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onsider the rather mundane question:

what is the distance from point A to
point B? Of course, in Euclidean geome-
try, the answer is trivial, but what if A and
B are cities, and we are taking ground
transportation? Seeking the optimal path
is now more challenging because we must
consider terrain conditions. In other
words, the optimal path depends on the
rate of speed that is possible at each point.
This problem is considered isotropic be-
cause the rate of speed at each point is
independent of direction. It can be solved
by using existing single-pass algorithms
such as those by Dijkstra (1), Tsitsiklis (2),
and Sethian (3). Of course, a more real-
istic problem also would take into account
that the possible speed at a given point
also depends on the direction we are trav-
eling (uphill/downhill, with/against traf-
fic, etc.). This is the anisotropic version of
the problem and is substantially more
complicated. The algorithm of Sethian
and Vladimirsky (4) in this issue of PNAS
successfully generalizes Sethian’s fast
marching method (3) to make it the only
single-pass algorithm able to solve the
anisotropic path planning problem.

To illustrate the greater complication of
the anisotropic problem, I begin by de-
scribing how to solve the isotropic prob-
lem. To solve this problem, it is necessary
to consider all possible routes from A to B.
For example, con-
sider all paths from
A to B that pass
through a given
point x. Let the
function T(x) rep-
resent the time
elapsed to travel
on the optimal
path from A to x.
Because the prob-
lem involves vary-
ing driving condi-
tions, s(x) is designated as the driving
speed at each point x. If the optimal path
from A to B passes through the point x,
then it follows that this path is also the
optimal path from A to x (for otherwise,
the optimal path from A to B would have
been chosen differently). Now, consider a
small distance from the point x given by
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But in principle, the notion that
information is essentially starting
from point A, emanating in some

sense radially outward from A,

and eventually striking the
point B is apparent.

x — &. For small &x, assume s(x — &x) is
approximately constant. Then it is clear
that if x — &x is also on the optimal path,
then

T(x) = T(x — &x) = ||ox]|/s(x), [1]

where the * corresponds to whether x —
& is before (+) or after (=) x on the
optimal path. To see why this equation
holds, note that to get fromx — &x tox any
quicker would exceed the local speed limit
s(x). Letting & — 0, Eq. 1 reduces to an
Eikonal equation

s)|VT(x)| = 0. [2]

This derivation is an application of Bell-
man’s optimality condition (5) where I
have assumed that the time T(x) is a
differentiable function. One can show
that the differentiability assumption is not
necessary by using a viscosity solution
formulation introduced by Crandall and
Lions (6).

The question now becomes, how does
one solve Eq. 2? If an iterative approach
is considered, Eq. 2 can be suitably dis-
cretized so that 7' is approximated at a set
of nodes x;. Each pass through the data
the iteration updates the value of T(x;) to
reflect the shortest time to reach x;
from its neighbors. Of course, the values
at the neighbors do not necessarily
give the correct
shortest time.
Suppose, how-
ever, that each of
the nodes x; could
be marked in
such a way that
after each itera-
tion x; is marked
if the value of
T(x;) is correct
(no further itera-
tion necessary).
One could imagine how the marked
nodes would expand from the starting
point A outward until eventually filling
the domain including the terminal point
B. In the first iteration all of the nodes
immediately adjacent to A would be cor-
rect. In the second pass, the next neigh-
boring nodes would be correct, and so
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forth. Of course, such a marking tech-
nique is not possible in this iterative
framework, because simply standing at
some intermediate node x; there is no a
priori way of knowing whether the value
of T(x;) is now correct or will be modified
in some future iteration. But in principle,
the notion that information is essentially
starting from point A, emanating in some
sense radially outward from A, and even-
tually striking the point B is apparent. It
is this basic concept that is the founda-
tion for single-pass methods for solving
the optimal path problem. Three such
single-pass methods are the algorithms
given by Dijkstra (1), which solves the
optimal path problem on a discrete net-
work and the motion is confined to links
between nodes, and Tsitsiklis (2) and
Sethian (3), both of which focus on con-
tinuous solutions of the Eikonal equa-
tion and that motion can occur in any
direction. Although these three algo-
rithms use different variations of the
same theme to solve different formula-
tions and equations, they share a com-
mon principle of dynamically determin-
ing the order in which the values of 7'(x;)
need to be computed to get the correct
value without iterating.

These single-pass methods have had a
significant impact in a broad range of
applications. Dijkstra’s original article (1),
according to the Web Of Science (http://
www.webofscience.com), has been cited
nearly 1,000 times. It has been applied to
circuit design (7), image processing (8),
transportation (9, 10), and water distribu-
tion (11) to name a few. The much more
recent papers by Tsitsiklis (2) and Sethian
(3) have been used for numerous applica-
tions; in particular, Sethian’s fast march-
ing method has been used for shape re-
covery in medical imaging (12),
computation of seismic travel times (13),
and fatigue crack propagation (N. Suku-
mar, D.L.C., and B. Moran, unpublished
work) and acts as an integral part of the
popular level set method of Osher and
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Sethian (14) for general problems of mov-
ing interfaces.

Let us now return to the optimal path
problem. A more genuine path planning
problem would recognize that the possible
speed at a given point x also may depend
on the direction of travel. For example, if
x were a point on a highway, traveling
along the road would be much faster than
crossing it. This additional possibility de-
feats both single-pass algorithms for the
continuous problem, because they rely on
the condition that the optimal path coin-
cides with the gradient VT. This is clearly
not the case for point x on the highway
because VT would be more orthogonal to
the direction of the road. Suppose that this
highway may meander a bit. If it were to
connect A to B, then standing at point x in
between, we can no longer rely on the
gradient to tell us from where the optimal
path is coming, a crucial bit of information
when computing 7'(x).

This is where the work by Sethian and
Vladimirsky (4) takes a leap forward. If
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one doesn’t know the direction from
which the optimal path is arriving, one is
essentially forced back to the original
slower iterative methods, which require no
insight into the behavior of the optimal
path. However, Sethian and Vladimirsky
use Bellman’s optimality principle (5) to
make the observation that the range of
points from which the optimal path must
pass before arriving at point x is limited by
the local range of speed values. Therefore,
in the single-pass framework, the value of
T'(x;) depends only on a small subset of the
nodes of already computed values of 7'(x;).
The larger the ratio between the maxi-
mum and minimum local speed with re-
spect to direction, the wider the net must
be cast to capture the optimal path. None-
theless, this is enough to restore the single-
pass construction for solving the larger
class of static Hamilton-Jacobi equations

H(x, Vu) = 0. [3]

Sethian and Vladimirsky demonstrate the
viability of their techniques by applying
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them to problems in anisotropic seismic
travel times, in which the speed of wave
propagation depends on orientation,
problems in optimal control, and prob-
lems of finding the shortest geodesic path
on a manifold.

Although the discussion in this com-
mentary has been confined to construc-
tion of optimal paths, static Hamilton—
Jacobi equations, and the related
Hamilton—Jacobi-Bellman equations ap-
pear in a variety of places, including gen-
eral problems in control theory (see, for
example ref. 15) and anisotropic front
propagation (W. Symes and I. Qian, per-
sonal communication). Many of these ap-
plications require fast computation for
real-time interactivity such as robotic arm
motion, image processing, and optimal
control. The application of Sethian and
Vladimirsky’s ordered upwind method
will provide a quantum improvement over
the existing solution methods, which still
rely on large numbers of iterations.
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