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Proteostasis, or protein homeostasis, encompasses the main-
tenance of the conformational and functional integrity of the
proteome and involves an integrated network of cellular path-
ways. Molecular chaperones, such as the small heat shock pro-
teins (sHsps), are key elements of the proteostasis network that
have crucial roles in inhibiting the aggregation of misfolded
proteins. Failure of the proteostasis network can lead to the
accumulation of misfolded proteins into intracellular and extra-
cellular deposits. Deposits containing fibrillar forms of �-sy-
nuclein (�-syn) are characteristic of neurodegenerative disor-
ders including Parkinson’s disease and dementia with Lewy
bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to
�-syn fibrils, inhibiting fibril growth by preventing elongation.
Using total internal reflection fluorescence (TIRF)– based imag-
ing methods, we show that Hsp27 binds along the surface of
�-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27
also inhibits cytotoxicity of �-syn fibrils. Our results demon-
strate that the ability of sHsps, such as Hsp27, to bind fibrils
represents an important mechanism through which they may
mitigate cellular toxicity associated with aberrant protein
aggregation. Fibril binding may represent a generic mechanism
by which chaperone-active sHsps interact with aggregation-
prone proteins, highlighting the potential to target sHsp activity
to prevent or disrupt the onset and progression of �-syn aggre-
gation associated with �-synucleinopathies.

Cells have an intricate network of protein quality control
machinery that maintains proteostasis and hence the function-
ality of the proteome. The small heat shock molecular chaper-
one proteins (sHsps)3 are a crucial component of the proteos-

tasis network as they are a first line of defense against protein
aggregation (1, 2). The sHsps are defined by the presence of a
conserved �-crystallin domain and typically have a relatively
low monomeric mass (12– 43 kDa) (3, 4). However, some mam-
malian sHsps, including �B-crystallin (�B-c) (HSPB5) and
Hsp27 (HSPB1), form large polydisperse oligomeric assemblies
that undergo rapid subunit exchange and display chaperone
activity (5–8). Indeed, �B-c and Hsp27 are capable of inhibiting
the aggregation of a wide range of model and disease-relevant
amyloidogenic targets (9 –15).

The sHsps have traditionally been classified as ATP-indepen-
dent “holdases,” because they can recognize and bind misfolded
or aggregation-prone protein intermediates to form stable
high–molecular mass complexes (16 –18). More recently, it has
been demonstrated that some sHsps can prevent protein aggre-
gation without the need to form stable, high-molecular mass
complexes containing the aggregation-prone protein (11, 15).
Instead, interactions with aggregation-prone proteins can be
weak and transient, and do not result in stable complexes. Thus,
rather than solely acting as holdases, the molecular mecha-
nisms underlying the interactions between sHsps and aggregat-
ing target proteins are multifaceted and are likely to depend on
the stability of the target protein (10, 11, 19).

The failure of the proteostasis network to prevent protein
aggregation can lead to the deposition of insoluble proteins,
often in the form of amyloid fibrils, into intracellular inclusions
and extracellular plaques. These deposits are hallmarks of a
range of neurodegenerative disorders, including Alzheimer’s
disease and Parkinson’s disease (20, 21). In particular, inclu-
sions, known as Lewy bodies, are detected within the neuronal
tissue of patients with Parkinson’s disease and dementia with
Lewy bodies. These inclusions are composed primarily of the
intrinsically disordered protein, �-synuclein (�-syn) (22). The
aggregation of soluble proteins to form amyloid fibrils is well-
established to involve a nucleation-dependent polymerization
reaction (21, 23). The initial step is the formation of oligomers
in a primary nucleation process, followed by growth and elon-
gation of these species by the addition of monomers. It is
increasingly evident that other secondary processes exist,
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including fragmentation and secondary nucleation on the sur-
face of aggregates as they are formed (24).

Understanding the pathogenesis of �-syn requires detailed
knowledge of the fundamental nature of each of the steps
within the aggregation pathway, including primary and second-
ary nucleation processes. The soluble oligomer model of amy-
loid cytotoxicity suggests that mature fibrils are relatively inert
end products of aggregation (21, 25, 26); however, the fibrils
themselves can be a significant source of these small cytotoxic
species. Thus, secondary processes such as catalysis of nucle-
ation at the fibril surface and fibril fragmentation not only
increase fibrillar load but can also directly increase the abun-
dance of potentially cytotoxic oligomers (27). Fibril fragmenta-
tion has been highlighted as an important mechanism by which
both disease-associated and model amyloid-forming proteins
are cytotoxic (24, 28). In addition, fibrillar material released
into the extracellular space may interact with neighboring cells
and exert toxic effects (25, 26, 29, 30). As such, the formation of
amyloid-rich inclusions in cells has been postulated to be a
protective mechanism (31, 32), because the deposition of
mature amyloid fibrils could sequester harmful small aggre-
gates that would otherwise be cytotoxic.

In addition to �-syn, close to 300 other proteins have also
been identified in Lewy bodies, including proteins that assist
folding, trafficking, and degradation of proteins, as well as those
involved in synaptic transmission and vesicular transport (33,
34). There remains debate as to whether these proteins are
sequestered as a consequence of aggregation or if there is a
physiological role for their presence. The recently described
ability of the Hsp70 chaperone complex to bind and facilitate
disassembly of �-syn fibrils (35) provides support for an active
role of these chaperones within aggregates. Previous studies
have reported that �B-c and Hsp27 (as well as other sHsps) are
present in Lewy bodies (36 –40). The presence of sHsps in Lewy
bodies has often been regarded to be a consequence of their
inability to prevent �-syn aggregation, because their chaperone
activity may be overwhelmed when the rate of aggregation
exceeds the capacity of the sHsps to supply chaperone-active
subunits (15). Moreover, �B-c can interact with mature amy-
loid fibrils (41–44), and thus may play a specific functional role
within inclusions. For example, by binding to fibrils formed by
apolipoprotein C-II (apoC-II), �B-c has been shown to induce
dissociation of monomeric units from fibril ends, inhibit fibril
elongation and fragmentation, and cause the fibrils to entangle
into larger deposits (43). However, the mechanism of this inter-
action and whether or not it provides a protective effect by
inhibiting the cytotoxicity of the fibrils themselves is not yet
known. Furthermore, it remains to be established if other
sHsps, such as Hsp27, can bind fibrils, and thus whether fibril
binding is likely to be a generic property of chaperone-active
sHsps. In this work, we specifically address these issues by
examining the ability of Hsp27 to interact with fibrillar forms of
�-syn. Using a variety of techniques, including single aggregate
visualization by enhancement (SAVE) imaging (45), we show
that Hsp27 binds to �-syn fibrils and, in doing so, decreases
their overall hydrophobicity and the cellular toxicity of exoge-
nous, fibrillar �-syn.

Results

sHsps inhibit elongation of fibril fragments

To enable direct measurement of the elongation rate of small
amyloid fibril fragments (seeds) (Fig. 1A), seeded aggregation
assays were performed. Under these conditions, aggregation
occurs primarily through monomer addition at fibril ends, as
primary nucleation processes do not contribute significantly to
the observed aggregation kinetics (46). Indeed, incubation of
monomeric �-syn in the presence of 5% (w/w) seeds did not
result in an observable lag phase typical of non-seeded aggre-
gation (in which nucleation processes also occur), and was best
described by a one-phase association function (Fig. 1B). Elon-
gation was inhibited by the addition of Hsp27 and this effect
was specific to the chaperone as no inhibition was seen when a
non-chaperone control protein (BSA) was used at the same
concentration (Fig. 1B). When the concentration of mono-
meric �-syn was increased in the presence of a constant con-
centration of seed fibrils (i.e. 2.5 �M), the rate of elongation and
total fibril formation increased (Fig. 1C). By considering the
linear portion of the elongation phase during which the
increase in thioflavin T (ThT) fluorescence is directly propor-
tional to fibril growth (in this case at times between 1 and 3 h)
(Fig. 1D), the relationship between the concentration of mono-
meric �-syn and elongation rate was best described by two-step
Michaelis-Menten behavior, as found previously (46) (Fig. 1G).
However, the increase in the rate of elongation and total fibril
formation was inhibited by the presence of Hsp27 (Fig. 1, E and
F). In the presence of Hsp27 (50 �M), there was no significant
increase in the rate of elongation at low concentrations of mono-
meric �-syn (up to 50 �M) (Fig. 1G). However, as the concen-
tration of monomeric �-syn was increased (to 75 and 100 �M),
such that the molar ratio of monomeric �-syn:Hsp27 exceeded
1:1, a small but significant increase in the rate of �-syn aggre-
gation was observed. Importantly, in the presence of Hsp27, the
elongation rate of the �-syn fibrils was found to no longer fol-
low Michaelis-Menten kinetics (Fig. 1G). Together, these data
suggest that the interaction between Hsp27 and monomeric
�-syn is dependent on the rate of fibril elongation. However,
these findings may also reflect an interaction between Hsp27
and the fibrillar seeds of �-syn, whereby Hsp27 is in direct com-
petition with monomeric �-syn for access to fibril ends, thus
inhibiting elongation of the fibril seeds. As the concentration of
monomeric �-syn increases, it may outcompete Hsp27 for
binding to fibril ends leading to the observed increase in the rate
of elongation.

To explore further the possible interaction of Hsp27 with
�-syn seed fibrils, the ratio of fibril seeds to monomeric �-syn
was varied and Hsp27 added to the samples at a range of con-
centrations (Fig. 2). As expected, incubation of monomeric
�-syn in the presence of 2.5% (w/w) �-syn seeds resulted in a
characteristic aggregation profile with no observable lag phase
(Fig. 2A). Addition of Hsp27 inhibited this aggregation, such
that there was a concentration-dependent decrease in the rate
and total amount of �-syn aggregation as the concentration of
Hsp27 was increased (Fig. 2, A and B). By repeating this exper-
iment using different concentrations of �-syn fibril seeds (from
1 to 10% (w/w) of the monomeric �-syn concentration) the
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relationship between the concentration of Hsp27 and subse-
quent �-syn fibril elongation rate was established (Fig. 2C). This
relationship is best described by the single exponential decay
function (Fig. 2C) whereby the half-maximal inhibition from
this fit provides a measure of the ability of Hsp27 to inhibit fibril
elongation at each ratio of seed to monomeric �-syn (Fig. 2D).
There was a strong exponential correlation between the con-
centration of seed fibrils and the ability of Hsp27 to inhibit
elongation, i.e. as the concentration of �-syn seed increased,
more Hsp27 was required to inhibit fibril elongation. Taken
together, these data therefore provide evidence that Hsp27
interacts directly with fibrillar �-syn.

Hsp27 forms a stable complex with mature �-syn fibrils, and
the interaction is mediated by the N and/or C termini

Although the interaction between aggregated �-syn and
Hsp27 significantly influences the rate of �-syn aggregation in

vitro, we were yet to establish the mechanism by which Hsp27
interacts with fibrillar �-syn. Sucrose centrifugation assays
were therefore employed to investigate the ability of Hsp27 to
form stable complexes with �-syn fibrils (Fig. 3). When a sam-
ple containing aggregated �-syn was applied to the top of the
sucrose gradient, monomeric and small oligomeric �-syn forms
were retained predominantly in the upper fractions, whereas
fibrillar �-syn sedimented through the sucrose gradient and
was detected in the lowest fraction (fraction 10) (Fig. 3A). In
addition, some insoluble material remained trapped in the
wells, characteristic of SDS-insoluble fibrillar aggregates (Fig.
S1). When Hsp27 was incubated alone, it did not sediment and
was localized in fractions 1– 6 from the sucrose gradient, con-
sistent with the large, polydisperse and oligomeric nature of
wildtype Hsp27 under these conditions (Fig. 3B) (47). How-
ever, pre-incubation of Hsp27 with �-syn fibrils resulted in
Hsp27 co-sedimenting with the fibrils and therefore being

Figure 1. Hsp27 inhibits the elongation of �-syn fibrils. A, amyloid seeds (left) and mature fibrils (right) of �-syn were imaged via transmission electron
microscopy. Scale bars represent 100 nm. B, recombinant monomeric �-syn (50 �M) was incubated in 50 mM phosphate buffer (pH 7.4) in the absence or
presence of 50 �M Hsp27 or the control protein BSA. After equilibration at 37 °C, �-syn seeds (2.5 �M monomer equivalent) were added to each sample
containing monomeric �-syn and the elongation of these seeds was monitored via the change in ThT fluorescence at 490 nm over time. C–F, monomeric �-syn
was incubated in 50 mM phosphate buffer (pH 7.4) at concentrations ranging from 10 to 100 �M in the absence (C) or presence (E) of 50 �M Hsp27. After
equilibration at 37 °C, �-syn seeds (2.5 �M) were added to each sample and the elongation monitored via the change in ThT fluorescence at 490 nm over time.
D and F, the data from 1–3 h (outlined in the red box in C and E) of incubation were fitted to a linear regression function. Data shown are mean � S.E. of triplicate
samples. G, the rate of elongation of the �-syn seeds, in the absence and presence of Hsp27, was calculated using values from these fits and correlated with the
monomeric �-syn concentration. Data for �-syn alone were fitted to a Michaelis-Menten kinetic model. The data in C–F are representative of four independent
repeats. The data in G are presented as the mean � S.E. of these four repeats.
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Figure 2. Hsp27 interacts with �-syn fibrils. Recombinant monomeric �-syn was incubated in 50 mM phosphate buffer (pH 7.4) at 50 �M in the absence or
presence of Hsp27 at concentrations ranging from 0.1 to 10 �M. After equilibration at 37 °C, �-syn seeds were added at concentrations ranging from 0.5 to 5 �M

(i.e. 1–10% (w/w) when expressed as a percentage of the soluble protein concentration) and elongation monitored via the change in ThT fluorescence at 490
nm over time. A, a representative trace is shown in the presence of 5% seeds. B, the linear portion (0 –2.5 h; outlined in the red box in A) was fitted to a linear
regression curve. C, the rate of elongation was calculated using values from this fit (i.e. slope of the line in B), which was correlated with the Hsp27 concentration
at each seed ratio. These data were then fitted to a single exponential decay function. Inset shows a magnified view of the 1% (w/w) seed sample. D, the
parameters of this fit were used to compare the chaperone efficacy of Hsp27 at each seed ratio, and the data fitted to a single exponential growth function. The
data in A–C are representative of at least two independent experiments, and the data in D are reported as the mean � S.E. of these repeats.

Figure 3. Hsp27 binds to �-syn fibrils, and this interaction is mediated by the N and/or C termini. �-Syn fibrils (75 �M) were incubated in the absence (A)
or the presence of wildtype Hsp27 (C), Hsp273D (E), or Hsp27core (G) isotypes (15 �M). Wildtype Hsp27 (B), Hsp273D (D), and Hsp27core (F) isoforms, incubated in
the absence of �-syn fibrils, are also included for comparison. Samples were layered on top of a 20% (w/v) sucrose cushion and centrifuged at 200,000 � g for
20 min. Sequential fractions were collected from the top of the cushion (top, fraction 1; bottom, fraction 10) and analyzed via SDS-PAGE.
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detected in the lowest fraction from the sucrose gradient
(Fig. 3C).

To gain further insight into the mechanism by which Hsp27
binds to mature �-syn fibrils, an isoform of Hsp27 incorporat-
ing only the �-crystallin core domain (Hsp27core, i.e. a form of
Hsp27 lacking the flanking N- and C-terminal domains) and
an isoform mimicking a phosphorylated form of Hsp27 (S15D,
S78D, S82D Hsp27; Hsp273D) were used in this fibril-binding
assay. These variants were used as they both form only mono-
mers and dimers under the experimental conditions used in
this work, rather than large polydisperse oligomers such as
those formed by wildtype Hsp27 (47, 48). Thus, these Hsp27
variants enabled us to test whether only large oligomeric forms
of Hsp27 are capable of binding to �-syn fibrils. Importantly,
both these Hsp27 variants have previously been shown to retain
the ability to inhibit monomeric �-syn aggregation and there-
fore are chaperone active (15). Consistent with their existence
as monomers and dimers under these experimental conditions,
Hsp273D (Fig. 3D) and Hsp27core (Fig. 3F) were found predom-
inantly in fractions 1– 4 from the sucrose gradient when incu-
bated alone. Incubation of �-syn fibrils with Hsp273D resulted
in the protein co-sedimenting with the fibrils (Fig. 3E), how-
ever, Hsp27core did not co-sediment with the fibrils (Fig. 3G).
This demonstrates that the N- and/or C-terminal regions of
Hsp27 are required for stable binding to �-syn fibrils.

Binding of Hsp27 to �-syn fibrils occurs along the surface,
decreasing exposed hydrophobicity

In light of the observation of the stable association of Hsp27
with �-syn fibrils, we sought to visualize this interaction

directly using total internal reflection fluorescence (TIRF)
imaging. In these experiments, fibrils were detected using
SAVE imaging, whereby the fluorescence from ThT dye emit-
ted as it binds fibrils is used to image them (Fig. 4; �-syn).
CF647-labeled Hsp27 was imaged via its conjugated fluoro-
phore in the absence and presence of �-syn fibrils (Fig. 4, A and
C). In the presence of �-syn, the merged image (Fig. 4C) showed
the chaperone distributed along the fibril surface. Quantita-
tively, the increase in co-incidence between ThT-reactive and
CF647-fluorescent pixels when fibrils were co-incubated with
Hsp27 was 66 � 6%, compared with 20 � 7% in the presence of
the control (non-chaperone) protein �-lactalbumin (�-lac), or
21 � 5% when Hsp27 was incubated with ThT in the absence of
fibrils.

In an attempt to further characterize the nature of the inter-
action between Hsp27 and �-syn fibrils, we used spectral
PAINT (sPAINT), which allows regions of hydrophobicity
along the fibril surface to be identified at the nanometer scale.
This technique relies on the use of Nile Red in solution (in place
of ThT) to image the fibrils. When Nile Red interacts with
amyloid it undergoes a characteristic shift in its emission wave-
length according to the hydrophobicity of its surrounding
environment (49, 50). Thus, sPAINT enables regions of hydro-
phobicity along the face of fibrils to be mapped at the super-
resolution level (Fig. 5A and Fig. S2). The addition of fluores-
cently labeled Hsp27, which was imaged below the diffraction
limit using stochastic optical reconstruction microscopy
(STORM) (51), allows the association of the chaperone with the
fibrils to be mapped (Fig. 5B) and correlated with regions of

Figure 4. Hsp27 binds on the surface of �-syn fibrils. �-Syn fibrils (50 �M) were incubated in the presence of 1 �M CF647-labeled Hsp27, or the control protein
�-lac. Samples were incubated in PBS containing 50 �M ThT, to allow �-syn fibrils to be visualized and imaged via TIRF microscopy. A–C, example TIRF images
are shown for Hsp27 incubated with ThT (A), �-syn fibrils in the presence of �-lac (B), and �-syn fibrils in the presence of Hsp27 (C), along with the corresponding
merge images. The scale bars represent 5 �m or 2 �m (zoom). D, the percentage of ThT-reactive pixels coincident with magenta pixels. The data are the mean �
S.E. (n � 3 repeats of nine images each) and were analyzed via a one-way analysis of variance (ANOVA) with a Bonferroni post hoc test (** denotes p � 0.01). The
data are representative of two separate experiments.
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higher or lower hydrophobicity (Fig. 5C and Fig. S2). The emis-
sion wavelengths recorded for each localization in the absence
(Fig. 5D) or presence of Hsp27 were grouped to describe
regions of high (550 – 600 nm), medium (600 – 650 nm), or low
(650 –700 nm) hydrophobicity (Fig. 5E). Notably, binding of
Hsp27 to �-syn fibrils significantly affected the emission wave-
lengths associated with the fibrils (F(2, 27) � 3917, p � 0.0001).
The presence of Hsp27 significantly decreased the proportion
of localizations corresponding to high levels of hydrophobicity
(p � 0.001) and significantly increased the proportion of local-
izations corresponding to low levels of hydrophobicity (p �
0.001) (Fig. 5E).

Binding of sHsps protects against the cellular toxicity
associated with exogenous �-syn fibrils

Finally, we investigated if Hsp27 decreases the cytotoxicity
associated with exogenous �-syn fibrils. The dye dihydro-
ethidium (DHE) has been used extensively to monitor the intra-
cellular production of reactive oxygen species (ROS), specifi-
cally superoxide (52–54), as a measure of cellular toxicity. This
method was therefore chosen to measure the toxicity of �-syn
fibrils when added exogenously to cells. Traces of the fluores-
cence ratio (reduced DHE: oxidized ethidium) before and after
treatment with monomeric or fibrillar �-syn (Fig. 6, A and B)
demonstrate that there was an increase in cellular ROS produc-
tion upon introduction of the �-syn fibrils. The difference in the
rate of change in the fluorescence ratio (reported as a -fold
change relative to the PBS control) is a measure of potential

cytotoxicity, i.e. a faster rate of change in the fluorescence ratio
is because of higher rates of ROS production associated with
increased toxicity. We observed a significant effect of treatment
on the generation of ROS within cells (F(7,247) � 33.96, p �
0.001). Post hoc tests revealed the �-syn fibrils induced signifi-
cantly more ROS production than monomeric �-syn (p �
0.0001) (Fig. 6B). However, when the �-syn fibrils were pre-
incubated with Hsp27 this dramatically reduced the rate of ROS
production (by 65 � 14% compared with fibrils alone) (Fig. 6B).
Importantly, the production of ROS by cells associated with the
addition of exogenous �-syn fibrils was not significantly
decreased when the non-chaperone control proteins BSA and
�-lac were pre-incubated with �-syn fibrils. Thus, the cytopro-
tective effect was specific to Hsp27. Also, incubation of the
chaperone or control proteins in the absence of �-syn fibrils did
not significantly alter basal levels of ROS production.

Discussion

The ability of Hsp27 (and other sHsps such as �B-c, Hsp20,
HspB8, and HspB2/HspB3) to inhibit the aggregation of a range
of proteins has been well-characterized (9, 10, 37, 44, 55). We
have recently shown that �B-c and Hsp27 interact transiently
with monomeric �-syn to inhibit its nucleation and subsequent
aggregation, a process that is dependent on the aggregation rate
(i.e. the efficiency of sHsps to inhibit �-syn aggregation
decreases as the rate of aggregation increases) (15). Here, we
demonstrate that Hsp27 is also capable of binding to �-syn
fibrils, a process that requires the N- and/or C-terminal

Figure 5. Hsp27 decreases the relative hydrophobicity at the surface of �-syn fibrils. �-Syn fibrils (50 �M) were incubated in the presence of CF647-labeled
Hsp27 in GLOX buffer containing 100 nM Nile Red to allow �-syn fibrils to be visualized and imaged via TIRF microscopy. A–C, an example super-resolution
image is shown for �-syn (A) in the presence of labeled Hsp27 (B), along with the corresponding merge image (C). D, an example super-resolution image is
shown for �-syn in the absence of labeled Hsp27. Localizations in (A–D) corresponding to �-syn are colored according to the wavelength of Nile Red emission
(color scale given at the bottom of the image). Scale bars represent 2 �m, or 1 �m in inset. E, the percentage of localizations in each wavelength range in the
absence and presence of Hsp27 were quantified and data are displayed as the mean � S.E. (n � 6 images). Data were analyzed via a Student’s t test, where ***
denotes a significant (p � 0.001) difference between group means. Data are representative of two separate experiments.
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domains of the protein, and that by binding these fibrils Hsp27
inhibits elongation, and decreases their relative hydrophobicity
and cytotoxicity.

The seeded aggregation assays employed in this work allow
us to measure the rate of elongation without the confounding
effects of primary nucleation events (46). The results presented
here support our earlier work (15) by showing that the ability of
Hsp27 to inhibit the aggregation of monomeric �-syn is depen-
dent on the rate of aggregation. Here, we also demonstrate that
the elongation of �-syn seeds is strongly inhibited by Hsp27
when the relative concentration of monomeric �-syn to Hsp27
is low (i.e. below a 1:1 molar ratio). As the concentration of
monomeric �-syn increases, such that the molar ratio of mono-
meric �-syn:Hsp27 exceeds 1:1, aggregation occurs. This find-
ing is significant given the association of early onset Parkinson’s
disease with duplication or triplication of the SNCA gene (56 –
60). In these cases, increases in the concentration of �-syn may
allow aggregation-prone forms of �-syn to escape the protec-
tive capacity of the sHsps.

The ability of Hsp27 to inhibit elongation of �-syn fibril seeds
(as measured by the rate constant) was inversely correlated to
the seed concentration. This suggests that the ability of Hsp27
to inhibit �-syn fibril elongation results from both transient
interactions with monomeric �-syn (to prevent association and
addition to fibril ends) as well as interactions with fibrillar �-syn
(essentially outcompeting monomeric �-syn for access to the
fibril ends and surface). We demonstrate that Hsp27 forms a
stable complex with �-syn fibrils, as has been reported previ-
ously for �B-c (41). Moreover, we show, using Hsp273D (an
isoform that mimics a phosphorylated state of the chaperone)
and the isolated core domain of Hsp27 (Hsp27core), that
dimeric forms of Hsp27 can bind to �-syn fibrils and binding is
mediated by the N- and/or C-terminal regions. Given that
Hsp27core is still chaperone active (15, 48), these data suggest
that domains within sHsps play distinct functional roles with
regard to the interaction of these chaperones with aggregation-
prone proteins. The central �-crystallin domain can interact
with monomeric proteins to prevent aggregation, whereas the
flexible N- and/or C-terminal regions mediate stable interac-
tions with aggregated (fibrillar) protein.

Using TIRF microscopy, we were able to visualize directly the
interaction between Hsp27 and �-syn fibrils, observing that
Hsp27 binds along the surface and ends of fibrils. By coating the
fibril surface in this manner, Hsp27 may act to inhibit surface-
dependent secondary nucleation or fibril fragmentation, both
of which lead to increases in the abundance of small oligomeric
species and total fibril load (28, 61, 62). Our previous work
using apolipoprotein C-II fibrils and analytical ultracentrifuga-
tion demonstrated that the binding of �B-c to fibrils inhibits
their fragmentation (43). With regard to �-syn fibril formation,
at neutral pH and under quiescent conditions, surface-assisted
nucleation and fragmentation processes are not detectable in
vitro (46). However, these processes dominate the aggregation
of �-syn under mildly acidic pH conditions, such as would be
present in some intracellular locations including endosomes
and lysosomes (46). Given this, the ability of sHsps to bind
�-syn aggregates may have physiological roles in disrupting
these secondary processes under conditions whereby surface-
assisted aggregation drives amyloid formation. Similar func-
tions have recently been described for the isolated BRICHOS
domain as a result of its interaction with amyloid fibrils formed
from the amyloid-� peptide (27).

In this work, we also noted that the distribution of Hsp27
bound to the fibril was not uniform, suggesting that it may bind
preferentially to specific regions on the surface of the fibril. We
therefore sought to characterize the hydrophobic nature of the
fibril surface using a novel imaging technique, sPAINT. This
TIRF microscopy-based technique utilizes Nile Red (a fluores-
cent dye exhibiting a characteristic emission wavelength shift
according to the hydrophobic nature of the surrounding envi-
ronment) (49) to provide a quantitative measure of the relative
hydrophobicity at any given region along the fibril face. Impor-
tantly, we demonstrate that, by binding to �-syn fibrils, Hsp27
significantly decreases hydrophobicity at the fibril surface. This
is noteworthy, given the toxicity of aggregates formed from
both pathogenic and nonpathogenic proteins correlates with
the level of exposed hydrophobicity at the aggregate surface
(63). The observed reduction in the relative hydrophobicity of
the Hsp27-bound �-syn fibrils suggests that Hsp27 binds to

Figure 6. Hsp27 reduces the generation of ROS by Neuro2a cells exposed to exogenous �-syn fibrils. Neuro-2a cells were incubated in PBS containing
DHE (2 �M) before the addition of monomeric (M) or fibrillar (F) �-syn (20 �M) that had been pre-incubated in the absence or presence of Hsp27 (or the control
proteins BSA and �-lac; each at 2 �M). The ratio of oxidized to reduced DHE before and after treatment was determined for 20 cells per treatment. A, example
traces are shown for individual cells treated with monomeric �-syn, fibrillar �-syn, fibrillar �-syn preincubated with Hsp27 or Hsp27 alone. The fluorescence
ratio before and after treatment was fitted by a linear regression function and the change in the rate of ROS production because of treatment was calculated
as the difference in the gradient of the fitted lines. B, the -fold change in ROS production was then determined relative to a buffer only control (dashed line) and
is reported as mean � S.E. (n � 3 biological repeats, with each repeat an average of 20 cells). Data were analyzed via one-way ANOVA with a Bonferroni multiple
comparison post hoc test, where *** denotes a significant (p � 0.001) difference compared with the fibril alone sample.
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regions of high hydrophobicity and this may decrease the cyto-
toxicity of the aggregates.

In addition to hydrophobicity, the production of ROS asso-
ciated with protein aggregates is thought to be a significant
mediator of neuronal toxicity in neurodegenerative disorders,
including Parkinson’s disease (64, 65). As anticipated, exposure
of cells to exogenous �-syn fibrils resulted in a specific, rapid,
and significant increase in cellular ROS production. However,
pre-incubation of the �-syn fibrils with Hsp27 reduced this tox-
icity. Thus, the binding of Hsp27 to fibrillar �-syn represents a
previously uncharacterized protective function of these chap-
erones, i.e. by binding to fibrils, Hsp27 (and most likely other
sHsps) inhibits the toxicity associated with amyloid fibrils. This
parallels the recently described novel chaperone activity of the
chaperonin CCT, which by binding to �-syn oligomers signifi-
cantly decreases the toxicity of �-syn aggregates to human neu-
roblastoma cells (66). It remains to be definitively established
how Hsp27 can prevent cytotoxicity of exogenous fibrils. By
binding to fibrils and decreasing their relative hydrophobicity,
Hsp27 may prevent the interaction of the fibrils with cell
membranes.

In summary, our work demonstrates that by binding to fibrils
Hsp27 (and by inference other sHsps that bind to fibrils, e.g.
�B-c) prevents the toxicity associated with protein aggregation.
Thus, apart from its role in inhibiting protein aggregation,
Hsp27 can protect cells from protein aggregates if they have
already formed. Our work rationalizes the co-localization of
sHsps in protein deposits associated with disease. Rather than
being deposited in inclusions as a by-product of their failed
attempt to prevent aggregation, our work suggests that sHsps
are found in these deposits because of their specific association
with the aggregated protein. Given that �B-c also binds fibrils
(41–43), fibril-binding may represent a generic mechanism by
which chaperone-active sHsps interact with aggregation-prone
proteins. This aspect of their chaperone activity represents a
secondary line of defense through which they may mitigate cel-
lular toxicity even in the face of aberrant protein aggregation.
These results highlight the potential to therapeutically target
sHsp levels and/or activity in cells as a means of halting both the
onset and progression of �-syn aggregation associated with the
�-synucleinopathies.

Experimental procedures

Materials

The pET24d and pET24a bacterial expression vectors, con-
taining the human HSPB1 (Hsp27) and SCNA (�-syn) genes,
respectively, were used for expression of recombinant wildtype
proteins. Disease-related mutants of �-syn and sHsp variants
used in this work were produced via site-directed mutagenesis
of the wildtype gene (GenScript, Piscataway, NJ). In particular,
a variant of Hsp27 designed to mimic phosphorylation of the
protein was generated via mutation of serine residues to aspar-
tic acid at sites that are known to be modified in vivo (i.e. S15D,
S78D, and S82D) to produce Hsp273D. The construct for the
expression of the core domain of Hsp27, i.e. residues 84 –176
(Hsp27core), was a kind gift from Professor A. Laganowsky
(Texas A&M Health Science Center, Bryan, TX). All recombi-

nant proteins were expressed in Escherichia coli BL21(DE3),
previously transformed with each plasmid, and purified as
described previously (23, 67, 68). Protein molecular mass stan-
dards used in gel electrophoresis were Protein Precision Plus
Dual Color obtained from Bio-Rad, and dithiothreitol (DTT)
was purchased from Amresco LLC (Solon, OH). All other
chemicals, including ThT, were obtained from Sigma-Aldrich,
unless otherwise stated. All buffers contained 0.02% (w/v)
NaN3 to prevent bacterial contamination, and were filtered
using 0.2 �m sterile filters before use. Protein concentrations
were determined using a NanoDrop 2000c spectrophotometer
(Thermo Fisher Scientific), based upon A280 nm

0.1% values of 0.44
for �-syn calculated using the ExPASy Prot-Param tool (69),
and 1.65 for Hsp27 (70).

Seeded aggregation assays

In an attempt to differentiate between interactions of Hsp27
with monomeric and fibrillar �-syn, an adaption of a previously
described seeded aggregation assay was employed (46). Briefly,
to produce seed fibrils, 1-ml aliquots of monomeric �-syn were
prepared at concentrations ranging from 100 to 200 �M in 50
mM sodium phosphate (pH 7.4), in the absence of added salt.
Samples were incubated at 45 °C with maximal stirring with a
Teflon flea on a WiseStir heat plate (Witeg, Wertheim, Ger-
many) for 24 h, then sonicated using three cycles of 10 s at 30%
power (Branson digital Sonifier, model 250, Branson Ultrason-
ics, Danbury, CT). Samples were then incubated for a further
24 h under the conditions described above, before being soni-
cated again. Finally, samples were distributed into aliquots,
flash frozen in liquid N2 and stored at �20 °C. The concentra-
tion of fibril seeds is reported as the monomer-equivalent
concentration.

Seeded aggregation of �-syn was monitored using a micro-
plate assay using clear 384 micro plates (Greiner Bio One, Fric-
kenhausen, Germany) with each well initially containing a total
of 40 �l of sample (all samples were run in duplicate). To probe
the interaction of Hsp27 with monomeric �-syn, �-syn was
incubated at concentrations from 10 to 100 �M in the absence
or presence of 50 �M Hsp27 (or the negative control protein
BSA) in 50 mM phosphate buffer (pH 7.4). Samples were equil-
ibrated at 37 °C, then seed fibrils were added to each sample to
a final concentration of 2.5 �M, resulting in a final volume of 50
�l for each sample. Alternatively, to probe the interaction of
Hsp27 with fibrillar �-syn, 50 �M �-syn was incubated in the
absence or presence of Hsp27 (or BSA as a control) at concen-
trations ranging from 0.1 to 10 �M in 50 mM phosphate buffer
(pH 7.4). Samples were equilibrated at 37 °C, then seed fibrils
were added into each sample to a final concentration of 0.5–5
�M, resulting again in a final volume of 50 �l for each sample.
All wells contained a final concentration of 50 �M ThT, and the
plates were sealed to prevent evaporation. The plates were
then incubated in a FLUOstar Optima plate reader (BMG
LABTECH, Ortenberg, Germany) at 37 °C without shaking,
and ThT fluorescence measured using excitation and emission
filters of 440 nm and 490 nm, respectively. Readings were taken
every 300 s for periods of up to 20 h.

The change in ThT fluorescence intensity was calculated by
subtracting the value at t � 0 h from subsequent measure-
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ments. The elongation rate for each sample was then deter-
mined by fitting data from the linear elongation phase of the
assay (consisting of the initial 1–3 h or 0 –2.5 h where appro-
priate) with linear regression using GraphPad Prism v 5
(GraphPad Software Inc., San Diego, CA). The relationship
between rate and concentration was then determined by fitting
using nonlinear regression.

Fibril formation

Monomeric �-syn, at concentrations ranging from 50 to 300
�M, was incubated in 50 mM phosphate buffer or PBS (pH 7.4)
in the presence or absence of 1% (w/w) pre-formed �-syn seeds
(prepared as described above). To monitor fibril growth, sam-
ples were incubated in the presence of 50 �M ThT using a black-
walled, clear bottom 96-well microplate (Greiner Bio One),
with each well containing 100 �l of sample. Plates were incu-
bated with or without shaking (in the case of unseeded or
seeded reactions, respectively) at 37 °C in a FLUOStar Optima
plate reader (BMG LABTECH), with the plates sealed to pre-
vent evaporation. The ThT fluorescence was monitored via
excitation and emission at 440 nm and 490 nm, respectively,
and readings were taken every 300 s for periods of up to 48 h.
Samples were considered to contain mature amyloid fibrils
once the ThT fluorescence had reached a plateau (typically
after 48 h of incubation). The fibril samples were collected from
the plates and stored at 4 °C for use.

Sucrose cushion centrifugation assays

Mature �-syn fibrils (formed with 1% (w/w) seeds) were pre-
pared at a final concentration of 75 �M in 50 mM phosphate
buffer (pH 7.4). Fibrils were incubated at 37 °C for 1 h in a
VorTemp Shaking Incubator (Labnet International, Edison,
NJ) with shaking at 60 rpm, in the absence or presence of Hsp27
(15 �M). Aliquots were taken (load samples) prior to samples
(100 �l) being layered on top of a 20% (w/v) sucrose solution
(900 �l) (Amresco LLC) prepared in 50 mM phosphate buffer
containing 100 mM NaCl (pH 7.4). Following centrifugation at
200,000 � g for 20 min at 4 °C using an MTX150 ultracentrifuge
(Thermo Fisher Scientific), 100 �l fractions were collected and
any pelleted material resuspended in the final 100 �l (top, frac-
tion 1; bottom, fraction 10). SDS-PAGE analysis of the load
samples and fractions was performed using 12% (v/v) polyacryl-
amide gels (Bio-Rad), except in the case of samples containing
Hsp27core which required 20% (v/v) acrylamide for appropriate
separation. For analysis, gels were stained with Coomassie Bril-
liant Blue R250.

Fluorescent labeling of proteins

For imaging purposes, recombinant proteins of interest were
fluorescently labeled with either succinimidyl ester (in the case
of �-lac) or maleimide (in the case of Hsp27) derivatives of
CF647 (Biotium, Hayward, CA) as described previously (15).
The concentration and degree of labeling was calculated
according to the manufacturer’s instructions and found to be
greater than 60%. The labeled proteins were then stored at
�20 °C.

Total internal reflection fluorescence microscopy methods

TIRF microscopy was employed to visualize directly the
interaction of Hsp27 with mature �-syn amyloid fibrils grown
in the absence of seeds using a custom-built inverted optical
microscope as described previously (45). To prepare slides for
microscopy, glass coverslips were cleaned using an argon
plasma cleaner (Diener Electronic, Ebhausen, Germany) for
1 h and 9 � 9 mm frame-seal slide chambers (Bio-Rad) were
fixed to the cleaned surface. The glass surface within the
chamber was then coated with poly-L-lysine (0.01% w/v), and
incubated for 30 min at room temperature. The chamber was
then washed three times with 0.02 �m filtered PBS, before
the slide was transferred to the microscope stage and cou-
pled to the lens using immersion oil (n � 1.518; Olympus,
Tokyo, Japan). Samples for SAVE imaging were prepared in
PBS containing 70 �M �-syn and 70 nM fluorescently labeled
wildtype Hsp27 or the negative control protein, �-lac. Sam-
ples were incubated for 30 min at room temperature before
being centrifuged at 20,000 � g for 10 min. The supernatant
was removed and replaced with fresh PBS, and the wash
repeated three times before the fibril pellet was resuspended
to a final concentration of 100 pM in PBS containing 5 �M

ThT immediately before imaging.
Images were collected (nine fields of view each at three ran-

dom sites for each sample) using a custom script to prevent user
bias (Beanshell script, Micro-Manager) and the resultant
images were analyzed using custom scripts written in Igor Pro
v6.3.4.1. Background and weak signals were removed by
adaptive signal thresholding via functions available directly
in Igor Pro. Fluorescently labeled proteins (spots) above the
threshold were enumerated, and the position of a spot above
the threshold in one channel was examined for the presence
of a spot in the other channel. Chance coincidence was
determined by rotating one of the images 90°, translating it
horizontally by 10 pixels (to offset any central spots not
affected by the rotation), and then testing for coincidence in
an identical manner.

sPAINT imaging of mature �-syn fibrils was also performed
using a custom-built inverted optical microscope. Briefly, an
inverted microscope (Nikon Eclipse TI, Tokyo, Japan) was con-
figured to operate in objective-type TIRF mode with three light
sources, a 405-nm CW diode 200 milliwatt OBIS laser (Coher-
ent, Santa Clara, CA), a 514-nm solid-state 200 milliwatt Sap-
phire laser (Coherent), and a 647-nm CW diode 200 milliwatt
OBIS laser (Coherent). The lasers were directed via dichroic
mirrors through a high numerical aperture, 60� oil immersion
CFI Apochromate objective lens (Nikon Eclipse TI) to the sam-
ple coverslip. The emitted fluorescence was collected and
directed through long-pass filters specific for each fluorophore
(see below) and finally projected onto an electron-multiplying
charged coupled device (EMCCD) camera (Evolve II 512 Delta,
Photometrics, Tucson, AZ). A physical aperture (VA100/M,
Thorlabs), and a transmission diffraction grating (300
Grooves/mm 8.6° Blaze Angle; GT13– 03, Thorlabs) were
mounted on the camera port path prior to the detector.

Slides were prepared and coupled to the microscope as
described above. Samples were prepared in 50 mM phosphate
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buffer (pH 7.4) or PBS containing 50 �M �-syn in the absence or
presence of 1 �M fluorescently labeled wildtype Hsp27. Samples
were incubated for 5 min at room temperature, before being
diluted 100-fold in the GLOX-mercaptoethylamine imaging
buffer (0.5 mg/ml glucose oxidase, 40 �g/ml catalase and 10%
(v/v) glucose in 50 mM Tris-HCl (pH 8.0) with 10 mM NaCl and
10 mM �-mercaptoethylamine) supplemented with 100 nM Nile
Red. Fibrillar �-syn was detected via Nile Red fluorescence,
which was excited at 514 nm and collected using an ET590LP
long-pass filter (Semrock Inc., Rochester, NY). The CF647-la-
beled Hsp27 was imaged via excitation at 647 nm and the emit-
ted fluorescence was detected using an ET655LP long-pass
filter.

Data were analyzed to generate sPAINT images as described
previously (50) using a typical signal strength threshold of �30.
Quantitative co-localization and wavelength analyses were
completed using custom scripts written for Python 2.7, and the
localizations were binned into low, medium, and high wave-
lengths using GraphPad Prism v 5 (GraphPad Software).

Dihydroethidium assay to monitor cellular ROS production

A DHE cell-based assay, similar to that described previously
(52, 71), was used to investigate the toxicity associated �-syn
aggregates when added exogenously to cells. Neuro-2a cells
were routinely cultured in Dulbecco’s modified Eagle’s medi-
um: Ham’s Nutrient Mixture F-12 (DMEM/F12) (Thermo
Fisher Scientific) supplemented with 10% (v/v) fetal bovine
serum (Bovagen Biologicals, East Keilor, Australia) and 2.5 mM

L-glutamine (Thermo Fisher Scientific), and incubated in a
Heracell 150i CO2 incubator (Thermo Fisher Scientific) under
5% CO2/95% air at 37 °C. The cells were seeded into 8-well
chamber �Slides (Ibidi, Martinsried, Germany) and cultured to
60% confluency. Solutions containing monomeric or fibrillar
�-syn (formed in the presence of pre-formed seeds) were pre-
pared in PBS in the absence or presence of Hsp27 (or a control
protein, BSA or �-lac) at a 1:100 molar ratio (Hsp27:�-syn) and
incubated at 37 °C for 30 min. Immediately prior to use, DHE
(to a final concentration of 2 �M) was also added to these solu-
tions to eliminate the effects of dilution of the DHE.

Cells were washed with PBS immediately before DHE (2 �M

in PBS) was added. Images were taken every 30 s for 15 min
using an epifluorescence microscope (Leica DMi8 fluorescence
microscope, Wetzlar, Germany) to quantify the amount of
DHE (excitation 325–375 nm and emission 435– 485 nm) and
its oxidized product (i.e. ethidium, excitation 540 –580 nm and
emission 592– 668 nm) as a measure of ROS production in cells
(52). The solutions were then added to cells, and images were
taken every 30 s for a further 15 min. Data analysis was com-
pleted using custom programs written for Python 2.7, which
allows 20 cells to be selected and the mean fluorescence inten-
sity for each of the cells to be determined from every image in
both the red and blue channels. The ratio of DHE fluorescence
to ethidium fluorescence was then calculated both before and
after treatment and fitted with linear regression where appro-
priate using GraphPad v5 (GraphPad Software). The difference
in the rate of change of the DHE/ethidium fluorescence ratio
before and after treatment was then determined and normal-
ized to the PBS control.
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