH2S on cysteine sulfenic acids (Cys-SOH) or
cysteine disulfides (─S─S) (Figure 1 A-B), or by polysulfides on
cysteine thiol (Cys-SH, Figure 1 C). It is important to note that
H2S also induces S-sulfhydration on cysteine thiols in
oxidation conditions (Figure 1D,E). Similar to S-nitrosation,
protein S-sulfhydration was reversed by the thioredoxin
system (Paul and Snyder, 2015b; Wedmann et al., 2016),
which was closely correlated with cardiovascular diseases.
This review will focus on the role of protein S-sulfhydration
by H2S in the cardiovascular system.

Detection of S-sulfhydration
Nowadays, it is very difficult to distinguish the persulfides
group from the thiol group because of their similar reactivity.
The biotin switch used previously for nitrosylation
measurement has been modified to detect S-sulfhydration;
this has been named as the ‘modified biotin switch assay’.
An alkylating agent S-methyl methanethiosulfonate (MMTS)
was used to block thiol in proteins. The persulfides group was
conjugated with N-[6-(biotinamido)hexyl]-30-(20-pyridyldi-
thio)propionamide (biotin-HPDP). The biotinylated protein
was then immunoprecipitated and analysed by western blott-
ing, which represents the level of protein S-sulfhydration
(Mustafa et al., 2009). However, the thiol and persulfides
showed similar reactivity to MMTS, and the selectivity was
not good. The basal S-sulfhydrated proteins account for as
much as 25%, most of which might be a false positive (Pan
and Carroll, 2013).

S-sulfhydration was also able to be measured with a
maleimide assay with fluorescent thiol modifying regents.
Fluorescent maleimide acts on both modified and unmo-
dified sulfhydryl groups. DTT reduces only the modified
cysteines, and the decreased fluorescent intensity repre-
senting S-sulfhydration is detected by SDS- PAGE (Sen et al.,
2012). Unfortunately, the propensity to determine both
nitrosylation and sulfenic acids with the malemide assay
weakened its credibility for detecting S-sulfhydration (Reisz
et al., 2013; Paul and Snyder, 2015b).

Zhang et al. proposed a novel measurement selective for
S-sulfhydration,whichwas called ‘tag-switchmethod’ (Zhang
et al., 2014). Methylsulfonybenzothiazole (MSBT) was used to
blocked thiols. Then a reagent containing nucleophile and
biotin labelled only persulfides, while there was no binding
with the blocked thiol groups. Finally, MSBT labelled
persulfides representing S-sulfhydration were conjugated
with streptavidin and visualized by western blots (Zhang
et al., 2014; Park et al., 2015). However, the method without
higher sensitivity posed a problem for S-sulfhydration mea-
surement. To increase sensitivity, Wedmann et al. proposed
an improved tag-switch method with new cyanoacetic acid
derivatives such as fluorescent BODIPY moiety or the Cy3-
dye (Wedmann et al., 2016).

Mass spectrometry (MS) analysis was also used to filter
and identify the protein S-sulfhydration. After protein

Table 1
Distribution of CBS, CSE and MPST

Names Distribution

CBS brain, astrocytes, liver

CSE cardiovascular system, respiratory system

liver, kidney, uterus, placenta, pancreatic islets

MPST CNS

aortic endothelium and smooth muscles

MPST, 3-mercaptopyruvate sulfurtransferase
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samples were blocked with MSBT, only persulfide adducts
reacted with CN-biotin to form biotin-labelled adducts.
Then, these biotin-labelled proteins were broken into
peptides for MS (Park et al., 2015). By comparing the findings
with the protein database, the names of the S-sulfhydrated
proteins were identified and specific cysteine sites of protein
were ascertained. However, it was very difficult to block the
protein samples completely, and, therefore, it was easy to
produce false positive results (Gao et al., 2015; Park et al.,
2015).

Altogether, as yet, there is no ideal method to detect
S-sulfhydration. More specific probes for the unique
identification of S-sulfhydration are urgently required. The
current methods combined with mass spectrometry might
be beneficial for qualitative and quantitative detection of
protein S-sulfhydration.

H2S induced protein S-sulfhydration
Proteins with cysteine residues have the potential to be
S-sulfhydrated. Mustafa et al. found that about 10–25% of
proteins extracted from liver, including GAPDH, β-tubulin
and actin, were S-sulfhydrated in physiological conditions,
which suggests that protein S-sulfhydration might be a
common form of post-translational modification (Mustafa
et al., 2009). LC-MS/MS analysis exhibited that GAPDH was
S-sulfhydrated at Cys150. Moreover, NaHS increased GAPDH
activity as high as seven fold, which was absent after C150S
mutation (Mustafa et al., 2009). Mir et al. subsequently
verified that GAPDH S-sulfhydration at Cys150 promoted its
binding to the E3 ligase protein in brain (Mir et al., 2014).
However, one latest study failed to reproduce the conclusion

on BL21 (DE3) Escherichia coli containing a pET15b vector
expressing the wild-type (WT) His-tagged human GAPDH.
They found that Cys156 or Cys247, but not Cys152 (which
refers to Cys150 in the liver of mice on GAPDH with the
normal residue numbering system), was S-sulfhydrated by
sulfide or polysulfide. And there was no increase in GAPDH
activity after S-sulfhydration. In contrast, polysulfides
decreased GAPDH activity to about half of the control
(Jarosz et al., 2015). Actually, not all cysteine-rich proteins
are able to be S-sulfhydrated. The VEGFR-2 contains several
cysteine residues, and Cys1045 to Cys1024 serves as the
molecular switch of vascular smooth muscle cell migration.
However, there is no evidence that VEGFR-2 is able to be
S-sulfhydrated by H2S (Tao et al., 2013). These discrepancies
might be caused by the micro environment or the chemical
structures of the proteins, and the different pathlogical
states or specific characteristics of the cells or tissues.
Generally, S-sulfhydration can alter the functions of a
wide range of cellular proteins. The following is a sum-
mary of S-sulfhydrated proteins (Table 2) induced by H2S
in the cardiovascular system.

H2S induced S-sulfhydration on enzymes or
receptors in the cardiovascular system
NaHS induced S-sulfhydration in both cytosolic and
membrane proteins of myocardium from isolated working
frog hearts or langendorff-perfused rat hearts. Phospholam-
ban, which is involved in myocardial relaxation through its
modulation of intracellular calcium cycling, was identified
to be S-sulfhydrated with the immunoprecipitation and
modified biotin switch methods (Mazza et al., 2013). This
might be one of the selective post-translational modifications
that maintains cardiac homeostasis.

Figure 1
Reaction mechanisms for S-sulfhydration formation. S-sulfhydration can be induced by H2S on cysteine sulfenic acids (Cys-SOH, A) or cysteine
disulfides (�S-S, B), or by polysulfides on cysteine thiols (Cys-SH, C). H2S induces S-sulfhydration on cysteine thiols in oxidation conditions (D-E).
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Protein tyrosine phosphatase 1B (PTP1B) plays a vital role in
endoplasmic reticulum (ER) stress and is regarded as a potential
target for therapeutic intervention in obesity-induced
cardiomyopathy (Kandadi et al., 2015) and septic shock-
induced cardiovascular dysfunction (Coquerel et al., 2014).
Krishnan et al. found that H2S induced PTP1B S-sulfhydration
at Cys215 to inhibit its activity, which facilitated phos-
phorylation and activation of protein kinase-like ER kinase,
and promoted restoration of ER homeostasis. All of these
effects were unavailable in CSE-deleted HeLa cells (Krishnan
et al., 2011). This suggests that H2S regulates ER stress via
S-sulfhydration to inactivate PTP1B, which might be a novel
mechanism for the protective effect of H2S in the
cardiovascular system.

Recently, H2S was shown to directly S-sulfhydrate
PPARγ. S-sulfhydration of PPAR γ at Cys139 increased
nuclear PPARγ accumulation, enhanced DNA binding
activity to promoter of the PPARγ response element, and
promoted adipogenesis gene expression in adipocytes,
which were blocked by DTT or Cys139 mutation of PPARγ
(Cai et al., 2016). As far as we know, PPAR is a dominant
factor in blood lipid and glucose metabolism. S-
Sulfhydration of PPARγ might be a novel target for diabetes,
obesity, hyperlipidaemia and related complications of the
cardiovascular system.

H2S also increased mitogen-activated extracellular
signal-regulated kinase 1 (MEK1) S-sulfhydration in
both human endothelial cells and human fibroblasts, while
there was lower S-sulfhydration of MEK1 in CSE�/� mice.
S-sulfhydrated MEK1 facilitated ERK1/2 phosphorylation,

which subsequently transfers into the nucleus to activate
PARP-1 and to repair DNA damage. Mutation of Cys341

on MEK1 inhibited ERK1/2 phosphorylation and PARP-1
activation, and failed to mediate DNA damage repair
(Zhao et al., 2014). Xie et al. found that both exogenous
H2S supplement and CBS overexpression increased
p66Shc S-sulfhydration at Cys59, which decreased the
association of PKCβII with p66Shc and attenuated ROS
production. However, H2S failed to induce mitochondrial
translocation of p66Shc, decrease ROS and protect H2O2-
induced cell senescence if mutation of p66Shc at Cys59 (Xie
et al., 2014, 2016c). H2S concentration-dependently increased
S-sulfhydration of ATP synthase subunit α (ATP5A1) at
Cys244 and Cys294 in HEK293 cells. Double mutation of
C244S/C294S significantly attenuated ATP synthase activity.
And there was lower S-sulfhydration and weaker activity of
ATP5A1 in CSE�/� mice. This suggests that S-sulfhydration
of ATP5A1 might be beneficial for the maintenance of ATP
synthase homeostasis in mitochondrial energy disposal as
well as antioxidant activity and redox signalling (Módis
et al., 2016).Most of thefindings revealed that S-sulfhydration
was the main post-translational modification induced by H2S
and played an important role in ROS production and redox
signalling in the cardiovascular system.

Besides the cardiovascular system, several enzymes are
also S-sulfhydrated by H2S in the nervous system and
endocrine system. NaHS augmented S-sulfhydration of
hippocampal protein phosphatase type 2A, PKA, PKC,
and calcium/calmodulin-dependent protein kinase
II (CAMKII) to active postsynaptic signal pathways
(Li et al., 2016). H2S also increased the S-sulfhydration of
glucose-6-phosphatase and fructose-1,6-bisphosphatase to
promote gluconeogenesis in primary hepatocytes
(Untereiner et al., 2016). S-sulfhydration and the activity
of parkin, a neuroprotective ubiquitin E3 ligase, was up-
regulated after H2S administration, which was attenuated
in the brains of patients suffering from Parkinson’s disease
(Vandiver et al., 2014). However, whether these effects
could be extrapolated to the cardiovascular system needs
further exploration.

H2S induced S-sulfhydration on transcription
factors in the cardiovascular system
Specific protein-1 (SP-1) is an important transcription factor
with multi-functions in the cardiovascular system (Yang
et al., 2013b). And there are a total of 11 cysteine residues on
SP-1. Inhibiting H2S production by AOAA (CBS inhibitor) or
silencing CBS significantly reduced SP-1 S-sulfhydration at
Cys68 and Cys755 in HUVECs, which enhanced proteasomal
degradation of SP-1, followed by inhibited SP-1 binding with
VEGFR-2 or neuropilin-1 promoter and impaired endothelial
tube formation on Matrigel. All of these effects were
dramatically restored by exogenous NaHS supplement. This
suggests that H2S regulates endothelial key phenotypes such
as proliferation and migration via SP-1 S-sulfhydration (Saha
et al., 2016). Our latest study found that GYY4137, a H2S slow
releasing compound, increased S-sulfhydration on SP-1 in
neonatal rat cardiomyocytes and in myocardium of SHR.
There are four residues (Cys659, Cys664, Cys689 and Cys692) in
the domain of SP-1 for binding with krüppel-like factor 5

Table 2
Categories and functions of protein S-sulfhydration in the cardio-
vascular system

Categories
S-sulfhydrated
proteins

Functions in
cardiovascular
system

Enzymes/
receptors

ATP5A1 ATP synthase activity
MEK1 Repair DNA damage

PLN Myocardial relaxation

PPARγ Adipogenesis

PTP1B Restore ER stress
homeostasis

p66Shc Anti-oxidative stress

Transcription
factors

IRF-1 Mitochondrial
biogenesis

Keap1 Anti-oxidative stress

p65 Anti-apoptosis and
anti-inflammation

SP-1 Anti-myocardial
hypertrophy

Endothelial
phenotypes regulation

Ion channels Kir6.1 Vasodilatation

TRPV4 Vasodilatation

PLN, phospholamban
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(KLF5, a key transcriptional factor involved in myocardial
hypertrophy)promoter.AndGYY4137enhancedS-sulfhydration
on SP-1 if there was an overexpression of WT SP-1 or SP-1 had
mutations of C659A, C689A and C692A but not C664A in
cardiomyocytes. Moreover, GYY4137 failed to attenuate KLF5
promoter activity and mRNA expression, reduce the binding
between SP-1 andKLF5 promoter, decrease themRNAexpression
of atrial natriuretic peptide and improve myocardial hyper-
trophy in angiotensin II-induced cardiomyocytes if the SP-1
mutation was C664A (Meng et al., 2016). These findings suggest
that S-sulfhydration at Cys664 is essential for the inhibitory
ability of KLF5 transcription and protective effect against
myocardial hypertrophy induced by H2S.

Nrf2 is a vital transcription factor for protection against
oxidative stress with kelch-like ECH-associated protein
1 (Keap1) as a negative receptor. Guo et al. found that NaHS
increased Keap1 S-sulfhydration to promote dissociation of
Keap1/Nrf2 and finally to increase transcription activity of
Nrf2, which was involved in the protective effect against
ischaemic reperfusion-induced oxidative stress and cell
injury in human gastric epithelial cells (Guo et al., 2014).
Yang et al. verified that Keap1 was S-sulfhydrated in
embryonic fibroblasts from WT mice but not CSE-
knockout mice. NaHS S-sulfhydrated Keap1 at Cys151 to
regulate the location, activity and target gene expression
of Nrf2 in mouse embryonic fibroblasts. Tramtrack and
Bric-á-Brac 2 dimerization domain (one functional domain
on Keap1) deficiency completely abolished NaHS-induced
Keap1 S-sulfhydration. The mutation of Cys151 in an
intervening region, but not Cys288, failed to enhance Keap1
S-sulfhydration, promote Nrf2 nuclear translocation or
protect against cell senescence. This might be a novel
mechanism for preventing from cell ageing by H2S (Yang
et al., 2013a). Our latest study found that GYY4137 decreased
aortic atherosclerotic plaque formation and ROS levels in
aorta of streptozotocin-induced LDL receptor knockout out
mice (LDLr�/�) but not in LDLr�/� and Nrf2�/� double
knockoutmice. GYY4137 also attenuated foam cell formation
and oxidative stress in peritoneal macrophages isolated from
WT mice but not Nrf2�/� mice. This suggest that H2S
attenuates diabetes-accelerated atherosclerosis in an Nrf2-
dependent manner. Further study showed that GYY4137
promoted the dissociation of Keap1 from Nrf2 in ox-LDL
and high-glucose stimulated endothelial cells, which might
be attributed to Keap1 S-sulfhydration at Cys151 and Cys273.
We also found that Keap1 mutation of C151A, but not
C273A, abolished Keap1/Nrf2 dissociation, Nrf2 nuclear
translocation and ROS inhibition induced by GYY4137
administration. It is proposed that protein S-sulfhydration
by H2S might be a novel therapeutic target to prevent
diabetes-accelerated atherosclerosis (Xie et al., 2016b). The
latest research found that H2S elevated Keap1 S-sulfhydration
to reduce the association between Keap1 and Nrf2 in the
kidneys of rats on a high-salt diet, followed by decreased
collagen deposition and oxidative stress (Huang et al., 2016).
All of these results suggest that Keap1 is a key target of H2S in
several different cells or tissues. S-sulfhydration of Keap1
might be a potential target for attenuating oxidative stress
and related cardiovascular diseases.

NF-κB is also a multi-functional transcription factor. Sen
et al. found that TNF-α enhanced the binding activity

between NF-κB and DNA, followed by increased p65 binding
with the promoter of anti-apoptotic genes in macrophages.
However, the anti-apoptosis effect was abolished in macrop-
hages from CSE�/� mice, which was restored by CSE
overexpression or H2S supplement. Further experiments
showed that H2S S-sulfhydrated p65 at the highly conserved
Cys38 residue and augmented its association with ribosomal
protein S3 as a co-regulator of NF-κB to activate the
promoter of anti-apoptotic genes. All these effects were
absent after p65-C38S was transfected (Perkins, 2012; Sen
et al., 2012). However, Du et al. found that H2S enhanced
p65 S-sulfhydration in ox-LDL-induced macrophages, which
was abolished by DTT or p65 mutation at Cys38. Moreover,
S-sulfhydration of p65 by H2S helped to inhibit NF-κB
activation and monocyte chemoattractant protein 1
(MCP-1 also known as CCL2) generation and suppr-
essed ox-LDL-induced inflammation. The various effects of
p65 S-sulfhydration can possibly be attributed to a different
condition, which was anti-apoptosis in physiological but
anti-inflammation in pathological conditions (Du et al.,
2014).

Li et al. found that a deficiency in CSE decreased
mitochondrial DNA levels and mitochondrial transcription
factor A (TFAM) expression in both smooth muscle cells and
arteries, which resulted in mitochondrial function disorder.
H2S S-sulfhydrated transcription repressor interferon regula-
tory factor-1 (IRF-1), strengthened the binding between IRF-
1 and DNA methyl transferase 3A promoter to inhibit TFAM
promoter methylation. Finally, TFAM methylation was
attenuated, while the expressions of TFAM and mito-
chondrial DNA were increased to restore the mitochondrial
biogenesis (Li and Yang, 2015). Bioinformatics analysis
found that only Cys53 is located in the DNA-binding domain
of IRF-1.

H2S induced S-sulfhydration on ion channels in
cardiovascular system
Voltage-activated Ca2+ channels, one of the most
important calcium channels in cardiovascular system, are
regulated by H2S (Fukami and Kawabata, 2015; Ping et al.,
2015; Zhang et al., 2015). NaHS concentration-dependently
inhibits L-type calcium currents in cardiomyocytes, which
was abolished by DTT. And NaHS decreases the functional
free sulfhydryl group in L-type calcium channel, which
provides indirect evidence for S-sulfhydration of voltage-
activated Ca2+ channels by H2S (Zhang et al., 2012). However,
there was no direct evidence that voltage-activated Ca2+

channels were S-sulfhydrated by H2S. Whether H2S regulates
related subunits or associated cysteine sites is also still
unknown.

Transient receptor potential (TRP) channels, as putative
pro-angiogenic Ca2+-permeable channels, are also modulated
by H2S (Munaron et al., 2013; Zhang et al., 2015). Liu et al.
found that H2S S-sulfhydrated TRPV6 at Cys172 and Cys329

sites in bone marrow mesenchymal stem cells. Over-
expression of TRPV6 increased Ca2+ influx and activated the
PKC/β-cateine signal pathway to promote osteogenic differen-
tiation.Mutation of TRPV6 at bothCys172 andCys329, but not
only one site alone, resulted in a suppressed PKC/β-cateine
signal pathway and impaired osteogenic differentiation.
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Moreover, there were also several cysteine residues at other
Ca2+ TRP channels, such asTRPV3 andTRPM4, which have
the potential to be S-sulfhydrated by H2S (Liu et al., 2014b). A
previous study confirmed that endothelial cells are
responsible for endogenous H2S production and H2S-induced
vasodilatation. Naik et al. found that H2S-induced Ca2+ and K+

influx to dilate vessels was blocked after TRPV4 inhibition.
Moreover, S-sulfhydration of TRPV4 was enhanced after
Na2S treatment in aortic endothelial cells (Naik et al., 2016).
This suggests that TRPV4 is activated after S-sulfhydration,
which might be the key factor in vasodilatation.

Kir6.1, a subunit of the ATP-sensitive K+ (KATP) channels,
was S-sulfhydrated after CSE overexpression, and this did not
occur if CSE was absent or mutated. A further study
confirmed that S-sulfhydrated Kir6.1 at Cys43 attenuated
ATP production but elicited more phosphatidylinositol 4,5-
bisphosphate to bind with Kir6.1, which promoted KATP

channel activity and improved vasodilatation. Moreover,
not only S-sulfhydration but also vasodilatation induced by
H2S was alleviated in Kir6.1-Cys43 mutants (Mustafa et al.,
2011). This might be the key mechanism for H2S to act as an
endothelial derived relaxing factor. Kang et al. also found that
H2S increased S-sulfhydration on sulphonylurea 2B (SUR2B)
at Cys24 and Cys1455, another subunit of KATP channels
complex, to restore smooth muscle contraction (Kang et al.,
2015). Liu et al. found that H2S decreased the membrane
potential, inhibited the fast inactivation component of the
voltage-dependent potassium channel current in gastric
smooth muscle cells and promoted gastric motility, which
was suppressed by KV4.3 knockdown. Meanwhile, KV4.3
was S-sulfhydrated by H2S, which was attenuated by DTT
(Liu et al., 2014a). All these data suggested that different
cysteine sites might be S-sulfhydrated in different cells,
which have various effects responsible for physiological or
pathological process.

Crosstalk with protein S-sulfhydration
and other post-translational
modifications
S-sulfhydration at cysteine residues usually alters the structure
and function of a protein. It is possible that crosstalk occurs
with several other post-translational modification to ulti-
mately regulate a physiological or pathological process. But
overall, there are relatively few studies on this type of crosstalk
in cardiovascular research.

It was reported that NO elevates S-nitrosylation on
phosphatase and tensin homologue (PTEN) at C83S
to attenuate its activity followed by Akt activation. One
study found that H2S S-sulfhydrated PTEN at Cys71 and
Cys124 in human neuroblastoma SH-SY5Y cells (Numajiri
et al., 2011). Furthermore, S-nitrosylation on PTEN inc-
reased if H2S production was inhibited by knocking down
CBS. Consistent with the reduced S-sulfhydration, Akt
activity increased significantly (Ohno et al., 2015). As far
as we know, PTEN is also a key signal molecular in car-
diomyocyte apoptosis (Ke et al., 2016), ventricular
remodelling (Yang et al., 2016), angiogenesis (Serra et al.,
2015) and other cardiovascular diseases. It is thought that

protein S-sulfhydration and S-nitrosylation of PTEN keep
a dynamic balance, and compete with each other to maintain
normal function of the protein. PTP1B at Cys215 also
underwent S-nitrosylation and S-sulfhydration (Chen et al.,
2008; Krishnan et al., 2011). S-sulfhydration of p65, one key
submit of NF-κB, disrupted the S-nitrosylation of itself to
suppress apoptosis in macrophages (Sen et al., 2012). More
recently it was verified that the effect of H2S is determined
by S-nitrosylation but not S-sulfhydration (Sun et al., 2016).
However, further studies need to be done on more proteins
with simultaneous S-sulfhydration and S-nitrosylation to
determine the possible physiological significance of each of
these processes. Also, it would be beneficial to identify the
potential mechanism for the common ‘crosstalk’ between
H2S and NO in the cardiovascular system.

Kang et al. reported that H2S increases S-sulfhydration on
SUR2B, one of the key subunits of the KATP channel complex,
in mouse colonic smooth muscle cells. Furthermore the
peroxynitrite donor SIN-1 enhances the tyrosine nitration
of Kir6.1 (another subunit of th eKATP channel complex). This
SIN-1-induced up-regulation of tyrosine nitration on Kir6.1
was restored by NaHS in Chinese hamster ovary cells
transfected with Kir6.1 and the SUB2B mutant at C263S but
not C24S or C1455S. That is S-sulfhydration of SUB2B at
C24S and C1455S inhibited the nitration of Kir6.1. Moreover,
NaHS also reduced the tyrosine nitration of Cav1.2b
channels to improve Ca2+-induced contractions in mouse
ileum (Kang et al., 2015). In accord with the previous study,
NaHS reduced the activity of L-Ca2+ channels containing free
sulfhydryl groups in cardiomyocytes (Zhang et al., 2012).
These results suggest that H2S might directly S-sulfhydrate
L-Ca2+ channels to regulate Ca2+ homeostasis in the heart.
Moreover, H2S S-sulfhydrates cysteine-rich proteins to induce
several other post-translational modifications on different
proteins. Both of the direct and indirect effects of
S-sulfhydration play a vital role in maintaining the
physiological function of proteins in the cardiovascular
system.

A significant amount of endogenous H2S anion is
generated in rat cardiomyocytes and cardiac fibroblasts.
The reduction in H2S production caused by CSE or CBS
deletion enhanced the protein S-guanylation induced by
8-nitro-cGMP. Moreover, exogenous NaHS treatment
markedly enhanced S-sulfhydrated 8-nitro-cGMP, which
attenuated 8-nitro-cGMP-induced H-Ras activation, but
not the activation of the H-Ras C184S mutant, by H-Ras
S-guanylation in rat cardiomyocytes and myocardium from
a failing heart, due to myocardial infarction (Nishida et al.,
2012). As 8-nitro-cGMP is a key signalling molecule in
cardiovascular system disorders (Akaike et al., 2010), these
findings suggest that 8-nitro-cGMP S-sulfhydration by H2S
not only inhibits S-guanylation but also antagonizes the
oxidative stress-induced or electrophile-mediated cell injury,
which might be a novel mechanism of cardioprotection.

At baseline conditions, in endothelial cells isolated from
aortae of WT mice, 30% of total endothelial NOS (eNOS) is
S-nitrosylated and 21% is S-sulfhydrated, and these values are
elevated by NO or an H2S donor respectively. Altogether about
5% of total eNOS is S-sulfhydrated in aortic tissue of WT mice,
but S-sulfhydration is undetectable in CSE knock out mice.
Moreover, H2S abolished the S-nitrosylation of eNOS induced
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by the NO donor sodium nitroprussiate (SNP), but
SNP had no effect on NaHS-induced S-sulfhydration of
eNOS in endothelial cell lysates. NaHS increases S-
sulfhydration, NO production and eNOS dimerization on WT
eNOS and C689S-eNOS but not C443S-eNOS. NaHS also
increases the phosphorylation of WT-eNOS or C443G-eNOS
but not S1179A-eNOS. These results suggest that H2S and NO
compete for S-sulfhydration and S-nitrosylation at the cysteine
residues to regulate the phosphorylation and activity of eNOS.
H2S, as a pivotal coordinator, maintains the dynamic
homeostasis among several post-translational modifications of
endothelial function (Altaany et al., 2014).

In addition, S-sulfhydration of p66Shc at Cys59 pro-
moted p66Shc phosphorylation at Ser36 due to an
enhanced association with PKCβII and p66Shc (Xie
et al., 2014). S-sulfhydration is involved in the
protective effect of the protein-O-GlcNAcylation in
myocardial ischaemia reperfusion injury (Pagliaro et al.,
2011). H2S also induces S-polythiolation, S-alkylation,
S-arylation and other post-translational modifications
(Rudolph and Freeman, 2009; Ida et al., 2014). However,
whether there is a crosstalk with S-sulfhydration and the
possible effect in the cardiovascular system remains
unknown. More knowledge of the crosstalk may speed

Figure 2
Schematic illustration of possible roles of S-sulfhydration by H2S in the cardiovascular system. H2S induces S-sulfhydration on p66Shc to inhibit
oxidative stress. S-sulfhydration on phospholamban (PLN) promotes myocardial relaxation. S-sulfhydration on protein tyrosine phosphatase 1B
(PTP1B) restores endoplasmic reticulum stress homeostatis. H2S also S-sulfhydrates MEK1 to repair DNA damage. ATP5A1 and transient receptor
potential V4 (TRPV4) S-sulfhydration improves ATP production and vasodilatation respectively. H2S also S-sulfhydrates SP-1, Keap1, NF-κB and
IRF-1 to regulate target gene transcription, which is vital for the regulation of endothelial phenotypes, myocardial hypertrophy, oxidative stress,
mitochondrial biogenesis, apoptosis and inflammation.
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up our understanding of the role of protein
S-sulfhydration in cardiovascular disease.

Concluding remarks and future
perspectives
Over the past few years, significant progress has been
achieved in delineating the role of protein S-sulfhydration
by H2S in the cardiovascular system (Figure 2). However,
more scientific methods with enhanced sensitivity and
specificity to detect S-sulfhydration are urgently needed.
More proteins and detailed cysteine sites of S-sulfhydration
need to be investigated in the cardiovascular system.
However, not all of the proteins subjected to S-sulfhydration
have an altered spatial configuration and activity. This might
be determined by the location of the S-sulfhydrated
cysteines. If S-sulfhydrated cysteines are located in the key
domain, which is vital to maintain the structure and activity
of that protein, protein S-sulfhydration will alter the protein
function and signal transduction. In other words, there
might be no significant difference after S-sulfhydration,
which is known as ‘ineffective S-sulfhydration’. Moreover,
the significance of S-sulfhydration in the cardiovascular
system, such as target gene transcription, enzymatic activity
and ion channel permeability, are to be investigated in
further studies. The exact nature of the crosstalk between S-
sulfhydration and other post-translational modifications is
not yet known and deserves to be better elucidated. In
addition, the level of protein S-sulfhydration is controlled
by the thioredoxin system, which suggests that some agents
that alter thioredoxin activity or expression will be involved
in regulating the intracellular levels of protein S-
sulfhydration and H2S-mediated biological and
pharmacological effects (Wedmann et al., 2016).

Protein S-sulfhydration, as a vital post-translational
modification induced by H2S, is a possible a molecular
mechanism for the effects of H2S. Clinically, the relevance of
S-sulfhydration in cardiovascular diseases needs to be studied.
More information about S-sulfhydration will help us to
understandhow S-sulfhydration at specific cysteines canhave
a beneficial effect in various cardiovascular diseases. Moreo-
ver, the S-sulfhydrated proteinsmay be potential novel targets
for therapeutic intervention and drug design in the cardio-
vascular system, which may accelerate the development and
application of H2S-related drugs in the future.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharmaco-
logy.org, the common portal for data from the IUPHAR/BPS
Guide to PHARMACOLOGY (Southan et al., 2016), and are
permanently archived in the Concise Guide to
PHARMACOLOGY 2015/16 (Alexander et al., 2015a,b,c,d,e).
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