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Dopamine selectively remediates
‘model-based’ reward learning: a
computational approach

Madeleine E. Sharp,1 Karin Foerde,2 Nathaniel D. Daw3 and Daphna Shohamy4

Patients with loss of dopamine due to Parkinson’s disease are impaired at learning from reward. However, it remains unknown

precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two

distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise com-

putationally from ‘model-free’ learning. The other, ‘model-based’ learning, involves learning a model of the world that is believed

to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work

suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may

contribute to the learning impairment in Parkinson’s disease. To directly test this, we used a two-step reward-learning task

which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson’s disease tested ON

versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medi-

cation on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based

learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively

correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our

results suggest that some learning deficits in Parkinson’s disease may be related to an inability to pursue reward based on complete

representations of the environment.
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Introduction
It is widely accepted that phasic dopamine signals in the

striatum play a critical role in learning to update actions

based on outcomes, often referred to as reward or re-

inforcement learning (Houk et al., 1995; Schultz et al.,

1997). Patients with Parkinson’s disease have a severe stri-

atal dopamine deficit, offering a test of the necessary role of
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striatal dopamine in learning in humans. Consistent with

the role of striatal dopamine in reinforcement learning, pa-

tients with Parkinson’s disease have been shown to be im-

paired at reinforcement learning tasks (Knowlton et al.,

1996; Frank et al., 2004; Shohamy et al., 2004).

However, it is becoming increasingly apparent that learning

from reward is not a unitary process, and in particular that

some facets of it appear to be heavily dependent on pre-

frontal, executive processes such as working memory

(Dickinson and Balleine, 2002; Balleine and O’Doherty,

2010; Collins and Frank, 2012; Otto et al., 2013a, b,

2015). This raises the question: what specific mechanisms

of reinforcement learning are impaired in Parkinson’s dis-

ease? Moreover, do the learning impairments specifically

relate to the striatal dopaminergic deficit (Braak et al.,

2003; Kordower et al., 2013) or do extra-striatal effects

of the disease (Braak et al., 2003; O’Callaghan et al.,

2014; Pereira et al., 2014) also (or instead) contribute?

Addressing these questions has important implications

both for understanding the effects of dopamine treatment,

as well as for understanding to what extent early cognitive

deficits of Parkinson’s disease, such as planning and multi-

tasking, may share a common substrate with reward

learning.

A classic dichotomy exists between two dissociable sorts

of instrumental behaviours, known as habits and goal-

directed actions (Dickinson and Balleine, 2002). These are

often distinguished using post-training reward-devaluation

procedures, with habits (but not goal-directed actions)

being characteristically insensitive to devaluation. Recent

advances in computational neuroscience have led to more

specific hypotheses about how these two classes of behav-

iours are acquired, connecting these psychological cate-

gories to the computational neuroscience of learning and

permitting researchers to link these computational mechan-

isms (such as the reinforcing influence of reward) to meas-

urable neural (e.g. dopamine neuron firing) or behavioural

(e.g. animal and human choices) outcomes during learning

(Dolan and Dayan, 2013). Altogether, it is now widely

recognized that reinforcement learning can be driven by

two separate but concurrent processes with distinct neural

substrates, with each relying on different parts of frontal

cortex and striatum (Balleine and O’Doherty, 2010; Daw

et al., 2011).

The first process relies on reward prediction errors

carried by phasic dopamine responses, which stamp in

stimulus-response associations in the striatum, consistent

with the predominant hypothesis for a dopaminergic role

in reinforcement learning (Schultz et al., 1997).

Computationally, this account is known as ‘model-free’

learning because preferences are formed through direct ex-

perience rather than through an understanding of a model

of the environment. This form of learning is hypothesized

to support the learning of habits (Sutton and Barto, 1998;

Daw et al., 2005). Model-free learning is accompanied by a

second, dissociable mechanism for ‘model-based’ learning,

which integrates feedback with knowledge of a model of

the environment. The ‘model’ of the environment is

assumed to comprise multiple action-outcome (or, in com-

putational terms, state-action-state) associations that repre-

sent the often-complex map of cues and actions that

ultimately lead to reward. In contrast to the reflexively

reinforced stimulus-response associations of model-free

learning, in model-based learning, the value of candidate

actions is computed more constructively from the combin-

ation of these associations and the values of the resulting

outcomes.

Model-based learning has been proposed to be the com-

putational implementation for learning goal-directed ac-

tions. Its neural substrates are less well-defined than those

of model-free learning but are believed to include parts of

the prefrontal cortex as well as the striatum (Daw et al.,

2011; Smittenaar et al., 2013; Deserno et al., 2015).

Although model-based learning is mechanistically quite dis-

tinct from model-free learning—in particular, it does not in

its standard form make use of a dopaminergic reward pre-

diction error—it may also be sensitive to dopaminergic

function. For instance, dopamine is known to support

working memory through innervation of the prefrontal

cortex (Sawaguchi and Goldman-Rakic, 1991), which

could in turn support the manipulation of action-outcome

and outcome-value representations in computing action

values. Indeed, model-based learning has been shown to

be sensitive to core components of executive function,

such as working memory and cognitive control (Otto

et al., 2013a, b, 2015).

It has generally been assumed that patients with

Parkinson’s disease are specifically impaired at habitual

learning of stimulus-response associations (Knowlton

et al., 1996; Shohamy et al., 2004), related to impaired

reward signalling in the striatum. However, although this

interpretation of reinforcement learning deficits in patients

with Parkinson’s disease is often appealed to as key evi-

dence supporting the hypothesis that dopaminergic

reward prediction errors drive (model-free) reinforcement

learning (Shohamy and Daw, 2014), most existing data

are actually ambiguous on this point. This is in large part

because previous work has not effectively dissociated the

contributions from model-free versus model-based learning.

Only one recent study has addressed the (related) habit

versus goal-directed learning dichotomy in Parkinson’s dis-

ease. Using an instrumental conflict task with a devaluation

procedure (de Wit et al., 2011), they found that, contrary

to predictions, patients had preserved habitual stimulus-

response learning. Based on these surprising findings, and

the fact that Parkinson’s disease also affects extra-striatal

executive functions, which may contribute to model-based

learning, such as working memory (Lange et al., 1992;

Owen et al., 1997; Lewis et al., 2005; Beato et al.,

2008), we applied computational methods to more closely

examine whether patients with Parkinson’s disease have a

model-based deficit and, critically, whether this deficit is

dopamine-mediated.

356 | BRAIN 2016: 139; 355–364 M. E. Sharp et al.



To address these questions we used a task previously

shown to successfully distinguish model-free from model-

based learning in both healthy and patient populations

(Daw et al., 2011; Eppinger et al., 2013; Voon et al.,

2015) and tested patients with Parkinson’s disease in a

within-subject design, ON versus OFF dopaminergic

medication.

Materials and methods

Participants

Twenty-two patients with idiopathic Parkinson’s disease (13
males, mean age 61 � 7 years) (diagnosed as per UK Brain
Bank criteria) were recruited either from the Center for
Parkinson’s Disease and other Movement Disorders at the
Columbia University Medical Center or from the Michael J
Fox Foundation Trial Finder website. Twenty-one healthy con-
trol participants (11 males, mean age 63 � 7 years) were re-
cruited from the local community. All participants provided
informed consent and were paid $12/h for their participation.
The study was approved by the Institutional Review Board of
Columbia University.

Patients were in the mild-to-moderate stage of disease [mean
Unified Parkinson’s Disease Rating Scale (UPDRS) OFF
19 � 6, as examined by a movement disorders neurologist,
disease duration: 2–14 years; Table 1]. All patients had been
receiving levodopa treatment for at least 6 months (mean total
daily levodopa dose 522 � 235 mg, Supplementary Table 2).
Nine patients were additionally taking dopamine agonists.

Participants completed a battery of neuropsychological
tests focusing on executive function [Montreal Cognitive

Assessment (MoCA), Trails A and B, Stroop, Digit Span and
Phonemic word fluency] and psychiatric domains [Geriatric
Depression Scale, Starkstein Apathy Scale, Barratt
Impulsiveness Scale-11 (BIS-11)] (Table 1). Participants had
no history of other major neurological or psychiatric disease.
Participants with dementia (based on MoCA526) were
excluded.

The patients with Parkinson’s disease and controls did not
differ in age, sex distribution, education, and general measures
of cognition (Table 1). As expected (Weintraub et al., 2006),
patients scored higher on the Geriatric Depression Scale
(P = 0.01) and on the BIS-11 (P = 0.001).

Procedure

Participants were tested in two sessions, in counterbalanced
order: OFF, after an overnight withdrawal (416 h, which is
at least 10 half-lives for the carbidopa-levodopa and two half-
lives for the dopamine agonists) of all their Parkinson’s medi-
cations; and ON, 1–1.5 h after their usual dose of levodopa
(mean 151 � 61 mg). Patients who were also on regular doses
of dopamine agonists did not receive them for the ON session
because we wanted to isolate the effects of levodopa, which
most closely mimics normal synaptic release (Pothos et al.,
1996). As expected, UPDRS-III scores were significantly
lower when measured ON than OFF (P50.0001). Healthy
control participants were also tested twice to control for prac-
tice effects. The interval between sessions ranged from 1 to
3 weeks.

Task

We used a reward learning task with a design feature that
allowed for dissociation of model-free and model-based

Table 1 Demographic and clinical characteristics of participants

Parkinson’s patients Healthy controls P-value

Age 61.1 (6.5) 62.8 (6.8) 0.4

Sex (male) 13/22 11/21 0.7

Education 17 (2) 16 (3) 0.3

MoCA 28.5 (1.3) 28.9 (0.5) 0.1

F-A-S fluency 49 (17) 52 (13) 0.5

Trails B 86 (43) 66 (24) 0.08

Stroopa 61 (19) 64 (17) 0.6

Digit Span totalb 12.9 (2.4) 13.5 (2.0) 0.4

Geriatric Depression Scale 3.0 (2.5) 1.1 (1.4) 0.01

Starkstein Apathy Scale 24 (6) 22 (5) 0.2

BIS-11 61 (9) 54 (7) 0.001

UPDRS OFF 18.6 (6.0) – –

UPDRS ONc 13.3 (6.0) – –

Disease duration 6.8 (2.9) – –

Daily levodopa dose (mg) 522 (235) – –

LEED (mg)d 715 (273) – –

Table shows mean (SD). MoCA = Montreal Cognitive Assessment; BIS-11 = Barratt Impulsiveness Scale; UPDRS = Unified Parkinson’s Disease Rating Scale–

Part III; LEED = Levodopa equivalent dose. P-values are based on t-tests.
aStroop score calculated as difference between colour and interference stages.
bDigit span total = sum of forward and backward span.
cUPDRS ON was significantly lower than UPDRS OFF (P5 0.001).
dLEED includes levodopa, dopamine agonists, amantadine, monoamine oxidase inhibitors and catechol-O-methyl transferase inhibitors.
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contributions to behaviour (Fig. 1; see also Daw et al., 2011).
Specifically, each trial proceeded in two stages, each of which
required a decision. The first stage decision was between two
spaceships destined for two different planets; this choice deter-
mined which options were presented at the second stage. The
second stage represented which planet the participant visited
and required a decision between two aliens on the planet. The
choice of alien at this second stage led to a possible ‘space
gold’ reward, with each piece of gold worth $0.10. The win-
nings were dispensed at the end of the experiment. Because the
transition from the first stage choice to the second stage planet
was stochastic (Fig. 1), first stage choices could be dissociated

from the second stage choices that determined their ultimate
reward. This allowed dissociating two learning strategies,
either model-free (in which second stage rewards are asso-
ciated directly with the preceding first stage decision), or
model-based (in which second stage rewards and knowledge
of the probabilistic structure of the task are used to infer the
value of the first stage outcomes in terms of the second stage
planets to which they predominantly lead). Participants were
pressed to learn continually because the reward probabilities
associated with each of the four second stage options were
determined by independently drifting Gaussian random
walks [standard deviation (SD) = 0.025] with a lower

Figure 1 Trial structure, logic and simulated data for the task. (A) Task design. At Stage 1, participants chose between two spaceships.

This choice determined the transition to the next stage according to a fixed probability scheme: each spaceship was predominantly associated

with one or the other Stage 2 states (i.e. planets) and led there 70% of the time. At Stage 2, participants chose one of two aliens to discover if they

would be rewarded. Each alien was associated with a probabilistic reward (range: 0.25–0.75) that changed gradually over time as determined by a

Gaussian random walk. (B) Timing of stages within a single trial. (C) Simulated data. Model-based and model-free strategies predict different

patterns of behaviour. A pure model-free learner (left) shows only a main effect of reward, choosing to stay with the same Stage 1 choice after a

reward irrespective of the transition type (common versus rare) associated with that reward on the last trial. Conversely, a pure model-based

learner (right) is influenced by the interaction between reward and transition type on the last trial. For instance, after winning on the planet less

commonly visited (rare transition) a participant will be less likely to stay with the same spaceship and will instead pick the alternate spaceship in

order to maximize chances of returning to that same planet. Previous studies show that healthy participants use a mixture of both model-free and

model-based processes (Daw et al., 2011; Eppinger et al., 2013; Otto et al., 2013b). (D) Example of one of the sets of Gaussian random walks that

determined the probability of reward at each of the four Stage 2 options.
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boundary of 0.25 probability of reward and an upper
boundary of 0.75, such that probability of reward from
any particular second stage option changed very slowly
from trial to trial (Fig. 1D).

Analysis

Stay-switch behaviour

Model-free and model-based learning can be dissociated by
examining how participants adjust their first stage choices in
response to feedback. Consider what happens following a trial
in which a first stage choice is followed by a rare transition (to
the planet less likely to follow that choice) and then reward.
On the subsequent trials, repeating the same first stage choice
(i.e. ‘staying’ with the same spaceship) indicates model-free
learning, guided only by reward, and insensitivity to the prob-
ability structure (rare versus common transition, i.e. the
‘model’). In contrast, making the alternate first stage choice
(i.e. switching to the other spaceship commonly associated
with the planet that produced the reward) indicates model-
based learning because the effect of reward is mediated by
the probability structure (Fig. 1B).

Accordingly, to quantify the contributions of model-free
and model-based learning and the effects of disease and
medication state on these contributions, we conducted a
mixed effects logistic regression where the dependent vari-
able was the probability of repeating the same first stage
choice (staying = 1, switching = 0) on each trial. [Such a re-
gression represents a simplified limiting case of fitting a
more elaborate reinforcement learning model incorporating
model-free and model-based components (Daw et al., 2011);
and is more robustly estimated for the purpose of studying
within- and between-subject individual differences.] The
basic within-subject (random-effect) binary explanatory
variables were reward at the preceding trial (reward = 1,
no reward = �1: the model-free effect, MF), transition at
preceding trial (common = 1, rare = �1), and the interaction
of reward and transition (reward � transition: the model-
based effect, MB). We also included two binary covariates,
each fully interacted with all the preceding effects: the be-
tween-subject effect of disease [disease: Parkinson’s disease
(PD) = 0, control = 1], and the within-subject effect of medi-
cation state (med: ON = 1, OFF = 0, where all controls were
considered OFF).

This model defines the PD-OFF as the baseline group
allowing comparison to PD-ON (such that the MB � med
interaction reflects the effect of medications on model-
based learning among disease, and the reward � med inter-
action reflects the effect of medication on model-free learn-
ing) and to Controls (where similarly, the MB � disease and
MF � disease terms reflect the difference in model-based and
model-free learning, respectively between controls and PD-
OFF) (see Supplementary material for additional details).
Statistical analyses were performed in R (R Development
Core and Team, 2015), using the lme4 package (Bates
et al., 2013).

Finally, we were also interested in the association between
model-based contribution to learning and certain clinical
variables. Because of previous findings indicating a relation-
ship between model-based learning and executive function
(Otto et al., 2013a)—working memory in particular

(Eppinger et al., 2013; Otto et al., 2013b; Smittenaar
et al., 2013)—we tested for this association among our par-
ticipants using total digit span score as a measure of work-
ing memory. We tested working memory only once in this
study, and in the case of the patients with Parkinson’s dis-
ease, it was tested during the ON session in 17/22 patients,
and during the OFF session in the remaining 5/22. Because
we were interested in memory capacity as a predictor of
model-based learning, we included only the 17/22 patients
whose memory was tested while ON in these models. We
ran logistic regressions as detailed above but for each group
separately (controls, patients with Parkinson’s disease ON,
and patients OFF) and included mean-centred digit span
score as a fully interacted covariate. Running all the previ-
ous analyses with this subgroup of 17 patients yielded the
same results, with no new differences in demographic or
cognitive measures (Supplementary Table 3). Similarly, be-
cause it has been suggested that motor symptom severity
could reflect striatal dopamine deficiency (Broussolle et al.,
1999), we tested for an association between UPDRS-III score
and model-based contribution (we used the UPDRS-III score
measured while OFF medications to model this association
because it best reflects motor symptom severity). We ran a
separate logistic regression in the patients with Parkinson’s
disease ON and OFF as above and included the mean-
centred UPDRS-III score as a fully interacted covariate.

Results
The patterns of switching as a function of reward are

shown, for each group and medication condition, in

Fig. 2. The results for both healthy controls and patients

with Parkinson’s disease ON appear similar to those from

healthy populations in previous studies, in that effects of

both reward and transition are visible. However, patients

tested OFF medication show a qualitatively different pat-

tern of results. Quantifying these effects statistically, we

found that patients with Parkinson’s disease OFF showed

a significant effect of reward on their behaviour indicating

model-free (MF) learning (P5 0.0001) but no significant

effect of reward � transition (i.e. MB, P = 0.2) indicating

no detectable contribution of model-based learning. In

comparison, the patients with Parkinson’s disease ON

showed a similar model-free contribution (MF � med:

P = 0.3 indicating they are not different than patients

OFF) but additionally showed a significantly greater con-

tribution of model-based learning (MB � med: P = 0.04).

The controls were also not different than patients with

Parkinson’s disease OFF with respect to model-free learning

(MF � disease: P = 1.0) but, similarly to the patients ON,

showed a significantly greater contribution of model-based

learning (MB � disease: P = 0.02) than the patients with

Parkinson’s disease OFF. The full regression specification

and coefficient estimates are reported in Table 2, and the

distribution and group-level variability of the subject-

specific model-free and model-based coefficients are re-

ported in Supplementary Fig. 1 and Supplementary Table

4, respectively. In a second analysis, we fit the participants’
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choices with a more elaborate computational model of

model-based and model-free learning, producing largely

consistent results (Supplementary material and

Supplementary Table 1).

Analysis of covariates revealed that better working

memory was associated with a higher model-based contri-

bution in patients with Parkinson’s disease ON (P = 0.03),

but did not reach significance in patients OFF (P = 0.08) or

Figure 2 Effect of Parkinson’s disease and dopaminergic medications on model-based learning. (A) Probability of repeating the

same first stage choice as a function of the transition on the previous trial (common versus rare) and the outcome (rewarded versus unrewarded).

Both controls and patients ON showed an effect of the interaction between reward and transition, the signature of model-based learning. In

contrast, the patients OFF showed no effect of transition probability, they showed only model-free learning. (B) Comparison of model-based

contribution to behaviour across groups as measured by the reward � transition interaction coefficient in the logistic regression (the model-

based beta coefficient). Controls and patients ON showed comparable levels of model-based behaviour, whereas patients OFF showed no

significant model-based contribution to their behaviour. (C) Relation between model-based learning and working memory: individual participants’

model-based effect sizes (arbitrary units) are plotted separately for control participants and for patients OFF and ON levodopa against mean-

centred total digit span score. The regression line is computed from the group-level effect of working memory. There was a significant positive

effect of working memory on expression of model-based learning in the Parkinson’s patients ON levodopa only. (D) Relation between model-

based learning and disease severity—as indexed by UPDRS-III measured when OFF medications—on model-based learning: the regression line is

computed from the group-level effect of UPDRS-III, where a higher score indicates more severe symptoms. There was a significant negative effect

of motor symptom severity on expression of model-based learning in the patients ON medication. Error bars represent (A) SEM and (B) 95%

confidence intervals. Grey lines indicate two standard errors, estimated from the group-level mixed effects regression (C and D). P-values are for

the regression coefficient of the group-level interaction between the degree of model-based contribution to behaviour and either working

memory or UPDRS-III in the respective participant groups (C and D).
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controls (P = 0.5) (Fig. 2C). There was no effect of work-

ing memory on model-free learning in either the patients

or controls. We also found that worse motor function

(i.e. a higher UPDRS-III measured OFF, reflecting worse

disease severity) was associated with less model-based

learning in patients with Parkinson’s disease ON

(P = 0.02) but not in patients OFF (P = 0.8) (Fig. 2D).

The measures of mood and personality that differed be-

tween patients and controls (Geriatric Depression Scale

and BIS-11) were not associated with model-based con-

tribution to learning.

Discussion
Habit and goal-directed learning depend on neighbouring

dopamine-rich striatal regions (Yin and Knowlton, 2006),

but the influential prediction error theory of dopamine is

thought to account only for the role of dopamine signals in

habitual, model-free learning (Schultz et al., 1997).

Motivated by these observations, we sought to directly

test whether dopamine also plays a role in model-based

learning, and whether Parkinson’s disease is primarily char-

acterized by a deficit in model-free learning—as has often

been assumed, or by a model-based learning deficit. We

found that dopamine-deficient Parkinson’s disease patients

had a model-based learning deficit that was fully restored

by dopamine replacement and was associated with poor

working memory performance. Surprisingly, we also found

that model-free learning was intact in patients and unaffected

by medication state, which is consistent with one previous

study showing that patients were able to form stimulus-

response associations (de Wit et al., 2011).

Model-based learning has been shown to rely on frontos-

triatal networks. Neuroimaging studies in humans have

shown that the caudate, medial orbitofrontal and dorsome-

dial prefrontal cortex are associated with model-based learn-

ing (Daw et al., 2011; Doll et al., 2012; Voon et al., 2015).

These regions are either directly or indirectly modulated by

dopamine, which could account for the strong association

between model-based learning and dopamine that we

observed.

Our findings are in line with previous studies showing that

levodopa administered to healthy, young adults increased

model-based learning (Wunderlich et al., 2012). However,

because the neurobiological effect of levodopa in healthy

brains is unknown, it has been unclear how or where dopa-

mine exerts this positive effect on model-based learning. One

possibility is that the modulatory effect occurs in the striatum,

and that model-based learning relies on a dopaminergic

reward prediction error signal shared with model-free learn-

ing. Although such prediction errors are not used in standard

model-based algorithms, there are variants that might explain

model-based behaviours while sharing this stage (Doll et al.,

2012; Daw and Dayan, 2014). However, this interpretation is

difficult to reconcile with the fact that model-free learning was

preserved in patients withdrawn from dopaminergic

medication.

Another possibility is that levodopa restored model-based

learning through direct effects in prefrontal cortex. Indeed,

prefrontal cortex atrophy, evident even in the early stages

of Parkinson’s disease (Tessa et al., 2014), correlates with

learning deficits (O’Callaghan et al., 2013); and frontal-

based executive dysfunction is also well described in the

early stages of Parkinson’s disease (Lange et al., 1992;

Cools et al., 2002; Ko et al., 2013; Pereira et al., 2014).

Furthermore, in patients, levodopa has positive effects on

prefrontal cognitive functions such as working memory

(Lewis et al., 2005), planning (Lange et al., 1992),

generalization of learning (Shiner et al., 2012), and task-

switching (Cools et al., 2001; Rutledge et al., 2009).

Finally, improved model-based learning on levodopa

could be due to an effect on motivation through modula-

tion of tonic rather than phasic dopamine signals

(Niv, 2007; Beierholm et al., 2013).

In contrast to the clear effect on model-based learning,

we did not find a model-free impairment in patients with

Parkinson’s disease nor any effect of dopaminergic medica-

tions on model-free learning. This is surprising given the

wealth of studies examining learning in patients with

Parkinson’s disease, where deficits are interpreted for the

most part as impairments in habitual, stimulus-response

learning (Knowlton et al., 1996; Frank et al., 2004;

Shohamy et al., 2004). However, the learning tasks typic-

ally used in these studies might additionally (or instead) be

measuring contributions from model-based learning. For

instance, participants may develop a rule-based approach

and rely on explicit processes such as working memory

Table 2 Results of the logistic regression analysis with

the between participants factor Disease and the within-

participant factor Medication

Predictor Estimate (SE) P-value

Intercept 1.97 (0.23) 50.001

Reward (i.e. MF) 0.61 (0.13) 50.001

Transition type 0.04 (0.07) 0.6

Reward � Transition (i.e. MB)a 0.10 (0.08) 0.2

Disease 0.42 (0.33) 0.2

Med 0.05 (0.20) 0.8

MF � Disease 0.01 (0.19) 0.97

MF � Med �0.16 (0.14) 0.3

Transition � Disease 0.15 (0.09) 0.1

Transition � Med 0.07 (0.09) 0.5

MB � Diseaseb 0.25 (0.11) 0.02

MB � Medc 0.24 (0.12) 0.04

aThe Reward � Transition interaction reflects the model-based behaviour in the PD

OFF. Here, the PD OFF show no significant contribution of model-based learning.
bThe Reward � Transition � Disease interaction reflects the model-based behaviour

in the healthy controls who show a significant contribution of model-based learning

compared to the PD OFF.
cThe Reward � Transition � Med interaction reflects the model-based behaviour in

the PD ON who show a significant contribution of model-based learning compared to

the PD OFF.

MF = model-free learning; MB = model-based learning; PD = Parkinson’s disease.
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(Foerde et al., 2006; Collins and Frank, 2012). A more

recent study of learning in patients with Parkinson’s disease

used an instrumental conflict task modelled on those used

to study habit learning in rodents, and also showed that

patients with Parkinson’s disease had intact stimulus-re-

sponse habit learning, which relates to model-free learning

(de Wit et al., 2011). Though they additionally interrogated

goal-directed learning with an added devaluation proced-

ure, they did not find a significant effect of dopaminergic

medications or disease on goal-directed learning.

Of course, as with any negative result, the lack of effects

reported here on model-free learning must be interpreted

with caution. The current study cannot rule out the possi-

bility that an impairment of model-free learning also exists

in the patients with Parkinson’s disease but is not ad-

equately operationalized by our task. For instance, al-

though we detect substantial model-free learning with a

level of individual variability comparable to that for

model-based (Supplementary Fig. 1), it is possible that

this sort of learning might itself be heterogeneous in the

brain, with the sort hypothesized to involve dopaminergic

action in striatum not dominating our measure. Indeed, the

link between the computational mechanism of model-free

learning and the psychological category of habits is also

more controversial than that between model-based and

goal-directed learning (Dezfouli and Balleine, 2012),

though on that account (according to which habitual be-

haviour and seemingly model-free behaviour on the sequen-

tial decision task used here are proposed to arise from a

common choice mechanism which is ultimately model-

based) it is not clear why we see differential effects of dis-

ease and medication on model-based and model-free

choices. It is also possible that model-free learning is a

very robust cognitive function, in keeping with its role as

a faster but less accurate system (Keramati et al., 2011),

and thus that model-free learning, but not model-based,

can withstand a certain degree of dopamine deficiency.

Future work will be required to more finely probe the re-

lationship, if any, between model-free learning, habits, and

striatal dopaminergic function.

Our finding, of an association between model-based learn-

ing and working memory capacity in patients with

Parkinson’s disease, helps bridge two seemingly independent

constructs of impaired cognition in Parkinson’s disease—

reward learning and executive function. Previous studies

have focused on dissociating these domains on the basis of

hypothesized separate neural substrates for each—striatal

dopamine for reward learning (Schultz et al., 1997; Frank

et al., 2004; Schonberg et al., 2010), and frontostriatal

(Cools et al., 2002; Lewis et al., 2003, 2005; Monchi et al.,

2007; Ko et al., 2013; Nagano-Saito et al., 2014) and extra-

striatal non-dopaminergic networks for executive function

(Hilker et al., 2005; Weintraub et al., 2010; Ye et al., 2014,

2015). Our finding that increased working memory capacity

was associated with a greater contribution of model-based

learning in patients with Parkinson’s disease but not in

healthy controls could suggest that working memory is

recruited as a compensatory mechanism to support model-

based learning. Similarly, in healthy younger adults, better

working memory predicts model-based performance

(Eppinger et al., 2013; Otto et al., 2013b; Smittenaar et al.,

2013). However, similar to our results here, the effect of

working memory most often became apparent only under

challenge; in particular, better working memory predicted ro-

bustness to stress or transcranial magnetic stimulation. In a

study of ageing in healthy participants, the relationship be-

tween working memory and model-based performance was

age-related: while present in younger adults, working

memory was not related to model-based performance

among healthy older adults (Eppinger et al., 2013) (again,

consistent with our results). More generally, normal pre-

frontal cortex function (Smittenaar et al., 2013) and executive

functioning (Otto et al., 2013a, 2015) are necessary for

model-based learning. These findings support the idea that

the neural substrates underlying reward learning and execu-

tive function are co-dependent rather than independent. A

main limitation of this study is that we cannot directly com-

ment on the neural substrates of the model-based learning

deficit or on the likely crucial role that dopamine plays in

modulating striatal-prefrontal cortex connections to support

model-based learning.

In conclusion, our findings demonstrate that learning def-

icits in Parkinson’s are not merely a matter of reduced reward

prediction but, rather, are related to an inability to pursue

reward based on more complete representations of the envir-

onment. These findings emerged from a computational char-

acterization of these two forms of learning and are generally

consistent with previous results from a different task (de Wit

et al., 2011). Together, these findings challenge the general

assumption that patients with Parkinson’s disease cannot

form stimulus-response associations and therefore cannot

form habits (Knowlton et al., 1996). This is congruent with

observations of patients with Parkinson’s disease who func-

tion well in simple environments where they maintain an abil-

ity to respond to informative cues, but have marked

difficulties with executive functions such as multi-tasking

and planning, which depend on the building and maintenance

of a model of the environment (Brown and Marsden, 1991).

An important goal for future research, especially in the con-

text of treatment of cognitive symptoms in Parkinson’s dis-

ease, is to further understand the interdependence of striatal

learning processes and executive function, and to identify

where exogenous dopamine is exerting its positive effect on

model-based learning so we can target treatments to these

regions while avoiding possible detrimental effects of medica-

tions on others (Cools et al., 2001).
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