Skip to main content
. 2018 Mar 19;12:103. doi: 10.3389/fnhum.2018.00103

Algorithm 1.

Sufficient-summary-statistic approach

Step 1: Within-subject analysis
      for all Subjects s = 1…S do
         Estimate effect size θ^s and its variance σ^s2
      end for
Step 2 : Correlation between effect size and variance
      Random effects setting: test H0corr:ρθs,σs=0
      Fixed effect setting: accept H0corr
Step 3: Between-subject variance σrand2
      Random effects setting: use, e.g., Equations (41)–(42)
      Fixed effect setting: σ^rand20
Step 4: Population mean effect and variance
      for all Subjects s = 1…S do
          if H0corr is accepted then
                         Perform inverse-variance weighting:
                         αs1/(σ^s2+σ^rand2)
                         θ^s=1Sαsθ^s/s=1Sαs
                         Var^(θ^)1/s=1Sαs
      else
                         αs←1/S (equal weighting)
                         or αsNs/s=1SNs (sample-size weighting)
                         θ^s=1Sαsθ^s
                         Var^(θ^)s=1Sαs2(σ^s2+σ^rand2)
      end if
    end for
Step 5: Statistical inference (H0 : θ = θ0)
      z(θ^-θ0)/Var^(θ^)
      z is approximately standard normal distributed
      ⇒ Reject H0 at 0.05 level if |z| > 1.96