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Log Odds and the Interpretation of Logit
Models

Edward C. Norton > and Bryan E. Dowd

Objective. We discuss how to interpret coefficients from logit models, focusing on the
importance of the standard deviation (o) of the error term to that interpretation.

Study Design. We show how odds ratios are computed, how they depend on the stan-
dard deviation (o) of the error term, and their sensitivity to different model specifica-
tions. We also discuss alternatives to odds ratios.

Principal Findings. There is no single odds ratio; instead, any estimated odds ratio is
conditional on the data and the model specification. Odds ratios should not be com-
pared across different studies using different samples from different populations. Nor
should they be compared across models with different sets of explanatory variables.
Conclusions. To communicate information regarding the effect of explanatory vari-
ables on binary {0,1} dependent variables, average marginal effects are generally
preferable to odds ratios, unless the data are from a case—control study.

Key Words. Logit, probit, odds ratio, risk ratio, marginal effects

Researchers often struggle with how to estimate a model with a binary {0,1}
dependent variable and present the results in a meaningful way. The choices
for estimation and presentation approaches tend to fall along disciplinary
lines. Epidemiologists and clinical researchers often estimate logit models
and report odds ratios. Economists might estimate logit, probit, or linear
probability models, but they tend to report marginal effects. There is an
increasing recognition that model specification—particularly the inclusion or
exclusion of additional explanatory variables—affects the interpretation of
the results from nonlinear models, even when the explanatory variables are
independent of each other (e.g., Yatchew and Griliches, 1985; Mroz and
Zayats 2008; Mood 2010).

This is in contrast to linear regression models, where the inclusion or
exclusion of truly independent variables affects only the standard errors of the
coefficients, not their magnitude or marginal effects. To be clear, throughout
this article, we are referring to the inclusion or exclusion of additional explana-
tory variables that are independent of the variables already in the equation. If
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the additional variables are correlated with the previously included variables,
such as confounders, then leaving those additional variables out of the model
can create endogeneity bias, which is a different problem. With endogeneity,
the estimated coefficients will be biased and inconsistent, as will all marginal
effects, odds ratios, and any other statistic derived from the estimated
parameters.

This article focuses specifically on the effect of additional explana-
tory variables on the estimation and interpretation of odds ratios. Odds
ratios have some convenient properties: they are simple to calculate; they
are applicable to both continuous and discrete explanatory variables of
interest. In some cases, such as case—control studies, they are indispens-
able. If the sign of the effect is what the research wants to test, then odds
ratios are sufficient. However, depending on the research question, the
researcher may also care about the magnitude of the effect, and the mag-
nitude of odds ratios is easy to misinterpret. For example, they, some-
times, are misinterpreted as risk ratios, yet mathematically, they diverge
significantly from risk ratios when the baseline risk exceeds about 10 per-
centage points (Greenland 1987; Sackett, Deeks, and Altman 1996; Alt-
man, Deeks, and Sackett 1998; Schwartz, Woloshin, and Welch 1999;
Walter 2000; Kleinman and Norton 2009; Tajeu et al. 2012).

More recent critiques have identified a more serious problem with
odds ratios. Allison (1999) explained why odds ratios cannot be com-
pared across samples. Mood (2010) extended this work nicely to show
that odds ratios cannot be interpreted as absolute effects, nor can they be
compared across models or across groups within models. Several authors
have pointed out that odds ratios will change if variables are added to
the model, even if those additional variables are independent from the
other variables (Gail, Wieand, and Piantadosi 1984; Yatchew and Gri-
liches, 1985; Allison 1999; Mood 2010). Mroz and Zayats (2008) also dis-
cussed the effect of omitted variables on the interpretation of odds ratios
in logit models.

The first section of this article derives odds ratios in a way that explic-
itly shows the importance of the standard deviation (o) of the error term in a

Address correspondence to Edward C. Norton, Ph.D., Department of Health Management and
Policy, Department of Economics, M3108 SPH II, University of Michigan, Ann Arbor, MI
48109, and also the National Bureau of Economic Research, Cambridge, MA; e-mail:
ecnorton@umich.edu. Bryan E. Dowd, Ph.D., is with the Division of Health Policy and Manage-
ment, School of Public Health, University of Minnesota, Minneapolis, MN.



Interpretation of Logit Models 861

logit or probit model. We then discuss five implications of estimating coeffi-
cients in a logit (or probit) model that are normalized by ¢. For any given
dataset and dependent variable, and any given explanatory variable of inter-
est, there is no single odds ratio. There are many odds ratios, conditional on
what other explanatory variables are included in the estimated model.
Unless accompanied by a detailed description of the explanatory variables
included in the model, odds ratios cannot be compared across different
model specifications or across different study samples, for example, in meta-
analyses. When comparing odds ratios across models that progressively add
covariates to test for robustness, the odds ratios are expected to increase. In
summary, these important issues of interpretation are in addition to concerns
about the misinterpretation of odds ratios as risk ratios. The final section of
the article discusses the advantages of some alternatives to odds ratios,
including marginal and incremental effects and risk ratios.

LOGIT AND PROBIT MODELS
Derivation of Odds Ratio

We start by deriving the odds ratio in a way that makes explicit the relation-
ship between the estimated logit parameters f and the error term &, Suppose
that a continuous latent variable y; can be modeled as a linear function of K

explanatory variables (covariates), xz; for k=1, ..., K for individuals i = 1
... N. The equation for y; can be written as
i = Bo + Bixwi + Boxai + -+ Brixki + i (1)

If we allow the explanatory variables, including the constant term, to be
represented by the vector &/, then equation 1 can be represented in matrix
notation as

yi =X p+e (2)

However, the researcher observes only the explanatory variables and a
binary {0,1} variable y; which indicate whether y; exceeds the threshold of zero.

0 otherwise

1 ify; >0
w={o an ®)

To make statements about the probability that y; = 1 (or equivalently,
y; > 0), we need to express the probability in terms of an error term with a
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known distribution. Substituting &} + ¢; for y; allows us to write the proba-
bility that y; > 0 in terms of the probability that the error term takes on a
range of values.

PI‘(}’;F > O\xl) = Pr(x’lﬁ + & > 0|x1) = Pr(sl- > —x’lﬂ\x,) (4)

If the error term has mean zero and is symmetric (which is true for both
the standard logistic and standard normal distributions), then

Pr(y; = 1jx;) = Pr(y; > Olx;) = Pr(e; < #;f|x,) (5)

Equation 5 holds for any arbitrary scaling of ¢ and f (e.g., ¢/3 and f/3).
Thus, because the distribution of ¢ is unknown, the Pr (y; = 1|x;) cannot be
evaluated without an additional step (Greene and Hensher 2010). To address
that problem, the typical solution is to divide both ¢ and f by the standard
deviation of &: ¢/ and f$/o. Those transformations makes Pr (y; = 1|x,) a cumu-
lative distribution function (CDF) of a standard logistic (logit) or normal (pro-
bit) variable, which is easy to calculate for logistic and normal distributions.

For the probit model, the standard deviation of ¢/¢ = 1. The cumulative
distribution function for the probit model is

- V=pe(i<xly_ofxf
Pr(y; = ljnormal, x;) = Pr(o_ <X; (7) = (I)(xi 0') (6)

For the logit model, the standard deviation of ¢/6 = n/+/3. The cumula-
tive distribution function for the logit model is

Pr(y; = 1|logistic, x;) = Pr (% <X E) S S (7)

7)1+ exp(-h)

This derivation explicitly shows the important role of ¢ in making any
statements about probabilities.

Many researchers prefer to estimate logit rather than probit models
because of the odds ratio interpretation of the logit coefficients. The odds for
individual 7 are expressed as the ratio of the probability p; to 1-p; where
p: = Pr(y; = 1[logistic, x,).
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The odds ratio is the ratio of the odds in equation 8 for two different
values of an explanatory variable. This is easiest to derive for a binary vari-
able. For example, consider a study in which the dependent variable is the
probability that the subject dies before age 65, and the primary explanatory
variable of interest is whether the person smoked (at all) in the years prior to
age 65. Let smoke,; be an indicator for smoking status, and fyyoke be the cor-
responding coefficient. The odds of mortality by age 65 if individual i was a
smoker (smoke;;= 1) and the odds if individual { was a nonsmoker
(smoke;; = 0) are:

[

odds for smoker = exp (ﬂo T Pomoresmoken; & it ﬁKxKi) 9)

(10)

odds for nonsmoker = exp(
o

Bo + Boxoi + ... ﬁKxK,)
Therefore, the odds ratio is the ratio of the odds, which simplifies to the
exponentiated coefficient.

OR = odds ratio — odds for smoker exp <ﬁsr§0ke) (11)

odds for nonsmoker

The log odds are the logarithm of the odds ratio, in other words, the
coefficient (normalized by the standard error).

Log odds = (@) (12)

Although most textbooks and published papers write the odds ratio as
the exponentiated coefficient, in this case exp (Ssmoke), We purposefully leave
in 0. The crux of the issues raised by this article arise because logit (and probit)
models do not estimate the coefficients f§; instead, they estimate /5.

Sigma

Next, we discuss in more detail what ¢ is and how the estimated /o is affected
by the estimated model. In general, ¢ is the standard deviation of the error
term. It is a measure of the variation in the latent dependent variable that
remains unexplained after inclusion of the explanatory variables (covariates).
However, ¢ cannot be estimated directly because the continuous y* on which
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an estimate of o could be based also only in theory. Only y = 1 and y = 0 are
observed. In logit (and probit) models, only the ratio S/ is identified
(although it is still useful to postulate a model containing these parameters to
show the relationship among models with different parameters).

Although this article focuses on how ¢ is related to changes in
model specification, there is another way in which ¢ can change without
changing any explanatory variables. Consider a model where the continu-
ous underlying latent variable y* is continuous birth weight. In a linear
regression model, the magnitude of ¢ depends on both the scale, or unit,
of y* (grams or ounces in this example) and the fraction of the variance
in the dependent variable that is accounted for by the explanatory vari-
ables in the model. Fortunately, changes in ¢ associated with changes in
the scale of the latent dependent variable are offset by changes in esti-
mated coefficients (f); that is, the interpretation and statistical significance
in a linear regression model are not dependent on whether birth weight
is measured in metric or imperial units.

However, in a logit or probit model, the analyst observes only a binary
indicator for whether the baby has low birth weight or not. Therefore, in a
logit or probit model, the ratio /5 is invariant to changes in scale of the latent
dependent variable.

As mentioned above, the logit and probit models postulate error distri-
butions with different values of ¢ (the standard normal distribution has a vari-
ance of 1, the standard logistic distribution has a variance of n°/3). This
explains why the estimated logit and probit coefficients are different. The nor-
malizations are different. A rule of thumb is that logit coefficients are larger by
a factor of about 1.6.

Changes in ¢ resulting from adding or removing covariates to the
model are more problematic. Any change in the covariates that improves
the model fit makes ¢ smaller and /5 bigger. Conversely, omitting vari-
ables that should be included in the model (because they affect the
dependent variable) increases ¢. This is true even if the additional vari-
ables are independent from the explanatory variables that are already in
the model. Unlike changes in the scale of the latent dependent variable,
changes in the covariates included in the model change (/5, meaning that
logit (and probit) coefficient estimates are not invariant to model specifi-
cation.

In mathematical terms, the derivative of the odds ratio with respect to ¢
is not zero. The derivative of the odds ratio for variable x; with respect to a
percentage change in ¢, denoted 0 ¢/0, is:
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OBy (Bon
ag

This expression always is opposite in sign to ff;. For a positive ff1, an
increase in ¢ (e.g., due to dropping variables from the model specification) will
reduce the odds ratio. This expression does not depend on the values of the
other covariates and, so, is the same for all observations in the dataset. How-
ever, it does depend on which covariates are included in the model specification. This
feature is both a strength and a weakness. A strength of the odds ratio is its
invariance with respect to the values of the other explanatory variables, but
that strength also is a weakness because there is no averaging over observa-
tions to attenuate the effect of dividing the coefficients by ¢ as discussed in the
section on “Alternatives”.

IMPLICATIONS

Several implications follow from understanding that logit models estimate /o
instead of f5. First, there is no single odds ratio. An odds ratio is not an absolute
number, like 7. An odds ratio estimated from a multivariate logit model is con-
ditional on the sample and on the model specification (Allison 1999; Mood
2010). A study that aims or claims to estimate #i¢ odds ratio, even in a single
dataset, is misguided. The odds ratio is primarily useful to show the sign and
statistical significance of an effect, but the same can be said about the estimated
coefficient /0.

Second, an estimated odds ratio does have a specific interpretation, but
the correct interpretation is far more complex than commonly believed or
reported (Mood 2010). Unless accompanied by an explanation of the model
specification, a statement like “The estimated odds ratio is 1.5” is factually
incorrect. A more accurate, but imprecise, statement would be “An estimated
odds ratio is 1.5.” A correct precise interpretation might be: “The estimated
odds ratio is 1.5, conditional on age, gender, race, and income, but a different
odds ratio would be found if the model included a different set of explanatory
variables. The 1.5 estimated odds ratio should not be compared to odds ratios
estimated from other datasets with the same set of explanatory variables, or to
odds ratios estimated from this same dataset with a different set of explanatory
variables.”

Third, it is not possible to compare odds ratios from different studies that
use different datasets or even subpopulations within the same dataset, even if
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they have the same model specification (Allison 1999; Mood 2010). Any
observed differences in coefficients across datasets could be due to differences
in residual variation o, or to differences in effects f5, or both. These two effects
are confounded because the estimated coefficient is their ratio, /0.

Fourth, in some studies, authors compare odds ratios from models that
progressively add more and more explanatory variables. The reason for mak-
ing these comparisons is to see whether the coefficient (or odds ratio) changes
with the addition of more explanatory variables. Authors implicitly assume
that if the odds ratio remains the same, that the estimated odds ratio for a speci-
fic variable is robust to the inclusion of additional explanatory variables which
might represent confounders. However, unless the additional variables
explain none of the variance in the dependent variable, their addition to the
model will decrease ¢ and the odds ratio will increase. Therefore, even when
the model is robust to different model specifications, the estimated odds ratios
will change. As more variables are added to the model, changes in the odds
ratio do not isolate or identify the presence or absence of confounder
variables.

Fifth, this understanding of the importance of ¢ in /6 enhances the
already strong criticism of reporting odds ratios on the basis of misunderstand-
ing by others (Greenland 1987; Sackett, Deeks, and Altman 1996; Altman,
Deeks, and Sackett 1998; Kleinman and Norton 2009; Tajeu et al. 2012). Most
prior arguments have focused on the difference between risk ratios and odds
ratios, and how people mistakenly interpret odds ratios as risk ratios (Sackett,
Deeks, and Altman [1996] also discuss other points). However, the correct
interpretation of odds ratios also requires an understanding of the specification
of the model that produced the odds ratio. This makes the correct interpreta-
tion of an odds ratio and comparability across studies even harder.

These five implications are not widely appreciated in the literature.
Papers frequently report findings of #he odds ratio, as if it were an absolute
number that could be estimated without explicit conditioning on the model
and covariates. Having made these points, we now turn to alternative ways of
reporting and interpreting results from logit models.

ALTERNATIVES

How should researchers report and interpret results when the dependent vari-
able is binary? The answer depends on the research question. There is no sin-
gle right way for all studies. Nonlinear models are inherently complicated.
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Although odds ratios commonly are reported, the magnitude of an odds ratio
depends on the sample and model specification. Researchers, however, have
several alternatives to odds ratios for models with binary dependent variables.
Mood (2010) has a comprehensive discussion of alternatives.

One popular alternative to the odds ratio is the marginal or incremental
effect (sometimes these are called partial effects) of an explanatory variable on
the probability that y; equals 1 versus 0. The marginal effect is defined as the
effect of a tiny change in a single continuous explanatory variable x;; on the
probability that y; = 1, or OPr(y; = 1|x,)/0x, ;. The incremental effect is defined
as the effect of a discrete change from zero to one of a binary explanatory vari-
able on the probability that y; = 1:

Incremental effect = Pr(y; = 1|&;, %1, = 1) — Pr(y; = 1|x;, %1, = 0)  (14)

The marginal effect is less sensitive to changes in the model specification than
the odds ratio. First, this has been proved rigorously for the case of indepen-
dent omitted variables for the logit, probit, and multinomial logit models (Lee
1982; Yatchew and Griliches 1985; Wooldridge 2010).

Second, unlike the odds ratio, the change in the marginal effect (ME)
with respect to a change in sigma has parts that can be either positive or nega-
tive, depending on the baseline probability where the change is evaluated.
These positive and negative effects may cancel out when computing an aver-
age marginal effect across the sample. For the logit model, the marginal effect
of a continuous variable x; is

Logit 6Pr(yl = 1|xl) o & ) S
ME[™ = T =20 = (L) < pix (1= ) (15)

The derivative of the marginal effect for observation 7 with respect to a
percentage change in ¢ is

% = ME < [in( 2 ) (2p,-1) - 1] (16)

which can be positive or negative, depending on the value of p,. If p;is less than
about 0.176 or greater than about 0.823, then the term in brackets is positive;
otherwise it is negative. Therefore, the average marginal effect, which is aver-
aged over the values of p; for all observations in a sample, may not be that sen-
sitive to changes in 0. However, in specific situations, one could have all the
predicted probabilities above or below these bounds. The same is true of
incremental effects in the logit model.
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In contrast, because the odds ratio for x;is invariant with respect to the
values of the other explanatory variables, there is no such averaging effect.

The same is also true for both marginal and incremental effects in the
probit model. For the probit model, the marginal effect of x; is

OPr(yi = 1|%)] _ (B B
el CORKICH (17
where ¢ (-) is the normal probability density function. The derivative of the
marginal effect for observation i with respect to a percentage change in ¢ can
be written either as a function of the probability p; or the index function.

OMEE™] _ vaggrie [ (.£) ~ 1] (18)

da g
g

which can be positive or negative, depending on the value of (x’ g) If p;is less
than about 0.159 or greater than about 0.841, then this derivative is positive;
otherwise it is negative. Again, because we usually care about average mar-
ginal effects, what matters is how marginal effects change over the whole sam-
ple. Changes in ¢ also have little effect on the average marginal effect for the
probit model.

We can see that the response functions for logit and probit models are
virtually the same, by graphing the cumulative distribution functions (CDF,
appropriately scaled) against the linear index function (see Figure 1). The logit
CDF has slightly fatter tails, but the difference is small. The linear probability
response function is similar to the logit and probit functions only in a narrow
range, unless, of course, a more flexible functional form is used.

Third, we conducted a simulation to demonstrate how changing the
model specification changes the odds ratio in a predictable way, but has no
effect on the marginal effects for the linear probability model, and barely
alters the average marginal effects for either logit or probit models. In the
simulated dataset, the continuous dependent variable y is a linear function
of a dummy variable x; and four continuous variables x; through x,. For
these illustrative examples (N = 10,000), the variables of interest are the
dummy variable (x,) and the first two continuous covariates (x; and x,). The
covariates are independent of each other. When independent variables :x3
and x, are added to the simple model specification, the coefficients in the
linear probability model remain essentially the same, as expected (see
Table 1). The corresponding probit and logit models show that, unlike the
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Figure 1: Scaled Response Functions for Logit, Probit, LPM [Color figure
can be viewed at wileyonlinelibrary.com]
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linear probability model, the coefficients change when adding variables—
because ¢ becomes smaller, the coefficients in the full model specification
are larger. The corresponding marginal and incremental effects remain vir-
tually identical (see Table 1). In contrast, the odds ratios are vastly different;
they increase by orders of magnitude.

When the research question is about how a change in a continuous inde-
pendent variable affects the probability, we recommend presenting the results
in terms of the marginal or the average marginal effects. Virtually, all statistical
software packages compute odds ratios either as an option or as the default
output from a logit model. Karaca-Mandic, Norton, and Dowd (2012) and Ai
and Norton (2003) discuss the computation of marginal effects in nonlinear
models, and Dowd, Greene, and Norton (2014) explain how to compute the
standard errors of nonlinear functions of estimated coefficients, including mar-
ginal effects in nonlinear models.

We want to emphasize several points about the magnitudes of odd ratios
and marginal effects, because researchers usually care about the magnitude of
a policy effect, not just its sign. The magnitude of the odds ratio is the same for
all observations. The same is not true for marginal effects, which vary across
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observations depending on the values of the covariates. Average marginal
effects for subgroups can differ from each other, and this could lead to differ-
ent policy conclusions for different groups. This point—that marginal effects
vary by subgroup but that odds ratios do not—is so important in the context
of heterogeneous treatment effects and personalized medicine that we show it
with a simple example with real data.

We use a sample of 16,278 nonelderly adults (age 18-64) from the
2004 Medical Expenditure Panel Survey to predict whether they currently
take any prescription drugs. We estimate a logit model that controls for age,
gender, and whether the person is uninsured. Those three variables are
highly statistically significant, with the probability of taking any prescription
drugs being higher for persons who are older, female, and insured (see
Table 2). Consider how to report the magnitude of the effect of age. The
estimated coefficient is 0.0388, the odds ratio is 1.04, and the overall aver-
age marginal effect is 0.0078. However, the marginal effect of one addi-
tional year of age is not constant, and it varies not only by age, but also
across the four types of persons (men and women, insured, and uninsured).
The differences can be seen in Figure 2, which show that the variation in

Table 2: Logit Model Results to Predict Probability of Taking Any Prescrip-
tion Drugs, Using MEPS Data from 2004

Variables Logit
Constant
plo —1.205 (0.062)
Age
blo 0.0388 (0.0014)
ME 0.0078
OR 1.0396
Female
Blo 0.842 (0.035)
1E 0.170
OR 2.320
Uninsured
Blo ~1.256 (0.043)
1IE —0.253
OR 0.285
Pseudo R? 0.12

Notes. Robust standard errors are in parentheses. There are 16,278 observations of Medical Expen-
diture Panel Survey data.
IE, incremental effect; ME, marginal effect; OR, odds ratio.
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Figure 2: Conditional Marginal Effects of Age with 95% ClIs [Color figure
can be viewed at wileyonlinelibrary.com]
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marginal effects is up to threefold across the age range for these four types.
Even with the age coefficient constrained to be constant across all groups,
there are still differences in marginal effects because the logit model
assumes a nonlinear relationship between the covariates and the probability
that the dependent variable equals one. Uninsured men are presumably the
least likely to take prescription drugs when young, and so their consump-
tion will increase fastest during adulthood. The magnitude of the effect on
the predicted probability corresponding to a given odds ratio is a function
of both the predicted probability and the odds ratio, with the largest effects
around predicted probability 0.5.

This simple example illustrates that the magnitude of the marginal
effect of a variable depends on the subgroup (the conditioning set). Policy
conclusions therefore could differ for different subgroups, and this impor-
tant interpretation never would be revealed from a standard discussion of
odds ratios.

Another way to drive home the point that magnitudes matter is to graph
how marginal effects depend on the log odds (/) and on the baseline proba-
bility (e.g., the probability of mortality for a nonsmoker). Marginal effects are
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Figure 3: Marginal Effects as a Function of P and Log Odds (f/5) [Color
figure can be viewed at wileyonlinelibrary.com]|
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largest when the probability is close to one-half and are proportional to the
magnitude of the log odds (see Figure 3). Conversely, if the marginal effect is
known, the corresponding log odds increase as the probability moves to the
extremes of zero and one (see Figure 4).

The researcher should report the magnitude of the results that best
answers the research question. Returning to alternative ways of expressing the
results, if the research question is about the ratio of probabilities, then risk
ratios may be preferable to odds ratios for reasons of interpretation (Kleinman
and Norton 2009; Norton, Miller, and Kleinman 2013). While the incremental
effect is a difference between two probabilities, the risk ratio for an explanatory
variable x; is the probability that y; = 1 given x; = 1 divided by the probability
that y; = 1 given x; = 0. For the logit model, the risk ratio for x,;is a function of
all the explanatory variables:

R - —Po=Bi1x1i=Poxsi——Prxxi -1
risk ratio :Pr(y, = lxi=1) = [+ exp z ) (19)
Pr(yi = 1|xli = O) [1 + eXp(‘/‘0—/‘29‘21'—“‘—131{’010')]71

a
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Figure 4: Log Odds as a Function of P and Marginal Effects [Color figure
can be viewed at wileyonlinelibrary.com]

[N

Log Odds (B/c)

A linear probability model can be useful if the goal is an overall average
marginal effect (Angrist 2001). However, the linear probability model can pro-
duce predictions outside of the feasible range of [0, 1], negative variances of
the error terms, and coefficient estimates that are heavily influenced by out-
liers. If the sample size is large enough, in principle, one could estimate a lin-
ear probability model (ordinary least squares with an index function that is
linear in the coefficients) with a functional form that is sufficiently flexible to
overcome this problem and to mimic the results from any other flexible prob-
ability model.

It is worth emphasizing that there are some models where the odds
ratio interpretation is preferred, in spite of the issues described in this arti-
cle. In a case—control study, subjects with a disease are matched to subjects
without the disease in order to identify important risk factors (causes of
effects). However, one cannot compute marginal effects of the risk factors
on the probability of having the disease directly from the model without
imposing additional assumptions because the probability of having the dis-
ease in the sample does not mirror the probability of having the disease in
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the population. The group fixed effects sweep out not only common factors
to the group, but also any hope of measuring a baseline rate for that group
within the model. The researcher is left with the odds ratio interpretation or
must assume the baseline rate from other data sources and use that to
approximate the marginal effect.

The Chamberlain conditional fixed-effects logit model is widely used
in economics to sweep out group-level fixed effects (but also any observa-
tions with no within-group variation in the dependent variable). This
model also appropriately uses an odds ratio interpretation. To compute
predicted probabilities or marginal effects, the fixed-effects logit model
requires making additional assumptions, as with case—control studies.
Because the fixed effects soak up much of the otherwise unexplained vari-
ation, o will decrease and the estimated /o will increase. This increase in
f/o is consistent with its interpretation in a model that is conditional on
fixed effects: the odds ratio for the variable of interest is the effect after
holding constant many other factors, leaving a much more homogeneous
comparison group. A similar effect appears in random effects models.
One advantage of the Chamberlain conditional fixed-effects logit model is
not having to estimate the group fixed effects, also called incidental
parameters, but one disadvantage is not being able to estimate a baseline
rate.

Finally, measures that are the ratio of estimated coefficients, such as mar-
ginal rates of substitution (including willingness to pay and values of time), are
not affected by ¢ because that parameter drops out of the ratio (Train, 2009).
Train also discusses how one could conduct a meta-analysis, while allowing
the o to differ in each substudy. The ratio of the variances would need to be
estimated, in addition to all the f§ parameters, to make the appropriate adjust-
ment (see Ben-Akiva and Morikawa [1990], Swait and Louviere [1993], and
Train [2009] for details).

CONCLUSIONS

Given the voluminous literature in health services research, epidemiology,
clinical research, and other social sciences that estimates and reports odds
ratios without proper discussion of conditioning, arbitrary normalization of
parameters, or heterogeneity, there is a long way to go to improve best prac-
tice and translation of results. The correct interpretation of odds ratios
acknowledges that the magnitude of the odds ratio is conditional on the data
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and the model specification. When more independent variables are included
in the model, the error variance is reduced and the odds ratio (exp(S/0))
increases. An odds ratio estimated from one multivariate logit model cannot
be directly compared to odds ratios estimated from another sample from the
same dataset, from other datasets, or from using a different model
specification.

There are alternatives to odds ratios that do not share the prop-
erty of being as sensitive to inclusion of additional variables. Average
marginal or incremental effects and risk ratios are preferred ways of
interpreting the results from logistic regression models when the model
is not a case—control or fixed-effects model. Clear communication of the
meaning of the estimated parameters generally requires changing habits
and using average marginal effects, unless estimating a case—control
model.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the supporting
information tab for this article:

Appendix SA1: Author Matrix.
Appendix S1: Appendix with Proofs and Stata Code.



