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ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological
processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial
homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of
ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the
recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix,
collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress
are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis
and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can
reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and
sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the
pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for
developing promising clinical strategies targeting ROS to decrease cardiovascular risks.
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Introduction
Vessels transport blood throughout the body and provide
critical nutrients to all tissues and organs. Structural and
functional abnormalities of vessels result in cardiovascular
diseases, such as ischaemic heart disease and stroke, which
is the leading cause of death in the world (McGuire, 2016).
Vascular remodelling occurs due to ageing and many
pathological stimuli, including haemodynamic changes,
inflammatory cytokines, cholesterol infiltration and
oxidative stress.

ROS, a class of chemically reactive molecules, are now
appreciated to play important roles in the regulation of a
variety of biological processes. In recent years, researchers
have continued to study the crucial roles of ROS in vascular
homeostasis and the pathogenesis of vascular diseases,
including hypertension, atherosclerosis, restenosis and
abdominal aortic aneurysm. Low levels of ROS, acting as
powerful signalling molecules, are essential for maintaining
normal vessel functions, whereas uncontrolled
overproduction of ROS exacerbates oxidative stress, resulting
in vascular cell damage, the induction of proliferation and
migration of vascular smooth muscle cells (VSMCs),
recruitment of inflammatory cells, lipid peroxidation,
activation of metalloproteinases and deposition of
extracellular matrix, collectively causing vascular
remodelling (Konior et al., 2014; Raaz et al., 2014; Vara and
Pula, 2014; Kim et al., 2016). An imbalance of ROS generation
and elimination in pathological conditions is the reason for
oxidative stress. Numerous studies have been aimed at
exploring effective therapeutic strategies, such as
antioxidants, for counteracting ROS and oxidative responses,
ultimately protecting against the vascular diseases.

In this review, we will discuss the chemical characteristics
of ROS, the balance of ROS generation and elimination and
their roles in vascular homeostasis and specific vascular
diseases including hypertension, atherosclerosis, restenosis
and abdominal aortic aneurysm. Finally, we will discuss the
recent advances on clinical strategies targeting ROS to reduce
cardiovascular risks.

ROS

Chemical characteristics of ROS
ROS family comprises numerous small reactive ions and
molecules that are derived from oxygen metabolism. ROS
with unpaired electrons are considered as free radicals such
as superoxide ion (O2

•�) and hydroxyl radical (OH•�), which
are unstable and have short biological half lives. In contrast,
nonradicals of ROS such as hydrogen peroxide (H2O2),
singlet oxygen (1O2), peroxynitrite (ONOO�) and
hypochlorous acid (HOCl) are comparatively stable and have
longer half lives (Droge, 2002; Vara and Pula, 2014). In
particular, O2

•�, a typical extremely reactive radical with rapid
spontaneous (8 × 104 M�1·s�1) or enzymic (2 × 109 M�1·s�1)
dismutation, represents the precursor ofmost ROS (Fridovich,
1983). The majority of O2

•� generated is rapidly converted to
H2O2, which is more stable than O2

•� and probably mediates
downstream cell signallings. Comparedwith other ROS, H2O2

has a relatively longhalf-life, can penetrate the cellmembrane

easily and function as a reversible oxidant, thus representing
the most ideal second messenger among ROS (Fisher, 2009;
Reth, 2002). The decomposition of H2O2 produces the highly
reactive radical OH•�, which is considered to be associated
with oxidative damage due to its mostly nonselective and
irreversible reactivity (Pryor, 1986; Thomas et al., 2009).
Various ROS molecules with a wide spectrum of chemical
properties display significant heterogeneity in a number of
biological processes.

Generation and elimination of ROS in the
vascular system
Oxidative stress is determined an by imbalance between ROS
generation and the intrinsic antioxidant defence system in
favour of the first that leads to the subsequent pathogenesis
of diseases (Juni et al., 2013). Almost all the cells in the
vascular wall, including endothelial cells (ECs), VSMCs and
adventitial cells, possess the ability to generate ROS.
Generally, both ROS production and elimination are
dependent on enzymic and nonezymic pathways.

Enzymic sources of ROS which are closely related to redox
signalling in the vascular system have been studied
extensively. NADPH oxidase (NOX), xanthine oxidase
(XO) and uncoupled NOS are the most important sources of
vascular ROS, in which myeloperoxidase, lipoxygenase
(LOX), COX and many other amine oxidases are also
included. Importantly, NOX, the only family of enzymes that
produces ROS as its primary function, is the major source of
ROS production in the vasculature in various conditions
(Lassegue et al., 2012; Montezano and Touyz, 2014). NOX
contains two membrane bound subunits (gp91phox and
p22phox) and several cytoplasmic subunits (p47phox,
p67phox, p40phox and G protein) (Bedard and Krause,
2007). There are seven isoforms of NOX in mammals, among
whichNOX1, NOX2, NOX4 andNOX5 are variably expressed
in the vascular system (Bedard and Krause, 2007; Muller and
Morawietz, 2009; Lassegue et al., 2012; Montezano and
Touyz, 2014). ECs prodominantly express NOX1, NOX2,
NOX4 and NOX5; VSMCs mainly express NOX1, NOX4 and
NOX5; and adventitial cells express NOX2 and NOX4
(Drummond et al., 2011a; Lassegue et al., 2012). In particular,
the various NOX differ with respect to their specific ROS
generation. NOX1 and NOX2 primarily produce O2

•� from
oxygen; NOX4 has been reported to generate H2O2 rather
than O2

•�; and NOX5 produces both O2
•� and H2O2 (Dikalov

et al., 2008; Helmcke et al., 2009). Numerous pathological
stimuli, like hypertension, hypercholesterolaemia and
diabetes mellitus, can activate NOX, resulting in an enhanced
production of ROS (Loffredo et al., 2012; Santilli et al., 2015;
Ellulu et al., 2016). XO, mainly identified in ECs, is another
source of ROS in diseased arteries (Guzik et al., 2006). XO
mediates hypoxanthine and xanthine oxidation, thereby
producing O2

•� and H2O2 as by-products (Harrison, 2004).
In addition to NOX and XO, NOS also plays a critical role in
both physiological and pathological conditions.
Endothelial NOS (eNOS) produces NO and exerts
vasoprotective effects on the endothelium under
physiological conditions (Forstermann and Sessa, 2012).
However, under pathological conditions, dysfunctional
uncoupled eNOS no longer produces NO, but O2

•�, which
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aggravates oxidative stress (Forstermann and Sessa, 2012; Li
and Forstermann, 2013). Besides enzymic sources of ROS,
the mitochondrial respiratory electron transport chain
(ETC), which is another important source of harmful ROS,
serves as a key generator in atherosclerosis and heart diseases
(Li et al., 2014; Muntean et al., 2016). Mitochondria are
responsible for utilizing oxygen for energy production and
oxidative phosphorylation. During ATP formation, the
oxygen consumed is converted to O2

•�, which makes ROS
by-products of the mitochondrial respiratory chain (St-Pierre
et al., 2002; Andreyev et al., 2015). Mitochondria have been
conventionally considered as themain source of ROS in living
cells including vascular cells (Dromparis and Michelakis,
2013). The leak of electrons to molecular oxygen from ETC,
predominantly at complexes I, II and III, represents a major
way of generating ROS. In addition to ETC, themitochondrial
growth factor adaptor Shc andmonoamine oxidases (MAO-A
and MAO-B) are also responsible for ROS production in the
vascular system (Camici et al., 2007; Sturza et al., 2015).
Importantly, ROS overproduction in mitochondria results in
changed mitochondrial permeability, leading to ROS release
(Zorov et al., 2014). This regenerative cycle of mitochondrial
ROS production and release is named ‘ROS-induced ROS
release’, which triggers ROS burst and has a pathological
impact (Zorov et al., 2000; 2014).

The control of ROS steady state is critical for maintaining
a healthy life. Therefore, an antioxidant system also exists in
the body in order to decrease excessive ROS. The vasculature
contains a number of ROS-reducing enzymes, which act as
antioxidants and provide redox homeostasis. SOD, catalase
and glutathione peroxidase (GPx) are the major types of
antioxidant enzymes. It has been reported that there are
three isoforms of SOD (SOD1, SOD2 and SOD3), all of which
catalyse the dismutation of O2

•� into H2O2 and oxygen
(Chiarelli et al., 2005). Catalase mediates the elimination of
H2O2 by facilitating the decomposition of H2O2 to oxygen
and water (Chelikani et al., 2004). GPx, usually uses perioxide
as an oxidant for another substrate, reduces H2O2 to water as
well as organic peroxides to their corresponding alcohols
(Margis et al., 2008). In addition to the enzymatic
degradation of ROS, various low-molecular-weight
compounds can directly react with ROS (Lu et al., 2010).
These dietary or endogenously synthesized antioxidants,
including vitamin C, vitamin E, uric acid, tripeptide GSH,
phenolics, flavonoids and thiol compounds, detoxify ROS
and protect against ageing and diseases (Stocker and Keaney,
2004; Vara and Pula, 2014; Bielli et al., 2015).

The dynamic balance of ROS generation and elimination
is vital in redox homeostasis and vascular health. Low levels
of ROS, serving as second messengers within the signalling
pathway, are essential for physiological cell functions.
However, abnormal ROS accumulation causes increased
oxidative stress and leads to vascular damage.

Biological and physiological roles of
ROS in vascular health and diseases

Physiological roles of ROS in vascular cells
ECs and VSMCs are the most important cells for maintaining
an intact vascular system and its homeostasis. They both

represent targets of ROS and ROS signalling. Excessive ROS
damage cells, which results in vascular diseases. However,
low levels of ROS have been proposed to maintain normal
EC and VSMC functions, including mechano-stress signal
transduction, physiological angiogenesis and the
permeability of ECs, as well as the differentiation and
contraction of VSMCs.

ECs lining the vascular lumen are exposed to blood flow,
which produces mechano-stress critical for maintaining the
homeostasis of ECs. Laminar shear stress promotes the
expression of signalling levels of H2O2 induced by NOX,
which significantly activates p38 MAPK and eNOS, leading
to the generation of NO and protection of ECs (Breton-
Romero et al., 2012). VEGF is a prominent regulator of
angiogenesis under physiological conditions. VEGF
promotes EC proliferation, migration and survival upon
binding to VEGFR1 and VEGFR2 and activating
downstream signal pathways. VEGF stimulated signalling
events are at least partially dependent on endothelial ROS
generation (Colavitti et al., 2002; Yamaoka-Tojo et al., 2004;
Ikeda et al., 2005). VEGF induces endothelial ROS production
mainly through NOX2 and NOX4 activation (Maraldi et al.,
2010; Evangelista et al., 2012). Meanwhile, a recent study
showed that cultured human ECs stimulated by physiological
amounts of VEGF exhibited increased mitochondrial ROS
and enhanced cell migration (Wang et al., 2011). The small
GTPase Rac and IQGAP1 are critical for the localization of
NOX at the leading edge of migrating ECs, resulting in the
local accumulation of ROS and post-translational
modification of key signalling molecules including Akt,
ERK and PTP1B, which play important roles in the
proliferation, migration and angiogenesis of ECs (Yamaoka-
Tojo et al., 2004; Kaplan et al., 2011). Furthermore, low
amounts of ROS are also crucial for the maintenance of the
undifferentiated phenotype of endothelial progenitor cells
(Ushio-Fukai and Urao, 2009). NOX2-derived ROS affect
endothelial progenitor cells, thereby promoting
revascularization of ischaemic tissue (Urao et al., 2008). ROS
are also involved in the regulation of endothelial cell
permeability (Monaghan-Benson and Burridge, 2009).
Adhesion protein and adherens junction have been reported
to be modulated by ROS, leading to a compromised
endothelial barrier (Usatyuk et al., 2003; Monaghan-Benson
and Burridge, 2009).

Normal levels of ROS are critical for the physiological
responses of VSMCs, such as their ability to maintain a
differentiated phenotype and regulate vascular tone. ROS
promote VSMC differentiation from stem/progenitor cells
and the phenotypic switch from a ‘proliferative’ state to a
‘contractile’ state. Xiao et al. reported that NOX4-induced
H2O2 production mediates the differentiation of embryonic
stem cells into VSMCs by activating SMC-specific
transcription factors (Xiao et al., 2009). Moreover, the
interaction of Nrf3 with Pla2g7 increases the generation of
ROS, subsequently enhancing SMC differentiation. Enforced
expression of Pla2g7 significantly increased SMC
differentiation, which could be abolished by a free radical
scavenger or flavoprotein inhibitor of NOX but not by an
H2O2 inhibitor (Pepe et al., 2010; Xiao et al., 2012).
Consistently, Chettimada et al. found that addition of H2O2

directly induced miR-145 expression in VSMCs, which
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subsequently caused VSMC differentiation (Chettimada
et al., 2014). Besides its effect on VSMC differentiation,
vascular tone determined by VSMC-induced contraction is
also regulated by ROS. Mechanistically, the effects of ROS on
VSMC-induced contractions are dependent on the chemical
nature of ROS and/or activation of various protein kinases.
O2

•� directly scavenges endothelial NO, exerting
vasoconstrictor effects (Bae et al., 2008). Meanwhile, O2

•�

contracts VSMCs through the activation of specific kinases
including Src kinases, Rho kinases and ERKs (Oeckler
et al., 2003; Knock et al., 2009).

ROS and hypertension
Extensive studies have shown that ROS play a critical role in
the chronic pathogenesis of hypertension, while decreasing
ROS production helps to reduce blood pressure. We are still
far away from completely understanding the complicated
mechanisms underlying formation of arterial hypertension.
However, we have observed that an increase in ROS
production is associated with hypertension in many organs,
including the vascular wall, kidney and CNS.

High levels of O2
•� and H2O2 have been observed to

enhance angiotensin II (Ang II)-stimulated redox
signalling in resistance arteries of hypertensive patients
(Touyz et al., 2005; Montezano et al., 2015). Population-based
observations also revealed an inverse relationship between
plasma antioxidants and blood pressure (Eslami and
Sahebkar, 2014; González et al., 2014). Oxidative stress causes
an imbalance between endothelium-derived relaxing factors
and endothelium-derived contractile factors, which regulate
vascular tone. Increased O2

•� production reacts with NO,
one of themost important vasodilators, by uncoupling eNOS,
leading to reduced NO release, impaired endothelium-
dependent relaxation and an elevated arterial pressure.
Oxidative stress also increases plasma F2-isoprostanes which
act on PGH/thromboxane receptors to strengthen
vasoconstriction (Feldstein and Romero, 2007; Baradaran
et al., 2014). Another important effect of ROS in hypertension
is the induction of vascular smooth muscle cell hypertrophy.
H2O2 and NOX are believed to be the major mediators of
smooth muscle cell hypertrophy, which leads to medial
thickness and high systemic vascular resistance (Laude,
2005; Zhang, 2005). Moreover, ROS molecules mediate
vascular fibrotic changes, including collagen and fibronectin
production and accumulation in the vessel wall, which will
also elevate vascular resistance (Ding, 2005; Patel et al.,
2006); these effects can be substantially attenuated by ROS
depletion (Zaw et al., 2006; Lijnen et al., 2006). Although
most of the studies demonstrate deleterious effects of ROS
on vascular hypertensive remodelling, there are some reports
showing the benefits of ROS on vessels. The endothelium
regulates vascular tone not only by releasing NO but also
by causing hyperpolarization, which is termed
‘endothelium-derived hyperpolarizing factor’. Under
physiological conditions, eNOS-derived H2O2 plays an
important role as an endothelium-derived hyperpolarizing
factor in both humans and animals, and evokes
endothelium-dependent vascular relaxations (Matoba et al.,
2000; Feletou and Vanhoutte, 2009; Prysyazhna et al.,
2012). In addition, H2O2 produced by the mitochondria

has also been shown to be an endothelium-derived
hyperpolarizing factor, which is involved in flow-mediated
vasodilatation in human coronary arterioles by means of
Ca2+-dependent potassium channels (Liu et al., 2011).
Furthermore, H2O2 stimulates NO production via the
NO-cGMP pathway to promote vasodilatation
independently of NO (Cai, 2005a,b; Yi et al., 2015).

ROS production in the kidneys and renal vessels is an
established contributor to the formation and maintenance
of hypertension. The wide-spread expression of ROS in the
renal system correlates with the abundancy of NOX in almost
all parts of the kidney, including the glomeruli, podocytes,
macula densa, interstitial fibroblasts, medullary thick
ascending limb and distal tubule and collecting duct, among
which afferent arterioles are the main sources of ROS. O2

•�

overproduction in afferent arterioles degrades NO, resulting
in vasoconstriction and a reduction in glomerular filtration
rate. Ang II causes endothelial dysfunction in afferent
arterioles by inducing the expression of the NOX subunit
p22phox, subsequently leading to hypertension (Gill and
Wilcox, 2006). Moreover, Ang II-induced ROS accumulation
in afferent arterioles increases the intracellular calcium
concentration, which is another vasoconstrictor for
hypertensive vessels (Fellner and Arendshorst, 2005).
Glomerular injury can be mediated by ROS and NOX. It has
been reported that glomerular injury in mice lacking
P47phox is attenuated compared to that in WT mice, and
the application of antioxidants alleviated the glomerular
sclerosis and proteinuria (Nagase et al., 2006; Taylor et al.,
2006; Wang et al., 2015). Mitochondrial ROS generation
causes the autophagy of podocytes and impairs the crosstalk
between nephrin and caveolin-1, which leads to the
disruption of the glomerular filtration barrier (Jia et al.,
2008; Ren et al., 2012). Additionally, the mesangial cell
proliferation and migration, extracellular matrix deposition
and glomerulosclerosis involved in glomerular injury have
also been attributed to ROS-mediated damaging effects (Hua
et al., 2012). Tubuloglomerular feedback, which plays an
important role in sodium reuptake and blood pressure
control, is another target of ROS. Nouri et al. (2007) proposed
that RNA silencing of the NOX subunit p22phox can
enhance single tubular glomerular filtration in Ang II-
induced hypertension via ROS production in the macula
densa. In the medulla, NOX promotes vasa recta
vasoconstriction and sodium movement into the vasa recta,
reducing natriuresis and consequently increasing blood
pressure (Mori et al., 2007; White, 2012). Furthermore, ROS
have effects on sodium transport as well. O2

•� promotes Na/
K/2Cl cotransporter activity through the PKC pathway in
medullary thick ascending limb preparations (Silva et al.,
2006). Moreover, O2

•� scavenger and NO administration
have opposite effects on the Na/K/2Cl cotransporter (Silva
and Garvin, 2008). However, some discrepancies exist with
regard to the marked effects of ROS on the kidney and
hypertension. Several studies have shown that ROS might
be beneficial (good) molecules in the development of
hypertensive remodelling. Cuevas et al. (2012) reported that
dopamine D2 receptor depletion inhibits ROS production
in renal proximal tubular cells and accelerates the
progression of hypertension. Ohsaki et al. (2012) found that
excessive sodium delivery to cells caused mitochondrial

BJP Q Chen et al.

1282 British Journal of Pharmacology (2018) 175 1279–1292

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=619
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=289
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=69
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=69
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=215
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=215


H2O2 overproduction in medullary thick ascending limb,
resulting in vasodilatation of the nearby vasa recta.

ROS mediated stimulation of the nervous system
represents another specific aspect of blood pressure
regulation. Hypertension caused by Ang II infusion involves
an increased O2

•� production in the CNS, while i.c.v.
injection of SOD enhances Ang II-induced hypertension
(Guyenet, 2006). Peterson et al. (2009) discovered that
NOX2 and NOX4 were both linked to blood pressure
regulation, while NOX2 in the subfornical organ can also
modulate drinking behaviour. Lob et al. (2013) showed that
p22phox depletion in the subfornical organ inhibited Ang
II-induced hypertensive responses. The nucleus tractus
solitarii is a kind of hindbrain nucleus functioning as a
cardiovascular control centre, which processes signals from
circumventricular organs and carotid baroreceptors. Studies
have shown that NOX contributes to Ang II-induced ROS
production in the nucleus tractus solitarii and reduces blood
pressure in stroke-prone spontaneously hypertensive rats
(Glass et al., 2007; Nozoe et al., 2007). H2O2-induced delayed
hyperexcitability of nucleus tractus solitarii neurons can
enhance sympathetic outflow, which contributes to
hypertension (Ostrowski et al., 2014). Moreover, an increased
input from afferent renal nerves also activates central
sympathetic nuclei in a ROS-dependent manner, which
shows a complex relationship exists between the central
and peripheral nerve systems (Chan et al., 2006).

ROS and atherosclerosis
The classical ‘oxidative stress theory’ of atherosclerosis is
based on the production of ROS from resident cells of the
vessels and other organs and tissues, eliciting the oxidation
of low-density lipoproteins (LDLs), which leads to
inflammatory responses and foam cell formation within
atherosclerotic plaques. An increasing number of findings
have corroborated this theory, with the aim of completely
understanding the role of ROS in atherogenesis so that a
strategy can be developed for clinical use.

A number of studies have consistently demonstrated that
ROS accumulation and oxidative stress drive atherogenesis.
Among the various mechanisms, oxidation of LDLs induced
by O2

•� is well-established and widely accepted (Peluso
et al., 2012). Oxidized-LDLs (oxLDLs) are cytotoxic to
vascular cells and promote vascular inflammation by
augmenting the infiltration of monocytes/macrophages into
the vessel wall, subsequently resulting in foam cell formation
(Tsimikas, 2006). When polyunsaturated lipids undergo
oxidation by ROS, several by-products are formed, which
react with apolipoprotein (Apo) B-100 and impair its
function. Modified ApoB-100 retards the removal of LDLs
and prolongs the exposure of both lipids and apoB-100 to
ROS attack, which further enhances the oxidation of LDLs
(Rabbani et al., 2010). ROS not only oxidize LDLs but also
participate in oxLDLs-induced downstream cellular
activities. For instance, the pro-atherogenic activation of
macrophages induced by minimally oxidized LDLs is
dependent on NOX2-derived ROS generation (Bae et al.,
2009). Interestingly, positive feedback regulation of oxLDLs-
induced NOX expression has been reported, which further
expands the interplay between oxLDLs and ROS (Honjo
et al., 2008). In addition to the effects of ROS on LDLs, studies

have revealed the oxidation of high-density lipoproteins
(HDLs) by HOCl, which may promote atherogenesis by
counteracting the antiatherogenic effects of HDL (Besler
et al., 2011; Khera et al., 2011).

It is well-known that atherosclerosis is a chronic
inflammatory disease and inflammation mediates all stages
of lesion progression (Galkina and Ley, 2009; Libby and
Hansson, 2015). Macrophages, themain cellular components
of atherosclerotic plaques, are extensively modified by ROS.
Oxidative stress and oxLDLs enhance the release of
macrophage colony-stimulating factor and monocyte
chemotactic protein-1 (MCP-1; also known as CCL2),
which results in the attraction and adhesion of monocytes
to arterial walls and promotes their differentiation into tissue
macrophages tha then reside in the lesion (Hansson and
Libby, 2006; Garrido-Urbani et al., 2014). Moreover, ROS
activate NF-κB regulatory complex and trigger the
transcription of several atherosclerosis-related genes such as
MCP-1, MMP-9, VCAM-1 and procoagulant tissue factor
that lead to vascular wall macrophage accumulation and
foam cell formation (Van der Heiden et al., 2010). In addition,
oxidative stress also affects the function and phenotype
macrophages in atherosclerosis. NOX4 has been identified
as a source of ROS in macrophages and mediates oxLDLs-
inducedmacrophage death, which is associated with necrotic
cores in the advanced plaques (Lee et al., 2010). Meanwhile,
ROS signalling is also involved in oxLDLs-induced
macrophage spreading, whichmay contribute to the trapping
of macrophages in vessels and promotes atherosclerosis (Park
et al., 2009). Inflammatory cells are not only the targets of
ROS but also a source of ROS. Those leukocytes that infiltrate
the vascular lesion sites release a large amount of ROS as well
as their granules, which contain a considerable number of
molecules with killing and degradative activities such as
myeloperoxidases, elastases, collagenases and lysozymes.
Thus, this excessive release of ROS plus granules means
vascular inflammation is deleterious in atherosclerosis.

Thrombosis is an important cardiovascular complication
of atherosclerosis, which causes arterial occlusion and tissue
ischaemia. It has been demonstrated that the activity of
platelets plays a crucial role in thrombosis (Ellulu et al.,
2016). Several studies have suggested that increased ROS
release can indirectly activate platelets or decrease their
activation threshold, causing vessels to be prone to
thrombosis (Carbonell and Rama, 2007; Lubos et al., 2008;
Watt et al., 2012). Mechanistically, oxidative stress stimulates
platelet activity by affecting calcium mobilization,
inactivating NO function and interacting with arachidonic
to induce the formation of isoprostanes (Violi and Pignatelli,
2014). NOX2 is involved in platelet activation and apocynin,
a NOX inhibitor, has been reported to reduce platelet
adhesion and atherosclerotic lesion formation (Violi and
Pignatelli, 2014; Pastori et al., 2015).

ROS and restenosis
Restenosis occurs after balloon angioplasty and stenting, and
is characteristic of pathological VSMC accumulation leading
to neointima formation. Increased ROS and NOX have been
shown to be present early on after angioplasty and may be
involved in the pathogenesis of restenosis (Iuliano et al.,
2001; Shi et al., 2001; Szocs et al., 2002). In balloon-injured
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arteries, vascular O2
•� production is increased and the

expression of NOX1, NOX4, gp91phox and p22phox are
up-regulated (Iuliano et al., 2001; Shi et al., 2001; Szocs
et al., 2002). Similar to angioplasty, bare-metal stent
deployment can result in oxidative stress. In the vascular
wall, a marked increased production of O2

•� has been
reported after bare-metal stent placement, which was
associated with an increased expression of gp91phox and
p22phox (Ohtani et al., 2006). Drug-eluting stent
deployment is also linked to oxidative stress. In pig trials,
paclitaxel-eluting stent placement resulted in increased
production of O2

•� and decreased NO activity (Pendyala
et al., 2009). Paclitaxel stimulates mitochondrial ROS
production by enhancing NOX activities, which contributes
to oxidative stress (Laurent et al., 2005; Alexandre et al.,
2007).

The increased proliferation and migration of VSMCs in
arteries lead to neointima formation and luminal narrowing.
In the vascular system, NO and Ang II are the two critical
molecules that regulate the functions of VSMCs (Galougahi
et al., 2014). Ang II contributes to oxidative stress-induced
damage to VSMCs by stimulating the overproduction of
NOX-dependent ROS dependent (Wosniak et al., 2009). In
particular, NOX1, largely expressed in proliferating VSMCs,
mediates Ang II-induced O2

•� formation and redox-sensitive
signalling pathways (Youn et al., 2012). Thus, NOX1 and
O2

•� can be considered as stimulators of VSMC proliferation
(Youn et al., 2012). However, NO, usually acts as an inhibitor
of Ang II’s activity, and plays a protective role in VSMCs
(Wang et al., 2008). In addition to direct effects, oxidative
stress induces chain reactions that result in endothelial
dysfunction and macrophage activation, which, in turn,
release cytokines and growth factors to stimulate VSMC
proliferation and extracellular matrix remodelling (Steinberg
et al., 1989). Moreover, age-related changes in redox
signalling and enhanced production of ROS are linked to
alterations in the phenotype of VSMCs with ageing,
resulting in them having an increased capacity to proliferate,
migrate and synthesize extracellular matrix (Li and
Fukagawa, 2010).

ROS and abdominal aortic aneurysm
Abdominal aortic aneurysm (AAA) is an important cause of
sudden death, which is believed to result from an aberrant
interaction between genetic factors and living environment
(Emeto et al., 2016). Both animal models and human clinical
samples have showed that excessive oxidative stress is
implicated in the vascular degeneration of AAA (Sharma
et al., 2011; Sawada et al., 2015). A critical pathological feature
of AAA is vascular wall inflammation, which is associated
with a marked overproduction of ROS (Emeto et al., 2014).

Studies from different animal models of AAA have
revealed that ROS are involved in the pathogenesis of the
lesions. In the Ang II-induced AAA mouse model, high
concentrations of oxidative stress markers, 8-isoprostaneand
8-hydroxy-20-deoxyguanosine, were detected within the
diseased aortic wall (Gavrila et al., 2005; Sawada et al.,
2015). Similarly, 8-hydroxy-20-deoxyguanosine was also
increased within aneurysmal aorta from the calcium
chloride-induced mouse AAA model (Kaneko et al., 2011).
Additionally, in the elastase-induced rat model of AAA,

Nakahashi et al. (2002) found that HO-1 expression was
dramatically up-regulated and was co-localized with the
infiltrating macrophages. High ROS activity has also been
reported in human aneurysmal aortas. Increased expression
of NOX and the overproduction of O2•� were detected in
human aneurysmal segments of aortas compared with
adjacent nonaneurysmal segments (Sharma et al., 2011).
Zhang et al. reported that inducible NOS (iNOS) mediates
the excessive formation of NO-derived ONOO�, which then
promotes vascular oxidative injury and aneurysm
progression (Zhang et al., 2003). Moreover, aberrant lipid
peroxidation exists in AAA patients, particularly in those
with ruptured aneurysms (Dubick et al., 1999). Lipid
peroxidation causes the apoptosis and necrosis aortic cells,
which is associated with aortic wall weakening and aneurysm
formation (Kinnunen et al., 2012; Ayala et al., 2014).

Potential mechanisms for the contributions of ROS in
AAA have been suggested but still need further investigation.
NOX expression and activity are elevated in the pathogenesis
of AAA. Xiong et al. (2009) reported that apocynin treatment
inhibited NOX activity and attenuated AAA formation,
which was accompanied by reduced expression of MMP-2
and MMP-9. Thomas et al. (2006) found that depletion of
p47phox abolished NOX activity and significantly reduced
the incidence and progression of Ang II-induced AAA. In
addition to NOX, many other enzymes mediate ROS
production in AAA lesions. iNOS and eNOS have been
reported to be linked to increased production of ONOO�

and O2
•� that cause oxidative relevant damage during the

pathogenesis of AAA (Zhang et al., 2003; Gao et al., 2012;
Siu et al., 2014). Inhibition of 5-LOX by pharmacological or
genetic approaches blocks leukocyte infiltration and
aneurysm formation and prevents the fragmentation of the
medial layers in experimental mouse models of AAA
(Bhamidipati et al., 2014). Similarly, a deficiency in COX-2
markedly diminishes the incidence of AAA (Gitlin et al.,
2007), while the application of a COX-2 inhibitor delays the
growth of AAA by inhibiting vascular inflammation (King
et al., 2006; Keeling et al., 2007). In contrast, SODs and
catalases, enzymes that reduce the oxidative burden in vessel
walls, have been shown to protect against AAA formation
(Sinha et al., 2007; Parastatidis et al., 2013).

Therapeutic strategy targeting ROS and
oxidative stress
Considerable research has been performed to explore the
effects of antioxidants that can reduce ROS formation or
scavenge ROS in the vascular system in order to ameliorate
vascular oxidative stress. Promising treatments based on
antioxidants are being developed and show therapeutic
effects on vascular diseases. Furthermore, many
pharmacological agents used clinically in cardiovascular
diseases, such as statins, ß-blockers, angiotensin converting
enzyme inhibitors (ACEIs) and angiotensin receptor blockers
(ARBs), exhibit antioxidative effects. These medicines are not
direct inhibitors or scavengers of ROS; however, they act in
indirect ways by interacting with the signalling pathways or
key molecules involved in ROS production and removal, to
reduce vascular oxidative stress.
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Antioxidants
Antioxidants are natural or synthetic compounds that are
capable of neutralizing radicals and halting excessive ROS
accumulation in the body. The WHO have suggested that
the consumption of vegetables and fruits, rich in
antioxidant vitamins, can lower the risk of chronic diseases
(Nishida et al., 2004). Antioxidant vitamins such as
vitamin C (ascorbic acid) and vitamin E (α-tocopherol)
are the most frequently studied antioxidants. However,
other natural antioxidants from food and herbs, mainly
polyphenols/flavonoids, have also been investigated for
their exact roles in the vascular system.

Vitamins C and E are well known for their therapeutic and
preventative effects on vascular diseases. Their mechanisms
include inhibitory effects on LDL oxidation and leukocyte
adhesion and an ability to improve vascular endothelial
dysfunction by effectively scavenging a wide range of reactive
oxygen and nitrogen species (Carr et al., 2000). Vitamin C, a
chain-breaking antioxidant, directly scavenges ROS and
prevents the propagation of chain reactions, while vitamin
E reacts directly with O2

•�, OH•�, 1O2 and protects
membranes from lipid peroxidation (Santilli et al., 2015).
Vitamin C is essential for the normal vascular functions of
ECs, including stimulating endothelial repair, inhibiting
apoptosis, tightening the permeability barrier and limiting
NO synthesis and release (May and Harrison, 2013). More
specifically, the endothelial dysfunction in chronic smokers
could be improved by vitamin C through its ability to
scavenge free radicals (Young et al., 2006). In hypertensive
patients, vitamin C has been found to dramatically lower
blood pressure and reduce muscle sympathetic nerve activity
(Bruno et al., 2012). Similarly, vitamin E is capable of reducing
ROS overload in vessels and has been proposed to prevent
cardiovascular diseases (Tinkel et al., 2012). Although
numerous studies support the hypothesis that antioxidant
vitamins can prevent oxidative stress and vascular diseases,
randomized clinical trials showed unexpectedly negative
results. In a randomized, double-blind, placebo-controlled
factorial trial, vitamins E and C showed no effects on
reducing the risk of major cardiovascular events (Sesso et al.,
2008). A systematic review and meta-analysis of randomized
controlled trials demonstrated that supplementation with
vitamins was not associated with a decreased risk of major
cardiovascular events (Myung et al., 2013). These data
discourage the clinical use of vitamins for the treatment or
prevention of cardiovascular diseases. However, the lack of
benefits from these clinical trials cannot disprove the roles
of antioxidants in cardiovascular diseases. Firstly, most of
the studies focused on vitamins because of their easy
availability, but more efficient antioxidants are still untested.
Secondly, the dose of antioxidants and the therapy duration
need to be optimized. Trials with larger doses and longer
times may show the reversal of tenacious vascular oxidative
stress. Thirdly, oral administration may not ensure a
sufficient concentration of antioxidants in vascular lesions,
whereas local delivery can be a better alternative for clinical
use. This so-called antioxidant paradox in clinical settings
requires further investigations.

Other natural antioxidants found in food and herbs have
been studied for their effects in the vascular system. There are
thousands of different kinds of polyphenols/flavonoids,

which are widely distributed in a variety of plants and
plant-derived beverages (Dauchet et al., 2006). A tremendous
number of studies have indicated their capacities to act as
antioxidants in diseases. For example, as intake of
polyphenols/flavonoids is associated with a decreased risk of
cardiovascular diseases (Dauchet et al., 2006; Bauer et al.,
2011; Ponzo et al., 2015). Polyphenols/flavonoids scavenge
O2

•� and ONOO� and increase circulating NO, thus
preventing vascular oxidative stress (Schroeter et al., 2006;
Auger, 2010; Procházková et al., 2011). Green tea and concord
grapes are well known for being enriched with polyphenols/
flavonoids that are beneficial to vascular health. The effective
components of green tea, most of which are catechins, have
potent antioxidative properties. The consumption of green
tea has been associated with an improvement in vascular
functions and a decrease in cardiovascular death (Widlansky
et al., 2007; Mineharu et al., 2011). The plentiful antioxidants
in concord grapes directly neutralize free radicals, decrease
the susceptibility of LDLs to oxidation and increase NO
release, which consequently lowers the rates of
cardiovascular diseases in epidemiological studies (Rissanen
et al., 2003; Chen et al., 2010).

Other pharmacological agents
Some of widely used pharmacological agents in
cardiovascular diseases, such as statins, ß-blockers, ACEIs
and ARBs, are capable of regulating ROS balance and
oxidative stress, resulting in cardiovascular protection.
Although inhibition of ROS or scavenging ROS is not their
main effects, the antioxidative properties of these medicines
is of great interest.

Statins. Statins act in an indirect way by hindering the
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-
CoA) reductase pathway involved in cholesterol
synthesis. In addition to their cholesterol-lowering
characteristics, statins can also act as cholesterol-
independent antioxidants. HMG-CoA reductase inhibition
could normalize endothelial function and reduce oxidative
stress in diabetes through the suppression of vascular NOX
expression and activity and by the prevention of eNOS
uncoupling (Wenzel et al., 2008a). In a randomized, double-
blind controlled trial, oral atorvastatin reduced vascular
basal and NADPH-stimulated O2

•� in saphenous vein grafts,
which suggests that statin therapy could be maintained in
patients undergoing CABG, independently of LDL levels
(Antoniades et al., 2010). Moreover, statins also produce
their antioxidative actions by evoking the induction of
antioxidant enzymes (SOD1, SOD3 and GPx) (Carrepeiro
et al., 2011).

ß-blockers. Nebivolol is a third-generation β-blocker that
inhibits the activity of NOX and prevents NOS uncoupling
in hyperlipidaemic rabbits (Mollnau et al., 2003). On the
other side, treatment with ebivolol could normalize
endothelial function, reduce O2

•� formation and increase
NO bioavailability, which may explain its beneficial effects
on Ang II-induced hypertension (Oelze et al., 2006).

ACEIs and ARBs. ACEIs and ARBs can reduce NOX activity
and mitochondrial O2

•� production, inhibit XO activity and
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prevent eNOS uncoupling (Imanishi et al., 2008;Wenzel et al.,
2008b). In a prospective open-label, randomized study, ARBs
were shown to significantly decrease carotid intima-media
thickness, accompanied by a reduction in urine levels of 8-
OHdG, a marker of oxidative stress, and increase serum
levels of NOX (Ono et al., 2008). Another prospective,
matched case–control study showed that irbesartan
treatment in adolescents with diabetic angiopathy could
restore catalase and GPx activity and mRNA expression after
exposure to high-glucose concentrations. Indicators of
oxidative stress (serum malondialdehyde, fluorescent
products of lipid peroxidation, MCP-1 and PGF2α) were
dramatically decreased after treatment with irbesartan
(Chiarelli et al., 2005).

Other antioxidant molecules. The NOX family of enzymes are
important sources of ROS production in vessels, especially
those contain NOX1 or NOX2 catalytic subunits. Therefore,
a number of compounds have been investigated as potential
inhibitors of NOX and antioxidant molecules.
Triazolopyrimidines, including VAS2870 and VAS3947, are
considered to be promising inhibitors of NOX activity.
VAS2870 and VAS3947 could inhibit NOX-derived ROS in
several cell lines and in primary EC and VSMC cultures
without effects on XO or eNOS activity (Drummond et al.,
2011b). Pyrazolopyridine derivatives such as GK-136901
have been identified as possible inhibitors of NOX1- and
NOX4-dependent ROS formation from disrupted cell
membrane preparations (Laleu et al., 2010). ML171, a cell
active and specific NOX1 inhibitor, potently blocks NOX1-
dependent ROS production without influencing the cellular
generation of ROS from other enzymes and receptors. At
present, all these compounds need to be researched further.

Conclusions and perspectives
The exact mechanism of vascular diseases is complex and is
not yet fully understood. ROS and oxidative stress plays an
important role in the regulation of physiological
angiogenesis, vascular permeability, vascular tone and vessel
haemostasis, as well as the initiation, progression and
development of various vascular diseases. In the past few
decades, tremendous advances have been made in the
vascular ‘oxidative stress theory’. Antioxidative
interventions have been found to be effective in
experimental models of hypertension, atherosclerosis,
restenosis and AAA formation. However, in contrast,
randomized clinical trials of antioxidants have substantially
failed. Clinical therapeutic strategies have not been
established regarding the use of antioxidant regimen in
vascular diseases. This drives us to carefully consider the open
questions regarding ROS research. In basic research,
experimental tools and standardized methods that can
precisely detect the temporospatial distribution of highly
unstable ROS need to be improved, in order to clarify the
key activities of ROS in the cardiovascular system. In addition
to antioxidants used to scavenge harmful ROS, new specific
inhibitors of ROS producing enzymes may be a better choice
to reduce oxidative stress. Considering the distribution and
critical roles of NOX in vessels, the detection of selective

NOX inhibitors deserves extensive studies. To date, clinical
trials of antioxidant treatment on cardiovascular diseases
have not shown positive results, which may be attributed to
study design and/or therapeutic protocols. In clinical studies,
antioxidant treatment should be specified and individualized
with regard to antioxidant substance and dosage. Clinical
trials with larger doses and longer treatment times may show
beneficial effects on cardiovascular diseases. Additionally,
local delivery of antioxidants, for example, using drug-
eluting stents, may provide an innovative way for vascular
antioxidant therapy.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan
et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al.,
2015a,b,c,d).
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