Skip to main content
. 2017 May 30;53(2):859–878. doi: 10.1111/1475-6773.12712

Table 1.

Comparison of Coefficient Estimates, Marginal Effects, and Odds Ratios for the Linear Probability, Logit, and Probit Models for Two Different Model Specifications

Variables LPM Logit Probit
Simple Full Simple Full Simple Full
Constant
β/σ 0.5062 (0.0063) 0.5039 (0.0044) 0.032 (0.032) 0.109 (0.062) 0.020 (0.019) 0.057 (0.034)
x d
β/σ 0.0478 (0.0089) 0.0485 (0.0064) 0.244 (0.045) 0.827 (0.087) 0.145 (0.027) 0.468 (0.048)
IE 0.0482 0.0459 0.0476 0.0465
OR 1.276 2.285
x 1
β/σ 0.1081 (0.0043) 0.1037 (0.0032) 0.551 (0.024) 1.8424 (0.059) 0.331 (0.014) 1.033 (0.031)
ME 0.1085 0.1021 0.1084 0.1024
OR 1.734 6.312
x 2
β/σ 0.1968 (0.0037) 0.2014 (0.0031) 1.000 (0.026) 3.655 (0.089) 0.603 (0.015) 2.046 (0.048)
ME 0.1972 0.2025 0.1977 0.2027
OR 2.719 38.66
x 3
β/σ 0.0963 (0.0032) 1.678 (0.058) 0.938 (0.031)
x 4
β/σ 0.2959 (0.0030) 5.40 (0.12) 3.018 (0.066)
RMSE 0.45 0.32
R 2 0.20 0.59
Pseudo R 2 0.17 0.74 0.17 0.74

Notes. Robust standard errors are in parentheses. 10,000 observations of simulated data, based on the formula for the underlying latent dependent variable: y* = 0.5x d + x 1+2x 2 + x 3+ 3x 4 with covariates normally distributed, except x d which is a dummy variable.

IE, incremental effect; ME, marginal effect; OR, odds ratio; RMSE, root mean squared error.