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Recent advances in genetics present unique opportunities for
enhancing knowledge about human physiology and disease sus-
ceptibility. Understanding this information at the individual
gene level is challenging and requires extracting, collating, and
interpreting data from a variety of public gene repositories.
Here, I illustrate this challenge by analyzing the gene for human
insulin-like growth factor 2 (IGF2) through the lens of several
databases. IGF2, a 67-amino acid secreted peptide, is essential
for normal prenatal growth and is involved in other physiologi-
cal and pathophysiological processes in humans. Surprisingly,
none of the genetic databases accurately described or com-
pletely delineated human IGF2 gene structure or transcript
expression, even though all relevant information could be found
in the published literature. Although IGF2 shares multiple fea-
tures with the mouse Igf2 gene, it has several unique properties,
including transcription from five promoters. Both genes
undergo parental imprinting, with IGF2/Igf2 being expressed
primarily from the paternal chromosome and the adjacent H19
gene from the maternal chromosome. Unlike mouse Igf2, whose
expression declines after birth, human IGF2 remains active
throughout life. This characteristic has been attributed to a
unique human gene promoter that escapes imprinting, but as
shown here, it involves several different promoters with distinct
tissue-specific expression patterns. Because new testable
hypotheses could lead to critical insights into IGF2 actions in
human physiology and disease, it is incumbent that our funda-
mental understanding is accurate. Similar challenges affecting
knowledge of other human genes should promote attempts to
critically evaluate, interpret, and correct human genetic data in
publicly available databases.

Insulin-like growth factor 2 (IGF2),2 a conserved 67-amino
acid, single-chain secreted protein, is intimately involved in

several critical physiological processes in humans and other
mammals (1–6). IGF2, along with IGF1 and insulin, also com-
prises a gene family that is found in most mammalian species
(7–9). In humans, IGF2 plays a central role in normal pre-natal
growth, and changes in its expression have been implicated in a
variety of developmental growth syndromes (10, 11). For exam-
ple, individuals with Silver-Russell syndrome produce dimin-
ished amounts of IGF2, have reduced fetal and post-natal
somatic growth, and exhibit a variety of dysmorphic features
and bodily asymmetry (10, 11). In contrast, in Beckwith-Wie-
demann syndrome, which is characterized by asymmetric over-
growth (10, 11), overexpression of IGF2 is seen.

IGF2 also plays an important role in growth biology in other
mammals. Targeted Igf2 gene knockout in mice caused im-
paired fetal but normal post-natal growth (12). IGF2 also was
identified as a key quantitative trait locus for muscle mass in
pigs, with more heavily muscled animals bearing a single nucle-
otide polymorphism in an IGF2 gene promoter (13), that was
responsible for enhancing gene activity by interfering with
binding of a transcriptional repressor (14, 15).

Igf2/IGF2 gene regulation is complicated. In mice, humans,
and presumably in other mammalian species, Igf2/IGF2 is part
of a conserved autosomal linkage group that undergoes paren-
tal imprinting (16). Igf2/IGF2 is expressed from the paternally
derived chromosome, with the adjacent H19 gene being acti-
vated on the maternal chromosome via the epigenetic actions
of an imprinting control region (ICR) found in intergenic chro-
matin (Fig. 1A) (16). DNA within the ICR contains sites for the
nuclear protein, CTCF (16 –18). CTCF binds to the ICR in
maternally-derived chromatin in mice, and it facilitates access
of distal enhancers to the H19 promoter while preventing inter-
actions with Igf2 promoters (17, 18). In paternal chromatin,
DNA in the ICR is methylated, and CTCF cannot bind, thus
allowing the same enhancers to associate with Igf2 (17, 18). It is
likely that similar mechanisms control both IGF2 and H19
expressions in humans, although experimental evidence is
more limited (19).

In mice, the Igf2 gene is composed of eight exons, and gene
expression is regulated by three adjacent promoters, termed
P1–P3, and an upstream promoter, P0, each with its own
unique non-coding 5� leader exon, whereas exons 6 – 8 encode
the IGF2 precursor protein (Fig. 1A) (20 –22). The human IGF2
gene is more complicated, and based on the published litera-
ture, it contains an additional upstream promoter with its
associated non-coding exon and another coding exon (Fig. 1)
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(23–26). Because Igf2 expression declines precipitously during
the early post-natal period in rodents (27–30), but is main-
tained through adult life in humans (24, 31), it has been
assumed that the extra IGF2 gene promoter in humans is
responsible for these species-specific differences in gene regu-
lation (32). Moreover, as it has been shown that this distinctive
human promoter is expressed in both alleles in some human
tissues and thus in certain circumstances does not undergo
parental imprinting (33), it has been hypothesized that lack of
imprinting control also may be a key feature of maintenance of
IGF2 production in adult humans (33). In both cases, the exper-
imental evidence supporting these contentions is limited.

Major advances in genetics and genomics in recent years now
present unique opportunities for enhancing our understanding
of human physiology, and a wealth of information is now avail-
able in publicly accessible databases (34) with the potential for
contributing new insights into human variation, disease pre-
disposition, and human origins and evolution (35–37). To date,
understanding these data at the individual gene level has been
challenging, in part because both the extraction of the informa-
tion and the evaluation of its quality can be difficult. Here, I
have used publicly available genomic and gene expression data-
bases to examine the human IGF2 gene. This study was
prompted in part by recent publications potentially linking
IGF2 DNA polymorphisms with a variety of traits, including
differential susceptibility to type 2 diabetes (38) and association
with athletic performance (39).

Results and discussion

Topography of the human IGF2-H19 locus

The human IGF2-H19 locus on chromosome 11p15.5 shares
many features with the corresponding mouse locus on chromo-
some 7 (26), including gene order, and the presence of an
imprinting control region (ICR), located just 5� to H19 and con-
taining binding sites for the boundary transcription factor,
CTCF (40, 41), although in the human genome the segment
differs from the mouse by consisting of two repeat units rather

than a single element (Fig. 1A) (42). Also, as revealed here by
homology searches, in the human IGF2-H19 locus there are
DNA sequences similar to distal enhancers that are responsible
in the mouse for both developmental and cell-lineage–specific
regulation of Igf2 and H19 (Fig. 1A and Table 1) (43). However,
in the human genome only 9 of the 10 elements defined in the
mouse could be detected, with conserved segment 3 being
absent (Table 1). In fact, with the exception of human con-
served segment 8, in which DNA sequence similarity extended
throughout the 277-bp mouse segment, DNA homology was
limited to 50% or less of the corresponding mouse element
(Table 1). In addition, although in the mouse genome these
enhancers are located in intergenic DNA, on the corresponding
human chromosomal region, 7/9 elements are found within the
MRPL23 gene (Fig. 1A). Moreover, no experiments have yet
shown that any of these putative enhancers are functional in
human tissues, in contrast to studies using transgenic mice and
other experimental models that have defined several chromo-
somal segments that could direct gene activity to endodermal-
or mesenchymal-derived tissues (43–49). Other differences
between the mouse Igf2-H19 and human IGF2-H19 loci include
the separation of Th in the former species to 226 kb from Ins2
versus 2.6 kb from INS in humans (Ins2 in mice is the homo-
logue of human INS), a shorter intergenic distance between Igf2
and H19 (72 kb in mice versus 128 kb in humans) and a longer
distance between Ins2 and Igf2 (12 kb in mice versus 1.4 kb in
humans) (Fig. 1A). The anatomical relationship in the human
genome among TH, INS, and IGF2 is depicted in Fig. 1B.

Human IGF2 gene

Based on compilation of primary data (23–26, 50 –53), the
human IGF2 gene spans �29.3 kb of chromosomal DNA and
contains five promoters and 10 exons (Fig. 2A). This informa-
tion is not fully delineated in Ensembl, UCSC, or Gencode
Genome Browsers or in other databases. In fact, the annotation
of human genome assembly GRCh38/hg38 in each browser
only lists three of five human IGF2 promoters (P2– 4) and seven

Figure 1. Organization of the mouse Igf2–H19 and human IGF2–H19 loci. A, map of the mouse Igf2–H19 locus on chromosome 7 and the human IGF2–H19
locus on chromosome 11p15.5 with chromosomal coordinates. For Igf2 and IGF2, individual exons are depicted as boxes and introns as horizontal lines. A scale
bar is shown. Other genes in each locus are shown as single boxes and include tyrosine hydroxylase (TH), insulin (Ins2, INS), H19, mitochondrial ribosomal protein
L23 (Mrpl23, MRPL23), and troponin T3, fast skeletal type (Tnnt3, TNNT3). Horizontal arrows indicate the direction of transcription. The purple and green circles
depict the location of the ICR, which is found just 5� to H19 (40 –42), and the orange circles indicate distal enhancers 1–10, and their human homologues (43).
B, close-up view of the human TH, INS, and IGF2 genes. All exons are shown as boxes, and introns and flanking DNA as horizontal lines. Horizontal arrows indicate
the direction of transcription; a scale bar is shown. All TH exons are gray, and INS exons are in blue. For IGF2, non-coding exons are black, and coding regions are
red.
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of 10 exons (exons 4 –10). Accurate information is included in
these databases about variable transcription start sites in indi-
vidual promoters and alternative polyadenylation in exon 10.
Also, all three genome browsers do correctly identify read-
through transcripts composed of the INS promoter, some INS
exons, and some IGF2 exons (INS-IGF2 mRNAs). By contrast,
the Genotype-Tissue Expression project (GTEx) denotes four
human IGF2 promoters (P1– 4) and eight exons (exons 1 and
4 –10).

The five human IGF2 gene promoters described in the pub-
lished literature and partially identified in genome browsers
govern the production of six different major classes of IGF2
transcripts with five distinct 5� UTRs and two types of coding
segments (Fig. 2, A and B) (25, 26, 50 –53). P2 is responsible for
a pair of IGF2 mRNAs that differ by the presence or absence of
alternatively spliced exon 5. Transcripts directed by P1 include
three untranslated exons, exons 1–3 (Fig. 2B). Exon 2 in this
context is truncated at its 5� end compared with when it is the
sole 5�-untranslated exon in mRNAs regulated by P0 (Fig. 2B).
P3 and P4 each direct expression of IGF2 mRNAs with single
5�-untranslated exons (Fig. 2B). There also is variation in the
lengths of 3� UTRs affecting most IGF2 mRNAs, secondary to
alternative polyadenylation, as noted above (see Fig. 2B). The
four transcripts controlled by P1, P0, P3, and P4 encode the
same 180-amino acid IGF2 precursor proteins (Fig. 2, B and C).
This precursor is composed of a 24-amino acid signal peptide, a
67-residue mature IGF2 molecule, and an 89-amino acid
COOH-terminal extension peptide, or E-domain (Fig. 2C). The
signal peptide is encoded by exon 8, mature IGF2 by exons 8
and 9, and the E-region by exons 9 and 10 (Fig. 2C). The pres-
ence of exon 5 in some mRNAs directed by P2 leads to a second
predicted IGF2 protein precursor of 236 residues. This mole-
cule is composed of the same 67-residue IGF2 and 89-amino
acid E-peptide, but it contains an 80-amino acid presumptive
signal peptide (54 codons from exon 5 and 26 from exon 8, with
the additional two 5� codons in exon 8 resulting from mainte-
nance of the open reading frame after splicing of exons 5 and 8)
(Fig. 2C).

Three non-coding genes are located within the boundaries of
the human IGF2 gene. All are annotated in Ensembl, UCSC,
and Gencode Genome Browsers. Human IGF2 antisense
(IGF2AS) is a 3-exon gene that is transcribed in the opposite
direction from IGF2. One of its exons overlaps IGF2 exon 3 (Fig.

2A). MiR483 is composed of a single exon and is found between
IGF2 exons 8 and 9 (Fig. 2A). It has been shown to be up-regu-
lated in human Wilms tumors (54) and has been found in
experimental studies to increase transcription from IGF2 P2,
P3, and P4, and IGF2AS, although by unknown mechanisms
(54). Both of these genes are located in corresponding positions
within the mouse Igf2 locus. AC132217.1 is a predicted non-
coding gene, with limited functional annotation, and does not
appear to be present in the mouse genome.

Few studies have been performed examining the molecular
mechanisms controlling the activity of each of the five human
IGF2 promoters. Limited cell-based experiments have shown
that human promoters P1, P3, P4, and P0 can function in trans-
fected cells, whereas P2 cannot (25, 53, 58, 59). Transcription
factors C/EBP�, C/EBP�, and SP1 have been found to activate
P1 through potential proximal promoter control elements (32,
60), whereas AP2 was shown to stimulate P3 (61), and the
Wilms tumor repressor, WT1, was found to inhibit P3, poten-
tially through many binding sites in proximal promoter DNA
(62). In vivo, P0 has been shown to be active in several human
fetal tissues, but only in adult skeletal muscle (25), whereas
other promoters are expressed in a variety of different organs
and tissues (23–26, 50 –53).

There have been several analyses of parental imprinting of
IGF2 in humans, which potentially controls access of distal
transcriptional regulatory elements and their associated tran-
scription factors to all IGF2 gene promoters (19, 33). Investiga-
tions have identified individuals with deletion mutations in the
human ICR, which leads to bi-allelic expression of IGF2 and
silencing of H19 (42), and also have found bi-allelic expression
of IGF2 in several human cancers in which excess production of
IGF2 may play a pathogenic role (55–57).

New insights regarding human IGF2 gene expression

GTEx has collected gene expression data by RNA-sequenc-
ing from many non-diseased human tissues (63–65), with
80 –388 donors per tissue (GTEX release 7). Presented in Fig. 3
are the compiled data for IGF2. These results are based on
information about isoform-specific transcripts in GTEx and
have been quantified here according to the IGF2 promoter
being used, which was determined by the presence of a distinct
promoter-specific 5�-untranslated exon or exons. In these dif-
ferent organs and tissues, the overall abundance of IGF2 tran-
scripts varied over a 34-fold range, with the highest levels of
mRNAs seen in visceral adipose tissue, endo-cervix, and fallo-
pian tube (103, 93, and 92 transcripts for kilobase million reads
(TPM), respectively, Fig. 3A), and the lowest values in brain
regions, pancreas, and stomach (2.9, 3.2, and 3.8 TPM, respec-
tively, Fig. 3B). The vast majority of IGF2 mRNAs in this col-
lection of human tissues and organs were regulated by P3 and
P4, which together comprised 76 to �99% of total transcripts
(Fig. 3). IGF2 mRNAs controlled by P1 were measurable only in
liver (�15% of total), and the contributions of P0 and P2 were
negligible (1% or less; some of the IGF2 mRNAs in the GTEx
dataset did not contain a promoter-specific exon and may have
arisen from endonucleolytic processing of larger IGF2 tran-
scripts (66, 67)). Taken together, the GTEx results on IGF2
expression in human liver as presented here clearly undercut

Table 1
Nucleotide identity of human DNA with mouse Igf2-H19 locus enhanc-
ers
See Fig. 1 for locations. Nomenclature is as defined by Ishihara et al. (43); CS indi-
cates conserved segment; ND means no DNA sequence identity detected.

Enhancer
% identity

(no. of base pairs aligned)

CS1 (218 bp) 95 (76)
CS2 (472 bp) 89 (251)
CS3 (214 bp)a ND
CS4 (385 bp)a 84 (81)
CS5 (385 bp) 86 (92)
CS6 (360 bp) 87 (95)
CS7 (231 bp) 95 (74)
CS8 (277 bp) 85 (277)
CS9 (486 bp) 84 (112)
CS10 (286 bp) 93 (106)

a Overlap with endodermal enhancers defined by Yoo-Warren et al. (77).
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prior hypotheses about P1 being the major driver of IGF2 pro-
duction in that organ (32, 33), because it appears to be a minor
species in this dataset. In fact, because mRNAs governed by P3
and P4 are the predominant active human promoters in adult
liver and in other organs and tissues (Fig. 3), the results also
argue against the idea that P1, which is not found in the mouse
genome, is responsible for maintaining IGF2 gene transcription
in human adults (33). Thus, the GTEx data collectively indicate
that the cause of pervasive IGF2 mRNA biosynthesis and pro-
tein production throughout life in humans remains unknown
and that the reasons for differences with mice, in which Igf2
expression is attenuated during the early post-natal period, also
are undefined. These results therefore present a new opportu-
nity to elucidate the molecular and biochemical mechanisms

responsible for temporal control of IGF2/Igf2 gene activity in
different mammalian species. Of note, analysis of mouse Igf2
promoter usage via the FANTOM5 promoter expression atlas
(68, 69) demonstrates that P2 (homologue of human P3) and P3
(homologue of human P4) predominate in fetal and neonatal
organs and tissues, although mouse P1 (homologue of human
P2) is more active than P2 in neonatal murine liver (68, 69).
Thus, some patterns of tissue- and organ-specific Igf2/IGF2
promoter activity appear to be similar between mice and
humans.

Predicted variation in IGF2 in human populations

The Exome Aggregation Consortium (ExAC) contains DNA
sequence information from the exons of 60,706 people repre-

Figure 2. Human IGF2 gene structure and expression. A, close-up view of the human IGF2 gene, illustrating promoters P0 and P1–P4, and exons 1–10. All
5�-noncoding exons are in black or shades of gray; coding regions are in red, and the 3� UTR of exon 10 is in white. Bent arrows signify transcription start sites, and
vertical arrows delineate different polyadenylation sites in exon 10. Below IGF2 are three other non-coding genes that are embedded within the boundaries of
human IGF2. Their direction of transcription is indicated. For all genes, exons are represented as boxes, and introns as horizontal lines. A scale bar is shown. All
IGF2AS exons are blue; the MiR483 exon is dark red, and AC132217.1 exons are green. B, diagram of the six major classes of human IGF2 mRNAs. The responsible
promoters are listed, with their 5� non-coding exons in black or gray; coding exons are in red, and the non-coding part of exon 10 is in white to match A. The
lengths of each class of mRNAs are indicated in nucleotides (nt), and exons found in each transcript are listed. The locations of polyadenylation sites of shorter
transcripts are depicted by vertical arrows (23, 24), with AN representing the polyadenylic acid tail at the 3� end of the longest mRNAs. C, diagram of the two
human IGF2 protein precursors, showing the derivation of each segment from different IGF2 exons. The contributions of different exons to amino acids in
different parts of each protein are shown in alternating black and white text. Mature, 67-amino acid IGF2 (center), presumptive signal peptides (left), and the
89-residue COOH-terminal E-peptide (right) are each labeled.

Human IGF2 gene structure, function, and regulation

J. Biol. Chem. (2018) 293(12) 4324 –4333 4327



senting different population groups from around the world
(70). The data have revealed substantial variation within the
coding regions of genes in this large cohort, but the data have

also shown that most alterations were uncommon, as more
than half were detected in a single allele and over 99% were
seen in less than 1% of the study group (70). In addition, the
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vast majority of this variation has consisted of synonymous
nucleotide changes and amino acid substitutions (70). Alter-
ations in the IGF2 gene were seen in 2.5% of the 121,412
alleles, with 80% of this being reflected in a single nucleotide
change mapping to the splice acceptor site at the intron 4 to
exon 5 junction (71) (found in �2% of the total population;
also see single nucleotide polymorphism rs149483638).
Nearly all of the remaining �0.5% consisted of 78 different
predicted amino acid substitutions (71). However, the single
change of arginine 157 to histidine in the E-peptide region
predominated and accounted for �75% of all such substitu-
tions (71). The impact of these variants on IGF2 biology is
unknown, and they thus collectively present new research
opportunities for obtaining insights into aspects of human
physiology (see below).

Potential alterations in IGF2 in cancer

The Cancer Genome Atlas represents a compendium of
DNA sequencing results from genomic DNA derived from a
variety of human neoplasms (see https://portal.gdc.cancer.
gov/). Potential mutations at 149 different locations in the IGF2
gene have been found in 24 different cancers. The prevalence
of these changes has ranged from over 7% of uterine endo-
metrial carcinomas to �0.5% of invasive breast cancers, ade-
nocarcinomas of the prostate, renal cancers, gliomas, or glio-
blastomas, among others (see https://portal.gdc.cancer.gov/
genes/ENSG00000167244). Of the 149 different alterations
identified in the IGF2 gene in these human cancers, 87 were
found in IGF2 exons and 62 in introns (Tables 2 and 3). Con-
sidering just changes within exons that mapped to mature IGF2
transcripts, 36 predicted missense mutations, frameshifts, or
the addition of a stop codon to IGF2 (Table 3). Twelve of these
locations were identified as human population variants in
ExAC, although their prevalence was extremely low and ranged
from 1 to 11 alleles (�0.01%, Table 3). At present, the roles of
these modified transcripts and IGF2 proteins in cancer biology
are undefined, and the potential is thus high for gaining insights
into aspects of carcinogenesis or metastasis by studying these
mutations.

Challenges inherent in genome-based predictions about
putative human IGF2 proteins

IGF2 mRNAs derived from P1, P0, P3, and P4 and the smaller
transcript originating from P2 all encode a predicted secreted

IGF2 protein precursor of 180 residues (Fig. 2C), which closely
resembles IGF2 proteins found in other mammalian species (7,
8). Once these mRNAs are translated, the 24-amino acid NH2-
terminal signal peptide is co-translationally cleaved from the
rest of the protein progenitor, and the 89-residue COOH-ter-
minal E-peptide is post-translationally processed to release the
fully bioactive 67-residue IGF2 (6, 31). The fate or function of
the putative 236-amino acid IGF2 precursor molecule originat-
ing from the larger transcript governed by P2 is unknown (Fig.
2C). Moreover, the potential 80-amino acid signal peptide in
this predicted protein is far longer than other described mam-
malian signal sequences (72, 73), and in the absence of any
experimental evidence, it is not known whether an authentic
IGF2 pro-protein or 67-amino acid mature IGF2 can be gener-
ated from this molecule or even whether the mRNA is stable in
human cells.

The listing of the larger transcript regulated by IGF2 P2, and
the encoded putative 236-amino acid IGF2 precursor protein as
a major product of the human IGF2 gene in genome databases
such as ExAC and others, has the potential to cause confusion
for users searching for actionable information about IGF2.
Moreover, this inference is wrong, based on GTEx gene expres-
sion data, which, as noted above, indicates that this is at best a
very minor IGF2 mRNA species in multiple human tissues. One

Figure 3. Expression of IGF2 mRNAs in different human tissues. Data on organ- and tissue-specific human IGF2 gene expression was obtained from the
GTEx portal and graphed as TPM. The information shown has been derived from the exon expression module of GTEx, and the displayed results have been
quantified by the abundance of promoter-specific 5�-untranslated exons. A, 18 organs and tissues with the highest levels of IGF2 mRNAs are depicted. B, 20
organs and tissues with the lowest IGF2 mRNAs are shown. The data from human brain consist of the average levels of IGF2 mRNAs found in 12 different
sub-regions (cortex, frontal cortex, anterior cingulate cortex, amygdala, hypothalamus, hippocampus, substantia nigra, putamen, caudate, nucleus accum-
bens, cerebellum, and cerebellar hemisphere).

Table 2
Human IGF2 gene mutations in cancer

Nucleotide modification No. of examples

Missense 31
Frame-shift; stop codon 5
Synonymous 11
5� non-translated region 8
3� non-translated region 32
Intron 62

Table 3
Predicted cancer-associated amino acid mutations in IGF2
#fs indicates frameshift.

Mutation Population variant ExAC prevalence

M5I M5R 1 allele
S20I S20L, S20W 11 alleles, 1 allele
A24T None
A25V None
R27H None
G35R None
F43L None
R48H R48L 1 allele
Y52stop None
S53R None
R61H R61H 1 allele
R64C, R64H R64C 1 allele
V67I None
R73C, R73H None
E91K None
S95L None
P98L P98L, P98Q 1 allele, 1 allele
P102L P102L 6 alleles
F114L None
R127C, R127H, R127S None
G129S None
L133V None
#R137Afs*22 None
K153I None
H155D None
L161V None
T163L None
D165Y D165E 1 allele
#G170Afs*30 G170D, G170S 2 alleles, 1 allele
A171T A171V 1 allele
#P173Qfs*27 P173A, P173Q, P173R,

P173S
4 alleles, 1 allele 4

alleles, 3 alleles
#E174Rfs*50 E174D 1 allele
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example of the problems created by this type of incorrect infor-
mation may be found in the recently published analysis of a
family with apparent Silver-Russell syndrome, including both
pre- and post-natal growth deficiencies (74). DNA sequencing
revealed that the genomes of all affected members harbored
a heterozygous nonsense mutation in IGF2 that prevented
production of the IGF2 protein, and indeed, accumulation of
IGF2 in the blood of the subjects was substantially reduced
from normal concentrations (74). The mutation, which con-
sisted of a single Cys3 Ala change within IGF2 exon 8 in all
subjects, was described as altering amino acid serine 64 to a
termination codon (TCG�TAG) in the 80-amino acid pre-
sumptive signal peptide (thus named p.Ser64Ter). More
accurately, this modification should be represented as
p.Ser8Ter, reflecting its location in the signal sequence
encoded by major IGF2 transcripts.

How can we use genomic databases to accurately understand
IGF2 actions in humans?

A recent publication identified the single nucleotide change
mapping to and disrupting the IGF2 intron 4 to exon 5 splice
acceptor site as being prevalent in a cohort of 8668 individuals
of Mexican origin (average minor allele frequency (MAF) of
0.17 (38)). As noted above, this identical alteration was found
with a MAF of 0.02 in the ExAC study group, which consisted of
different populations, with 60% of individuals with European
origins, �8% with Hispanic origins, and �8% from Africa (70).
This new analysis also showed that the allele that perturbs the
splice acceptor site was rare in other groups (MAF of 0.001 in
Africans and 0.0002 in Europeans), and thus that the contribu-
tion of the Hispanic cohorts was likely primarily responsible for
the overall observed ExAC population prevalence of �2% (71).
By studying individuals with and without type 2 diabetes, the
authors additionally concluded that the minor allele was pro-
tective against this disease, with heterozygous individuals hav-
ing a 22% and homozygotes a 40% diminished risk (38).
Although intriguing, it remains unclear how modifications in
this genomic location could alter disease risk, because tran-
scripts directed by IGF2 P2 are normally minimally expressed
in human tissues (Fig. 3). One possibility is that the minor allele
can alter levels of INS-IGF2 read-through transcripts (25),
although the abundance of these latter mRNAs and their func-
tions in different human tissues has not been determined.
Moreover, they are not found in GTEx except in liver, where
expression levels are very low (�1 TPM for each of 4 mRNA
species). In addition, because the genetics of Mexico are very
complicated, with region-specific sub-groups being identified
(75), it is likely that the MAF of 0.17 identified in the study
cohort (38) will vary significantly among different populations
of Mexican origin once a larger and more thorough genetic
analysis is completed.

The statistical interpretation of the population genetics data
and the associated claim of a new disease risk allele (38) noted
above illustrate one of the major quandaries and challenges of
modern genetics: how to connect clinical and basic research to
accurately and mechanistically understand disease causation
(34). As analyzed here for the human IGF2 gene, the difficulties
in attaining this goal are possibly even more complicated. The

complexity of the gene, with its multiple promoters, alterna-
tive splicing, overarching regulation by parental imprinting,
and the possibility of two distinct classes of protein precur-
sors, yet a single 67-amino acid biologically active IGF2 pep-
tide, presents its own challenges, and these are amplified by
the paucity of complete or correct information about IGF2
gene structure and expression currently available in gene
repositories. Because new testable hypotheses derived from
analysis of human IGF2 in data from genomic and gene
expression sequencing projects could lead to novel insights
about the biology of IGF2 and its actions in both human
physiology and disease, it is incumbent that these genetic
databases thoroughly describe the fundamentals of IGF2
gene structure and gene activity. As similar opportunities for
translation of genetic information to medical practice will
exist for other human genes and gene families, there is a need
for ongoing critical review and correction of data in public
gene repositories to ensure future users that the primary
information is both accurate and complete.

Experimental procedures

Database searches and analyses

Mouse and human genomic information was obtained
from Ensembl Genome Browser (https://www.ensembl.org/
index.html),3 the UCSC Genome Browser (https://genome.
ucsc.edu),3 (78) and the Gencode Browser (http://www.
gencodegenes.org/).3 Searches were performed using BlastN
under normal sensitivity, with mouse Igf2 or H19 gene DNA
segments, or regions near the two loci (Mus musculus,
genome assembly GRCm38) or human IGF2 DNA segments
(Homo sapiens, genome assembly GRCh38) as queries. Infor-
mation on human IGF2 also was obtained from several pri-
mary publications (23–26, 50 –53). Data on human IGF2
gene expression was derived from the Portal for the Geno-
type-Expression Project (GTEx version 7, https://www.
gtexportal.org/home/),3 using the exon expression module
and analyzing isoform-specific transcripts, which were cat-
egorized by the presence of a promoter-specific 5�-untrans-
lated exon or exons. Protein sequences were from the Uni-
prot browser (http://www.uniprot.org/)3 and GENCODE/
Ensembl databases and the National Center for Biotech-
nology Information Consensus CDS Protein Set (https://
www.ncbi.nlm.nih.gov/CCDS/). Information on variation in
human IGF2 was from the ExAc genome browser (http://
exac.broadinstitute.org/)3 (79), which contains the results of
sequencing of the exons from 60,706 individuals (76). Other data-
bases examined included Online Mendelian Inheritance in Man
(OMIM, https://www.omim.org/),3 the Type 2 Diabetes Knowl-
edge Portal (http://www.type2diabetesgenetics.org/),3 and the
Cancer Genome Atlas (https://cancergenome.nih.gov/) and its
data portal (https://portal.gdc.cancer.gov/).

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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