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Abstract

Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. 

However, geometric calibration of these systems using conventional configurations of spherical 

fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, 

this is because the BB configurations are designed with careful forethought regarding the intended 

orbit so that BB marker projections do not overlap in projection views. Examples include helical 

arrangements of BBs (Rougee et al Proc. SPIE 1897 161–9) such that markers do not overlap in 

projections acquired from a circular orbit and circular arrangements of BBs (Cho et al Med Phys 

32 968–83). As a more general alternative, this work proposes a calibration method based on an 

array of line-shaped, radio-opaque wire segments. With this method, geometric parameter 

estimation is accomplished by relating the 3D line equations representing the wires to the 2D line 

equations of their projections. The use of line fiducials simplifies many challenges with fiducial 

recognition and extraction in an orbit-independent manner. For example, their projections can 

overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. 

The method was tested in application to circular and non-circular trajectories in simulation and in 

real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high 

calibration accuracy, as measured by forward and backprojection/triangulation error metrics. 

Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 

0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 

0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, 

successful integration of the method into a CT imaging chain was demonstrated in head phantom 

scans.
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1 INTRODUCTION

Accurate, high-quality image reconstruction in cone-beam CT (CBCT) benefits from 

accurate calibration and reproducibility of the system geometry. Circular source-detector 

orbits represent the most common scan geometry for a broad range of CBCT systems 

including systems for dental (Pauwels 2015), breast (Boone et al 2001, Bian et al 2014), and 

extremity (Carrino et al 2014) imaging as well as image-guided radiotherapy (Jaffray et al 
2002)). However, a considerable area of research involves alternative, non-circular 

geometries. Interest in non-circular scans is motivated in part by projection data 

incompleteness inherent in circular CBCT scans. Orbits such as circular sinusoids as well as 

those composed of multiple arcs, lines, and ellipses (Noo et al. 1998; Katsevich 2004; 

Katsevich 2005) have been shown to provide more complete object coverage and thereby to 

eliminate or reduce cone-beam artifacts. Further benefits to non-circular orbits include 

increased field of view (FOV). Combinations of rotation and gantry translation have been 

shown, for example, to achieve the same FOV as in C-arm systems, but with reduced gantry 

size (Ritschl et al 2016). A selection of such orbits is illustrated in Figure 1, some of which 

are also investigated specifically in this paper. The sinusoid-on-sphere orbit in Figure 1(a) is 

akin to the reduced circular sinusoid of (Xia et al 2009), except that sinusoidal out-of-plane 

motion is implemented via gantry rotations rather than translations. Recent work has also 

presented methods for optimizing orbit geometries to the anatomy of a specific patient and 

visualization task (Stayman et al 2015, Ouadah et al 2017), leading to improved detectability 

of implants and interventional instruments for a given radiation dose. Such optimization can 

produce particularly irregular orbit shapes, as illustrated in Figure 1(d) for a cochlear 

implant visualization task (Ouadah et al 2017).

Advances in the motion capabilities of mobile and stationary C-arms have created 

opportunity for CBCT acquisition with considerable flexibility in the selection of source-

detector orbits, making such techniques a likely trend in new imaging protocols. In the work 

reported below, we therefore consider a wide variety of forms in scan trajectory and propose 

a flexible and accurate method for geometric calibration of such systems.

Geometric calibration is the process of estimating the system parameters that relate the 

position of points in the 3D image reconstruction to their projected location in the 2D 

projection data. For a point x-ray source and area detector, the system geometry is described 

by 9 degrees of freedom (DOF) describing the location of the source and the location and 

orientation of the detector for each projection view. In practice, geometric calibration in 

CBCT is most commonly performed by scanning a known 3D configuration of radio-opaque 

BB fiducials (Noo et al 2000, von Smekal et al 2004, Cho et al 2005, Yang et al 2006, 

Mennessier et al 2009, Li et al 2010, Hu et al 2011). By relating the observed 2D locations 

of the BB projections to their known 3D template, an inversion problem can be solved to 

obtain the parameters.

Calibration methods (including the one described below) that rely on pre-scans of a phantom 

are classified as offline methods and assume that the geometry as computed during 

calibration remains valid in subsequent scans. This appears to be a reasonable assumption 

for many systems. In some cases, a less strict assumption is made that the continuous 
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source-detector trajectory is repeatable from scan to scan, but that the gantry positions along 

the trajectory may vary slightly due to imperfect synchronization between gantry motion and 

each projection. In such situations, gantry motor position sensors (e.g., encoders) can be 

used to determine where along the continuous trajectory the projections were acquired. The 

gantry poses in the patient scan can then be interpolated from the poses in the calibration 

scan.

A problem with BB-based methods, however, is that they are not generally applicable to a 

diversity of orbits, except perhaps by implementing a different marker phantom and 

calibration software routine for every orbit of interest. This is because the marker phantom 

and accompanying software are normally designed with respect to a particular anticipated 

orbit shape (usually circular) to prevent marker projection overlap and to allow a BB 

projection to be identified appropriately with its 3D model. As an example, in a helical BB 

configuration (Rougee et al 1993), the BBs are spaced longitudinally to ensure that marker 

projections do not overlap as the system rotates circularly. Longitudinal separation also 

ensures that a given 2D marker projection can be matched easily to its 3D model based on its 

axial position in the projection view. As another example, in the 2-ring BB phantom design 

due to (Cho et al 2005), marker images are distributed around the periphery of an ellipse 

and, in a circularly rotating system (see Figure 2(a)), always maintain a fixed order 

reflecting their 3D positions. Such designs, however, do not easily accommodate scan 

trajectories with longitudinal, out-of-plane gantry motion. This is especially true for C-arm 

geometries having relatively small area detectors. For such systems, the BBs must be spaced 

more densely so that they are visible within the projection field of view (FOV).

For such systems, the BBs must be spaced more densely so that they are visible within the 

projection field of view (FOV). With the tighter spacing comes an increased likelihood of 

BB projection overlap. For established BB phantoms, overlap may occur even for out-of-

plane angulations of the source as small as 5° - for example, in the sinusoidal scan geometry 

of Figure 1(a), illustrated further in Figure 2(b) with simulated projections of a 2-ring BB 

phantom.

Possible solutions to these issues include so-called online calibration methods that do not 

use dedicated phantoms (Kyriakou et al 2008, Panetta et al 2008, Patel et al 2009, Wicklein 

et al 2012, Ouadah et al 2016). Instead, these methods estimate geometry directly from the 

patient scan. Online methods are generally intended to address cases in which the 

acquisition geometry is imperfectly reproducible from scan to scan, e.g., due to unrepeatable 

gantry motion or patient motion. When reproducibility is not a concern, these methods can 

also be used to pre-calibrate the system in a traditional offline manner. Some methods within 

this category employ data redundancy conditions (Panetta et al 2008, Patel et al 2009) that 

only hold true for certain orbit geometries. Other online methods enforce anticipated 

properties in the 3D image reconstruction via iterative optimization (Kyriakou et al 2008, 

Wicklein et al 2012). The latter methods are more generally applicable to diverse orbit 

geometries, as are methods based on 3D-2D registration (Ouadah et al 2016, Berger et al 
2016). However, because they involve iterative forward and back projection operation, their 

flexibility comes with considerable computational expense.
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The solution proposed in this work is a phantom-based method for geometric calibration 

that, instead of BBs, uses an array of line-shaped fiducials formed from segments of radio-

opaque wire. Geometric parameter estimation is accomplished by relating the 3D line 

equations representing the wires to the 2D line equations of their projections. While line-

shaped features have long been used for calibration of photographic cameras (Cipolla et al 
1999, Caprile and Torre 1990, Liebowitz and Zisserman 1999), line fiducial methods have 

not been applied in CBCT calibration, to our knowledge. An 8-wire phantom (Figure 3) is 

proposed as an initial design and tested in application to circular and non-circular C-arm 

motion.

The use of line fiducials is more generally adaptable to a diversity of non-circular orbits than 

traditional BB methods in at least 3 respects. First, 2D projections of 3D lines can intersect 

at no more than a single point, for any gantry pose, as long as the 3D lines are mutually non-

coplanar. Since 2D line segment detection is not confounded by a single point of 

intersection, problems of fiducial overlap are avoided in a highly orbit-independent way. For 

technical reasons to be discussed below, the design in Figure 3 does include some coplanar 

wires, but by keeping these sufficiently spaced apart, the phantom is able to accommodate a 

significant range of circular and non-circular orbits. Second, because each wire projection is 

identified by two line segment endpoints, they lie far apart in a 4D feature space (see Section 

2.2) and can be robustly tracked from view-to-view for fiducial identification purposes. This 

is in contrast to BB projection tracking, which may be confounded if two BB projections 

overlap or lie in close proximity. When this occurs, the BBs may be mis-identified in all 

subsequent views unless specific knowledge of the orbit geometry is used to resolve the 

ambiguity. Third, line-based calibration is less adversely affected if the phantom is not 

completely contained in the viewable region of the x-ray detector, a scenario that is likely to 

occur for at least some gantry positions in complicated orbit geometries. In such gantry 

positions, a BB near the edge of the phantom may be completely unviewable, and any 

information about the view geometry encoded in that particular BB is lost. Conversely, line 

fiducial phantoms can be designed so that all line markers extend deep into the center of the 

field of view, making them more robustly visible. Note that only a section of a line fiducial 

(not its whole length) need be visible for its 2D line equation to be determined and for 

constraining information on the projection geometry (equation (3) in Section 2) to be 

obtained.

In the following sections, details of the calibration method are presented, including phantom 

design, fiducial extraction, and parameter estimation. Calibration performance was 

quantified in terms of forward projection accuracy metrics, backprojection/triangulation 

accuracy metrics, and with respect to accuracy in estimating source-detector pose 

parameters. The method was further tested in application to circular and non-circular 

phantom scans, both in simulation and using real data acquired on a prototype mobile C-

arm. Performance comparisons between wire-based and BB-based calibrations of circular 

orbits are also presented with respect to point spread function (PSF) width and visualization 

of fine features in trabecular bone in a head phantom.
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2 METHODS

2.1 A Parametric Model for Line Projections

In this section, we derive a parametric model for the projections of 3D lines that will serve 

as a basis for the wire-based geometric calibration method. We write the parametric equation 

for a 3D line in homogeneous coordinates as

where X = [XT, 1]T and D = [DT, 0]T are 4×1 homogeneous vectors representing, 

respectively, a point on the line and the line’s direction. The 3×1 vectors X and D denote the 

same in inhomogeneous coordinates. As a general convention throughout the paper, vectors 

in bold type will denote homogeneous coordinate vectors to distinguish them from 

inhomogeneous coordinate vectors.

The geometry of a flat panel detector cone-beam CT system in a particular gantry position 

can be specified by nine parameters. In the parametrization considered here (see Figure 

4(b)), three of the nine parameters are the position coordinates of the x-ray source, expressed 

as the vector C = [cx, cy, cz)T. Three additional parameters are the Euler angles defining 

detector orientation expressed as the vector θ = [θ1, θ2, θ3)T. The final three are the so-

called intrinsic parameters consisting of the Source-Detector Distance (SDD) and the 2D 

piercing point coordinates (u0, v0) where C projects orthogonally to the detector. We let α = 

[SDD, u0, v0)T denote the vector of intrinsic parameters collectively. A 3D homogeneous 

coordinate X and the 2D homogeneous point x to which it projects are related according to x 
= PX, where P is a 3×4 projection matrix of the form,

(1)

(2)

Here, Rθ = [Rθ,u Rθ,v Rθ,w]T is a 3×3 rotation matrix, parameterized by the angles θ. The 

columns Rθ,u, Rθ,v and Rθ,w of the matrix  are the directions of the detector axes.

Under cone-beam projection, a 3D line L(t) maps to a 2D line whose equation aiu + bi v + ci 

= 0 is compactly expressed as lTx = 0. Here x = [u, v, 1]T is a homogeneous point on the line 

and l = [ai, bi, ci]T is a homogeneous vector of equation coefficients. Because the projections 

of all points on the 3D line satisfy the 2D line equation, we have lTPL(t) = 0 for all t. 
Considering this relation at t = 0 directly yields lTPX = 0. Considering t = −1 leads further to 

lTPD = lTPX = 0. These observations can be combined to give,

Jacobson et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

By incorporating the above decomposition into (3), we obtain

(4)

(5)

An alternative statement of (3) is that the equation vector l is orthogonal to both PX and PD 
and therefore can be obtained from their cross-product l = PX × PD. Incorporating (1) into 

the cross-product1 leads to the following explicit solution for l:

(6)

It is a well-known result (Hartley and Zisserman 2003, p. 214) that parallel 3D lines do not 

generally project to parallel 2D lines, but rather to lines intersecting at a so-called vanishing 

point v = KαRθD. Here, D is the common direction of the parallel 3D lines. Equation (5) 

shows that v lies on the projection l of any 3D line with direction D, and is therefore 

consistent with this result. The exception is when D is parallel to the plane of the x-ray 

detector, in which case the imaged lines will also be parallel. Although equation (5) is still 

satisfied in this case, the vanishing point is a degenerate, non-physical point with 

homogeneous coordinates v = [v1, v2, 0]T.

Equation (3) is analogous to the more traditional relationship,

(7)

which arises in conventional pointmarker based calibration. Here, x is the projected 2D 

location of any 3D point marker X. Similar to (3), two constraints on the projection matrix P 
arise from (7). Although (7) is a matrix equation composed of three scalar equations, it is 

known (Hartley and Zisserman 2003, p. 179) that only two of these three are linearly 

independent.

1Here, we make use of the cross-product identity (Ma) × (Mb) = det (M)M−T (a × b), where M is any non-singular matrix. The factor 
of det (M) is an irrelevant scaling in this context, however, and has been dropped from equation (6). This is because l is a 
homogeneous quantity, i.e., a line is unchanged when its equation coefficients are scaled.
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2.2 Geometric Calibration Method

The proposed geometric calibration method begins with a scan of the wire phantom to 

obtain log-scaled projection views in a particular scan geometry. The projection data are 

then processed in a chain of 3 main stages shown in Figure 4(a) and discussed in the 

following sub-sections.

Wire Projection Sampling: In this stage, a search is made in each projection view for 

integer pixel coordinates approximately traversing the projected center-lines of the wires. 

Because projection rays passing through a wire’s center-line have longer attenuation path 

lengths than off-centered rays, these pixels can be identified (see Figure 4(c)) from local 

maxima in row-wise and column-wise sweeps through the log-scaled image. An intensity 

threshold derived from Otsu’s method is used to identify the pixel regions occupied by the 

wire projections and to restrict the search to those regions.

Once a pool of center-line pixels have been collected, an approach based on the Random 

Sample Consensus Algorithm (RANSAC) due to (Fischler and Bolles 1981) is then used to 

group the pixels, associating them with different wires. In this process, pixel pairs A and B 
are randomly drawn from the set S of ungrouped pixels. For each pair of pixels drawn, a 

search is made in S for further pixels (a so-called consensus set) that lie along a common 

wire projection containing A and B. Initial candidates for the consensus set are obtained (see 

Figure 4(d)) from pixels sufficiently colinear with A and B, as tested using a distance 

tolerance of  pixels from the infinite line passing through A and B. A subsequent 

search, restricted to the tolerance region, is made to reject samples not lying on a common 

wire with A and B. New pixel pairs are drawn until a sufficiently large consensus set is 

found, as determined from a preset threshold. When this occurs, it is concluded that a wire 

has been identified. The pixels for that wire are then removed from the search pool S and the 

process continues until all wires have been assigned samples. Throughout this work, pixel 

pitch was in the range 0.3–0.4 mm (2×2 binning of the flat-panel detector described below) 

and a consensus set threshold of 100 pixels was found to work well for these cases.

3D-2D Matching: Once all pixels lying along a common wire projection have been grouped 

together, each such group is matched to a particular wire in 3D. To this end, the pixel groups 

are first used to fit a line segment to each wire projection in each view. This results in the 

parameterization of each wire projection by a 4-dimensional vector QAB = [ uA, vA, uB, vB]T 

where A = (uA, vA) and B = (uB, vB) are the endpoints of a particular line segment. Note that 

if the phantom is designed so that the wires form mutually non-coplanar lines in 3D, then 

their line segment projections can intersect at no more than one point, and therefore their 

representations QAB will be very well separated in 4D. The separation between two line 

segments QAB and QCD is quantified as,
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Using this distance measure, wire projections in adjacent views are compared for proximity 

and tracked from view to view. This leads to a consistent labelling of each wire’s projection 

across views.

Once view-to-view labelling is established, the wire identification problem reduces to 

matching each wire projection in a single reference view (e.g., the first view acquired) to its 

3D model. By positioning the wire phantom so that, in every scan, it faces the detector in 

approximately the same pose in the reference view, the wire projections will form 

predictable patterns of slope, elevation, and intersection in that view. A basic pattern 

recognition routine customized to the phantom (but not to the source trajectory) can 

therefore be used to complete the 3D-2D matching. As an example, the image of wire A′ in 

Figure 3(b) is always identifiable - assuming very modest repeatability in phantom 

positioning - as the unique wire image in the lower half of the projection view which is 

downward sloping. Similarly, the intersection points of each wire with the image boundary 

in Figure 3(b) will always have the same clock-wise ordering. These two features are 

sufficient to uniquely identify all of the wires. An alternative way to accomplish 3D-2D 

matching, if an approximate nominal geometry estimate is available, is by direct 3D 

reconstruction of the wires.

Geometry Estimation: The final stage of the calibration pipeline is to estimate, for each 

view, the geometry parameters α, θ and C from the set of line coordinate samples {xij} 

collected previously. Here, xij is a 3×1 homogeneous vector denoting the j-th pixel 

coordinate sampled from the i-th wire projection in the given view. It is assumed that the 

wire phantom geometry is known (either from precise design / manufacture or from 

measurement) with negligible error. In this context, this means that equations for the 3D line 

Li(t) = Xi + tDi passing through each wire, i, are accurately known a priori in some 

coordinate system. Section 2.3.2 describes how the related wire pose data Xi, Di can be pre-

estimated.

As a first step in the process, the input data Xi, Di, xij, are pre-normalized. The 

normalization procedure is an adaptation of standard data conditioning methods from 

conventional point marker-based calibration. We defer the details to the Appendix. 

Parameter estimates are then obtained by minimizing the least squares cost function,

(8)

The nonlinear least squares residuals are zero, due to (6), when the samples xij lie precisely 

on the modelled lines . The minimization of f may be 

accomplished using the Levenberg-Marquardt algorithm, implemented in this work using 

MATLAB’s lsqnonlin command. Note that, unlike BB-based calibration, the above 

estimation procedure does not use 3D-2D point correspondences. The cost function (8) 

evaluates a geometry estimate based exclusively on algebraic error, i.e., on how well the 

wire image pixels xij satisfy 2D line equations arising from that estimate.
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Because it is unclear whether f has local minima, the initializing parameter estimates for the 

iterative minimization cannot be selected arbitrarily. We propose a two-step analytic 

algorithm for deriving reasonably accurate initial estimates from line fits l̂i to the samples 

xij. The steps are as follows:

1. Using (3), a system of linear homogeneous equations in the elements of P is 

obtained, with two equations  contributed by each wire. The total 

system of equations is solved algebraically to give an initial estimate P̂ of the 

projection matrix. Similar to equation (1), the estimate has a decomposition P̂ = 

KR ̂θ [I −C], except that, because the algebraic solution is unconstrained, K will 

be a general upper-triangular matrix, rather than one with the specific form (2). 

The decomposition of P̂ is made using the QR-algorithm, resulting in an estimate 

R̂θ of the detector orientation.

2. Using (4) and (5), and the estimate R̂θ obtained in the previous step, we construct 

the equations,

(9)

(10)

where we have made the change of variables q = KαR̂θC. Here again, each wire 

contributes 2 equations. These equations form a linear system in α and q which 

are solved to obtain estimates of α and C = (KαR̂θ)−1q.

Because this initialization technique involves almost purely algebraic operations, it has the 

advantages of both speed and flexibility. No specific assumptions about the wire 

configuration or scan geometry are used, other than that the various equations involved 

possess well-defined solutions. This will depend on the chosen 3D configuration of wires, as 

discussed in the next section.

With the geometry estimation procedure above, a solution is obtained with respect to the 

pre-normalized Xi, Di, xij data. As a final step, the corresponding estimated projection 

matrix P̂ can be mapped back to the original coordinate system as described in the 

Appendix.

2.3 Multi-Wire Calibration Phantom Design

2.3.1 Nominal Phantom Design—As mentioned earlier, an advantageous design choice 

for a multi-wire calibration phantom is to have the wire segments be mutually non-coplanar, 

as this avoids fiducial projection overlap in all gantry poses. However, the wire configuration 

must also be selected so that the geometry estimation is a well-posed inverse problem. While 

necessary and sufficient conditions are known (Buchanan 1988) for an array of point 

markers to uniquely determine the geometry, a comparable characterization for line-shaped 
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markers has not been previously reported, to the best of our knowledge. Sufficient conditions 

for invertibility can be deduced, however, from the known theory of vanishing points. This 

motivated a nominal 8-wire phantom design, as discussed below. The nominal design is 

depicted in Figure 3(a). Parametric line equation data for the 8 wires are listed in Table 1. A 

compromise made in this design is the inclusion of parallel, and therefore coplanar, wire 

pairs. Nevertheless, by spacing the parallel wires sufficiently far apart, fiducial overlap is 

avoided while still allowing the phantom to accommodate a broad range of circular and non-

circular scan trajectories.

The computer vision literature has established (Cipolla et al 1999, Caprile and Torre 1990, 

Liebowitz and Zisserman 1999) that if a triad of non-degenerate vanishing points vi = 

KαRθDi, i = 1, 2, 3 from orthogonal directions Di can be identified in a projection image, 

then these points can be used to calculate the view geometry. Based on this result, we have 

designed the phantom to contain an orthogonal, mutually non-coplanar set of wires labelled 

A, B, and C in Figure 3 with parallel counter-parts A′, B′, and C′. A gap of 3 cm separates 

the wire pairs longitudinally so that parallel wires cannot have overlapping projections 

except for large out-of-plane gantry angulations (about 40° for typical C-arm geometries). 

The presence of these parallel pairs ensures that 3 vanishing points can be determined from 

the intersection of their images. This being said, in the interest of incorporating both 

orthogonally and non-orthogonally oriented wires into the computation, the geometry 

estimation method of Section 2.2 does not use established vanishing point methods. 

However, the option of resorting to vanishing point methods guarantees invertibility, except 

at gantry poses for which the detector is parallel to one or more of these wires. In such cases, 

the corresponding vanishing points will be degenerate and the invertibility of the estimation 

problem is uncertain.

Because the availability of 3 non-degenerate vanishing points is merely a sufficient 

condition, it is not clear whether their absence is genuinely a problem. If it is a problem, it is 

possible that data from additional wires, non-orthogonally oriented with respect to the triad 

A-A′, B-B′, C-C′, might compensate for information lost when a degenerate view of the 

triad is reached. With this in mind, we have included an additional pair of parallel wires D-D
′ oriented at 45° to B-B′ and C-C′. This choice was based simply on intuition and 

experimentation; however, in tests of the phantom in Section 3, we observed negligibly 

small calibration errors, even at views where degeneracy occurred.

2.3.2 Prototype Phantom Implementation and Wire Pose Determination—The 

proposed calibration method assumes that for each fixed wire, i, line parameters Xi, Di 

describing the 3D pose of the wire be known a priori with negligible error. This is analogous 

to traditional BB-based calibration which supposes a known 3D model for the BB locations 

(although extensions may be possible, similar to (Xu et al 2017)). With sophisticated 

manufacturing resources, it may be possible to precisely fabricate the wire phantom so that 

desired Xi, Di are achieved with high accuracy. An alternative approach is to construct the 

phantom with approximately desired dimensions and then obtain more precise estimates of 

Xi, Di from standard circular CBCT scans of the phantom on a well calibrated system. In 

this work, for the sake of cost and prototyping flexibility, we followed the latter course. The 

prototype wire phantom, composed of foam blocks and 3D-printed wire mounts, is shown in 
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Figure 3(b). The wires were manually placed to mimic the nominal pose data in Table 1. 

Estimates of the actual wire pose parameters Xi, Di were derived from a scan with the CBCT 

system shown in Figure 5(d).

An intuitive way to determine the wire poses from a calibrated CT scan is to segment the 

wires from a 3D CT reconstruction and fit 3D lines to the wire voxels directly. We chose an 

alternative that works instead with line fits l̂i to samples xij extracted from the acquired 

projection images. This leads, as before, to equations (9) and (10), except that in this case, 

because the CT scan geometry is pre-calibrated, the unknowns in the equations are the wire 

pose parameters Xi and Di. For each fixed i, two independent linear equations are 

contributed by each projection view. Solving these linear equations leads to estimates of the 

wire poses.

Because the 3D parametrization of a line is non-unique, there is a 1D space of solutions Xi 

to (9). Since the geometry estimation cost function in equation (8) depends on Xi entirely 

through Xi × Di, any point Xi on the line may in theory be selected without affecting the 

calibration process. For numerical conditioning reasons, however, we recommend that the 

chosen Xi not vary greatly in magnitude from wire to wire. In our work, we chose an Xi 

from the solution space lying approximately at the inner-most wire tips (i.e., the tips closest 

to the center of the phantom). This was largely a matter of preference, however, and was not 

intended to accurately represent the wire tip locations.

Applying the above procedure to the phantom in Figure 3(b) led to the pose estimates listed 

in the lower half of Table 1. There are noticeable discrepancies between the nominal and 

implemented wire poses due to errors in manual placement. Also, because the implemented 

triad A-A′, B-B′, C-C′ is not ideally orthogonal, it is natural to ask whether the arguments 

for the design in Section 2.3.1 are still valid. However, the effectiveness of the phantom and 

the pose estimates in Table 1 are confirmed by experiment in Section 3.

2.4 Experimental Methods

Experiment #1A: Simulation Tests of Geometry Estimation Accuracy: In a first set of 

simulation tests, we examined the extent to which the 8-wire configuration provided 

accurate estimates of various gantry poses. Synthetic line projection samples xij of our 

prototype wire phantom implementation (with pose data Xi, Di from the lower part of Table 

1, not the nominal design) were generated for a hypothetical isocentric C-arm geometry with 

a 40 cm × 40 cm detector area and .308 mm pixel pitch. In the ground truth geometry, the 

SDD was 120 cm and the Source-Isocenter Distance (SID) was 78.5 cm. Data were 

generated (see Figure 5(a)), for a range of gantry angulations uniformly sampled in spherical 

coordinates. The sampling was at 2° increments with respect to both in-plane azimuthal 

gantry positions, 0° ≤ φ ≤ 360°, and out-of-plane gantry elevations, −40° ≤ ψ ≤ 40°. The 

range of gantry elevations considered here is consistent with anti-collision constraints in 

typical scan scenarios. Out-of-plane elevations greater than 40° would normally risk gantry 

collision with the patient or table.

The samples xij were generated from noise-free, analytic projections of the wires under the 

known ground truth geometry. To these, 50 realizations of Gaussian errors were then added 
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so as to displace them perpendicularly from the true i-th wire location. The number of 

samples along the length of each wire projection was selected as max (H, W), where H and 

W are the height and width of the wire projection in pixels. The variance of the Gaussian 

noise was chosen to produce root mean squared (RMS) perpendicular deviations from the 

true line of 0.093 mm (or 0.30 pixels). This choice was in agreement with RMS line fit 

residuals observed in actual wire phantom scans (at 70 kV, 100 mAs) taken on the mobile C-

arm (Figure 5(d)). Geometry estimates were then derived from each of the 50 realizations. 

The tests here focused exclusively on the geometry estimation step and not the full 

processing chain of Figure 4(a). It is for this reason that the samples xij were generated 

directly and not from simulated x-ray images.

The accuracies of the geometry estimates were first assessed in terms of magnification-

corrected reprojection error (RPE), a forward projection accuracy metric:

Here, d(P̂X, PX) is the Euclidean distance between the ideal forward projection PX of a 3D 

test point X and its estimated projection P̂X. This is normalized by SDD/depth(X), the usual 

cone beam magnification at X. This was evaluated, for all 50 realizations and gantry 

positions, for a set of 16 test points distributed over a 13 × 13 × 11 cm3 region of the FOV.

In further simulations of the same gantry geometry, synthetic xij were generated for the three 

scan orbits (circular short scan, sinusoid-on-sphere, and task-driven) shown in Figure 1(a) 

and (d). The circular and sinusoidal orbits consisted of a 200°/498 view arc in-plane. The 

sinusoid-on-sphere trajectory was then derived by adding a sinusoidally-varying series of 

out-of-plane gantry tilts to the circular trajectory with a 5° amplitude. This amplitude was 

sufficient to produce a 14 cm peak-to-peak longitudinal variation in the x-ray source 

position. The task-driven orbit consisted of 336 views.

Repeated calibrations of these orbits were then performed, again for 50 realizations of xij 

with 0.30 pixel simulated errors. The orbit calibrations were then assessed quantitatively in 

terms of two forms of backprojection error metric – the ray deviation, d, and triangulation 

error, Δ. The same set of 16 test points were forward projected using ground truth geometric 

knowledge of the orbits. The 50 geometry estimates were then used to triangulate the 

locations of the 16 points from their projected coordinates, as illustrated in Figure 5(b). The 

triangulated position of the m-th test point  was obtained as the linear least squares 

solution to,

where d(·, rkm) is the Euclidean distance to rkm, the back-projected ray from the m-th test 

point projection in the k-th view. The triangulation error was then computed as
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where Xm is the ground truth location of the m-th marker. The ray deviations were computed 

as . In other words, they measure the spread of the rays around the triangulated 

point, and hence the degree of distortion likely to propagate into CT image reconstruction 

from backprojection error.

Lastly, for the same 3 orbits above and the various noise realizations mentioned, we 

computed errors in the source position, the pose of the detector panel, and the magnification 

SDD/depth(X) at the 16 test points.

Experiment #1B: Simulated Integration into a CBCT Imaging Chain: In a second 

simulation study, the full calibration pipeline of Figure 4(a) was applied to the imaging of a 

digital head phantom. The phantom (Figure 5(c)) contained 2 stacks of high contrast disks of 

alternating intensity (830 HU and −170 HU). Synthetic projection views with pixel pitch 

0.616 mm were generated for the digital head in both the circular and sinusoidal orbits of 

Figure 1(a) using a trilinear interpolating forward projector. Projections of the 8-wire 

calibration phantom with pixel pitch 0.308 mm phantom were simulated in the sinusoidal 

orbit using analytic line integrals. No projection noise was added, since the phenomena of 

interest in this particular experiment were exclusively geometric.

The multi-wire calibration procedure was used to compute the sinusoidal geometry, and the 

head was then reconstructed from the sinusoidal orbit projections with the Penalized 

Weighted Least Squares (PWLS) model-based algorithm. Axial resolution was quantified by 

fitting Gaussian error functions

to the edge spread function (ESF) of the flat disk boundaries, with the σ parameter serving 

as a measure of ESF width. The same procedure was applied to the simulated circular orbit, 

except that the ground truth geometry was used in the PWLS reconstruction. Both 

reconstructions used a voxel size of 0.6 mm. Regularizing penalty weights were chosen to 

approximately match ESF width to σ=0.1 mm at the disk edge nearest the central axial plane 

(see Figure 7(c)) for the circular and sinusoidal reconstructions. PWLS cost function 

minimizations were implemented with 20 iterations of the OS-MOM2 algorithm (Kim et al 
2015) with 10 ordered subsets. To facilitate comparison, both iterative reconstructions were 

initialized with the same volume, reconstructed from the circular orbit using the Feldkamp-

Davis-Kress (FDK) algorithm (Feldkamp et al 1984). In realistic sinusoidal scans, an initial 

reconstruction would be obtained from an analytic reconstruction algorithm appropriate to 

the sinusoidal orbit shape, e.g., (Xia et al 2009).

Experiment #2: Comparison with BB-based Calibration in a Real Circular Scan 
Orbit: The proposed wire-based calibration method was compared to conventional BB-
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based calibration in real circular scans performed using the prototype C-arm shown in 

Figure 5(d). The system has an SDD of approximately 110 cm, an SID of 65 cm, and a 30 

cm × 30 cm detector area. Geometric calibrations of this system were performed with both 

the 8-wire phantom and the 2-ring BB phantom (Cho et al 2005). Like the simulated version 

in Figure 2(a), the BB-phantom was of diameter 10 cm with 8 BBs in each ring and a ring 

separation of 9 cm. For the BB-based calibrations, parameter estimates were obtained using 

a standard iterative least squares approach using the Levenberg-Marquardt algorithm 

(Hartley and Zisserman 2003).

Three data sets were acquired. The first was a scan of a triangulation target phantom, 

consisting of 4 spherical lead markers mounted on a flat foam surface. The triangulation 

markers were spread over a 12 cm lateral by 12 cm longitudinal area of the 16 cm × 16 cm × 

14 cm field of view (FOV). Centroid locations were calculated for each marker in each 

acquired view and used to triangulate the 4 markers. Triangulation ray deviations were thus 

computed for both calibration methods. The difference between the triangulated marker 

locations, as determined from the wire-based and BB-based calibrations, was also 

calculated.

Next, a phantom containing several slanted wires (0.1 mm diameter steel - not the 8-wire 

calibration phantom) was scanned for the purpose of calculating point spread function 

(PSF). FDK reconstructions using both calibrations were made of the phantom with 90% 

Hamming filter cut-off frequency and voxel size 0.3 mm. Gaussian PSF fits were then 

derived from samples taken from 45 sub-volumes, each approximately 1 cm3 and centered 

around different sections of slanted wire. Finally, a head phantom with natural temporal 

bone detail was imaged (93 kV, 120 mAs, 350°/560 views). FDK reconstructions using both 

calibrations were performed, again with 90% Hamming filter cut-off frequency and voxel 

size 0.3 mm.

Experiment #3: Application to a Three-Arc Orbit on a Mobile C-arm: The wire-based 

calibration method was tested on a real, non-circular trajectory implemented on the mobile 

C-arm CT prototype. The C-arm was equipped with an external motion controller capable of 

driving the arm in pre-programmed sequences of propeller and orbital rotations. The 

nominal orbit, illustrated in Figure 1(b) was a 3-arc sequence consisting of a 200° propeller 

rotation (equivalent to 180° + fan angle), followed by a 6° orbital/longitudinal rotation, and 

finally a 160° propeller rotation with the gantry remaining at a 6° orbital tilt. The increased 

axial coverage of this orbit gives similar benefits relative to a circular scan as seen for the 

sinusoidal orbit in Experiment #1B. A convenience of this choice of scan geometry is that an 

FDK initializer for iterative reconstruction can be readily derived from the 200° arc.

The head phantom shown in Figure 5(e) was scanned in this orbit at 90 kV, 170 mAs. A 

circular scan at 90 kV, 120 mAs was also acquired. Similar to Experiment #1B, the phantom 

contained two stacks of high contrast polyethylene and Teflon disks. The head phantom was 

centered longitudinally on the plane of the circular scan and on the plane of the initial 200° 

section of the 3-arc scan. Quadratically Penalized Poisson Likelihood (PPL) reconstructions 

were made from both scans with cost function minimizations implemented with 20 iterations 

of the OS-SQS algorithm (Erdoğan and Fessler 1999) with 10 ordered subsets. The circular 
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scan was reconstructed using a BB-based calibration to imitate a conventional CT imaging 

chain, while the 3-arc scan used wire-based calibration. Both iterative reconstructions were 

initialized with an FDK image derived from an initial 180° + fan arc. ESF fits to the disk 

edges were also made as in Experiment #1B and were used to verify approximate resolution 

matching in the two reconstructions at the disk edge nearest to the central axial plane of the 

head phantom.

3 RESULTS

Experiment #1A: Simulation Tests of Geometry Estimation Accuracy: Results of 

Experiment #1A are summarized in Figure 6. The worst-case RPE distributions had median 

values consistently less than 0.1 mm at all gantry elevations, and an overall maximum error 

(0.37 mm) that is considerably less than the voxel size (~0.5 mm) typical for C-arm cone-

beam CT. The wire-based calibrations showed similarly high back projection accuracy for 

the 3 orbit geometries considered. Triangulation error was consistently less than 0.012 mm 

for all noise realizations and markers. Similarly, the ray deviation exhibited a median value 

of ~0.01 mm for all orbits and was consistently below 0.2 mm for all realizations, markers, 

and projection views.

Finally, the errors in magnification and source-detector pose are reported for the three orbits 

in Table 2. For present purposes, the source coordinates C = [cu, cv, cw]T and the location of 

the detector center FP = [FPu, FPv, FPw]T are expressed with respect to rotated axes that 

align (see Figure 4(b)) with the ground truth detector axes [Rθ,u Rθ,v Rθ,w]T. In this 

coordinate system, one can more easily see how depth-related pose parameters (cw and FPw) 

are an order of magnitude more error-sensitive than other parameters. This higher sensitivity 

is familiar from previous work (Slagowski et al 2017, Cho et al 2005) on single-view CT 

calibration. Errors in detector orientation have been quantified in terms of two metrics: 

angular discrepancy between the ground truth and estimated detector axis Rθ,w, which 

indicates the orientation of the central ray; and the error in panel skew, i.e., the orientation 

angle within the detector plane of the pixel rows/columns. The latter is known to have more 

significant impact on image reconstruction (Noo et al 1998, Panetta et al 2008) than other 

detector orientation parameters. Error performance reported in Table 2 is similar to, and in 

some cases exceeds, previously reported results for BB-based methods. In particular, source 

location, detector location, and skew all show an order of magnitude less error for circular 

orbits than was reported in (Cho et al 2005).

On the whole, these results support the basic feasibility of the wire calibration method, 

showing it to be robust to realistic levels of noise in the projection data over a wide range of 

gantry poses. Note also that the calibration remained accurate even at views that should have 

had degenerate vanishing points in an ideal implementation of the wire phantom. In the 

circular orbit, for example, the detector plane undergoes a rotation greater than 180° and 

therefore becomes parallel to each wire segment at some point during the rotation.

Experiment #1B: Simulated Integration into a CBCT Imaging Chain: The image 

reconstructions for the digital head phantom are shown in Figure 7. In Figure 7(a), cone-
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beam artifacts associated with the incomplete geometry of the circular scan are evident as 

blur (in the z direction) for each disk, particularly at increased distance from the central axial 

plane. Conversely, in Figure 7(b), the sinusoid-on-sphere orbit yields an image 

reconstruction with sharp edge resolution and an absence of cone-beam artifacts, as expected 

for this scan geometry if accurately calibrated. These observations are also reflected 

quantitatively in Figure 7(c), where the ESF width (σ) is plotted versus distance from the 

central axial plane. The results illustrate successful application of the wire-based calibration 

method for a non-circular orbit known to have beneficial image quality characteristics.

Experiment #2: Comparison with BB-based Calibration in a Real Circular Scan 
Orbit: Figure 8 summarizes the results of Experiment #2, demonstrating ray deviation 

(Figure 8(a)) with a median value of 0.07 mm for the BB-based calibration and 0.05 mm for 

the wire-based calibration. The latter exhibits a distribution in ray deviation that was 

significantly lower (p≪0.001) than for BB calibration, particularly in the tails of the 

distribution for which the BB calibration exhibited outlier ray deviations up to 0.35 mm. The 

difference between the two methods – while statistically significant – is too small to have a 

major impact on the quality of CT image reconstruction. Such is evident in the visualization 

of fine details in images of the temporal bone in Figure 8(c–d), which are visually 

indistinguishable. Once again, we note that wire-based calibration showed uniformly low 

triangulation error, in spite of the possibility of degenerate vanishing points.

Wire-based calibration also demonstrated a slight improvement (p≪0.001) in the PSF width 

as evident in Figure 8 (b). Overall, the results demonstrate the applicability of the wire-based 

calibration method in real data, showing imaging performance equivalent to that with 

conventional BB-based calibration.

Experiment #3: Application to a Three-Arc Orbit on a Mobile C-arm: Figure 9 shows 

the results of Experiment #3 involving a head phantom imaged with a mobile C-arm using 

circular and non-circular orbits. The results largely mirror those of Experiment #1B. As 

expected, the non-circular (three-arc) orbit exhibits superior sampling characteristics 

compared to a circular orbit, evident in improved resolution of disk edges in the z-direction. 

Each case exhibits streak artifacts that were not observed in Experiment #1B, associated 

with non-geometric effects such as beam hardening. As shown in Figure 9(c), the non-

circular orbit better maintains ESF width (σ) as a function of distance (z) from the central 

axial plane. The results demonstrate the wire calibration method in real data and validate its 

utility in application to non-circular orbits of a form that are becoming increasingly 

prevalent with advanced C-arm systems to improve image quality and expand FOV.

4 CONCLUSIONS AND DISCUSSION

This work has presented a new geometric calibration method to support cone-beam CT 

systems having multiple, diverse orbit geometries. The method is generally applicable to a 

range of orbit shapes and overcomes a variety of limitations associated with phantoms (viz., 

arrangements of BB markers) that have been developed with traditional, circular orbits in 

mind. Successful application of the method to non-circular scans was demonstrated both in 

simulation (a sinusoid-on-sphere orbit) and with real projection data (a 3-arc orbit) using a 
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prototype mobile C-arm. In both cases, cone-beam CT images exhibited the expected 

improvements in edge recovery when calibrated with the wire-based method.

Quantitative tests of the wire-based method also showed high calibration accuracy, as 

measured by forward and backprojection error metrics, for a wide range of gantry positions. 

Triangulation error on the order of microns and ray deviations uniformly less than 0.2 mm 

were observed for three simulated test orbits with typical fiducial detection noise, as well as 

in real circular scans. Similarly, magnification-corrected reprojection errors smaller than 

typical voxel sizes, and with mean/median values less than 0.1 mm, were observed in a 

comprehensive sweep of simulated C-arm gantry angulations. Finally, the method 

demonstrated high accuracy in quantifying source-detector pose parameters, even exceeding 

performance reported in some prior work on BB-based calibration.

In comparisons with BB-based methods, visual quality assessments showed close agreement 

between wire-calibrated and BB-calibrated circular scans. Trabecular temporal bone detail 

in a head phantom was indistinguishable visually under both methods. Quantitatively, there 

was also comparable performance between the two methods, with wire-based calibration 

even showing slight improvements (p≪0.001) with respect to both ray deviation and PSF 

width.

The relative performance of BB-based and wire-based calibration is a subject that merits 

further study. The improved performance of the wire-based methods in this work is due in 

part to the larger projection footprint of wires versus BBs - i.e., there are more pixel 

measurements underlying the line fitting than the BB centroid calculation. Undoubtedly, 

however, differences in conditioning of the estimation cost functions minimized in each 

method also played a role. The conditioning is non-trivial to analyze, as it depends on 

phantom geometry in both the BB and wire methods. As a first order assessment, it may be 

instructive to compare the condition numbers of the linear equation (3), describing line 

fiducials, to the analogous system (7) for BB calibration for a range of phantom designs.

While the current work demonstrates feasibility of a particular phantom design, further 

optimization of the wire phantom arrangement and geometry is also a ripe topic for future 

work. We have shown that the current phantom design robustly accomodates gantry 

movements on a sphere up to about 40° from the equator, a range consistent with typical C-

arm workflow constraints. Motion involving large translations of the gantry, however, is not 

necessarily within the scope of the current design, since whole wire projections and/or the 3 

cm separation gap (Figure 3(a)) could fall outside the visible region of the detector for 

sufficiently large translations. Extending the technique to such scan geometries could 

involve using longer wires without a separation gap, in which case parallel wire pairs are 

inadvisable (i.e., subject to projection overlap). While the feasibility of a line fiducial 

phantom without parallel wires needs further mathematical examination, the current work 

has demonstrated that parallel wires (and the vanishing point theory that motivates them) 

may not be critical to ensuring a well-posed geometry estimation. In particular, the current 

wire phantom design was able to accurately estimate system geometry even in views for 

which the parallel wire directions had degenerate vanishing points. Future work will 

therefore focus on experimentation with alternative wire configurations and development of 
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further mathematical insight on design requirements for alternative C-arm systems and scan 

orbits.
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APPENDIX

In conventional point marker based calibration, for example those based on algebraic 

solution of (7), it is standard (Hartley and Zisserman 2003, p. 180) to pre-normalize the 3D 

marker coordinates X as well as the corresponding 2D projections x. Solutions can exhibit 

numerical conditioning problems without this step. Here, we describe an adaptation of such 

procedures to line marker based calibration that has proved effective in our experiments. 

Given input data Xi, Di, xij to the wire-based calibration, the 3D line parameter data is 

normalized according to,
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The first normalization mimics a common choice in point marker based calibration, shifting 

the centroid of the Xi to the 3D origin and their RMS distance from the origin to . As a 

combination of shifts and scalings, it can be represented in homogeneous coordinates as TXi 

where T is a 4×4 affine transformation matrix. To normalize the wire image sample 

coordinates xij, a 3×3 affine transformation is applied,

where d is the average distance of the imaged lines from the origin (as determined from 2D 

line fits) in a given projection view. Once the calibration has been performed, resulting in a 

normalized 3×4 projection matrix P̂, an un-normalized solution in the original coordinate 

system can be obtained as P = U−1P̂T.
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Figure 1. 
Source trajectories corresponding to various scan geometries. (a) Sinusoid-on-sphere and 

circular trajectories. (b) A 3-arc trajectory as considered in Section 3. (c) A dual-ellipse, 

cross-vertex trajectory (Noo et al 1998). (d) A task-driven trajectory optimized to the task of 

visualizing a cochlear implant (Ouadah et al 2017).

Jacobson et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Simulated projection views of a 2-ring BB phantom from (a) a conventional circular orbit 

and (b) a sinusoid-on-sphere orbit with oscillation amplitude 5°. For both orbits, the source 

trajectory radius was 78.5 cm and the Source-Detector Distance (SDD) was 120 cm. The 

phantom diameter was 10 cm and the axial ring separation was 9 cm.
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Figure 3. 
Wire calibration phantom. (a) CAD rendering of a nominal 8-wire phantom design. (b) 

Photo and projection view of the 8-wire phantom experimental prototype.
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Figure 4. 
(a) Flowchart of wire-based calibration method. (b) Parameterization of 9-DOF projection 

view geometry. (c) Sampling of wire segment projections. (d) RANSAC-based grouping of 

wire image samples.
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Figure 5. 
Experimental methods. (a) Sampling of gantry poses in spherical coordinates used in 

calibration accuracy simulation tests. (b) Illustration of triangulation ray deviation metric. 

(c) A digital head phantom with 2 stacks of high contrast disks. (d) Prototype mobile C-arm 

for cone-beam CT based on the Cios Alpha (Siemens Healthineers). (e) Real head phantom 

with 2 stacks of polyethylene and Teflon disks.
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Figure 6. Experiment #1A: Simulation Tests of Geometry Estimation Accuracy
Distributions of various forward and back projection errors. All are based on 50 independent 

noise realizations. (a) Box plot of magnification-corrected RPE at various out-of-plane 

gantry elevations, ψ, computed from samples over both noise realizations and test points. At 

each elevation, worst-case distributions are shown, meaning the distribution for the 

azimuthal position with the largest outliers. (b) Violin plots of triangulation error, Δ, 

computed from samples over all noise realizations, test points, and views. Median and 

interquartile range are also shown in each case. (b) The same for ray deviation, d.
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Figure 7. Experiment #1B: Simulated Integration into a CBCT Imaging Chain
Images of the digital head phantom reconstructed using the PWLS algorithm for (a) a known 

circular scan geometry and (b) a sinusoid-on-sphere geometry calibrated with the wire-based 

calibration method. (c) Plot of ESF width σ as a function of distance from the central axial 

plane.
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Figure 8. Experiment #2: Comparison with BB-based Calibration in a Real Circular Scan Orbit
(a) Distribution of ray deviation for BB and wire calibration methods as measured with a 4-

marker phantom. The ensembles range over gantry positions and markers. (b) Distributions 

of the FWHM in PSF for the two calibration methods. The images show FDK 

reconstructions of a head phantom for (c) BB-based calibration and (d) wire-based 

calibration.
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Figure 9. Experiment #3: Application to a Three-Arc Orbit on a Mobile C-arm
(a) Sagittal images of a head phantom (reconstructed using the PPL algorithm) containing 

stacks of disks, scanned using a circular trajectory with geometric calibration by the BB 

method. (b) The same, scanned using the three-arc orbit of Figure 1(b) with geometric 

calibration by the wire method. (c) Plot of ESF width σ as a function of distance from the 

central axial plane.
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	Wire Projection Sampling: In this stage, a search is made in each projection view for integer pixel coordinates approximately traversing the projected center-lines of the wires. Because projection rays passing through a wire’s center-line have longer attenuation path lengths than off-centered rays, these pixels can be identified (see Figure 4(c)) from local maxima in row-wise and column-wise sweeps through the log-scaled image. An intensity threshold derived from Otsu’s method is used to identify the pixel regions occupied by the wire projections and to restrict the search to those regions.Once a pool of center-line pixels have been collected, an approach based on the Random Sample Consensus Algorithm (RANSAC) due to (Fischler and Bolles 1981) is then used to group the pixels, associating them with different wires. In this process, pixel pairs A and B are randomly drawn from the set S of ungrouped pixels. For each pair of pixels drawn, a search is made in S for further pixels (a so-called consensus set) that lie along a common wire projection containing A and B. Initial candidates for the consensus set are obtained (see Figure 4(d)) from pixels sufficiently colinear with A and B, as tested using a distance tolerance of  pixels from the infinite line passing through A and B. A subsequent search, restricted to the tolerance region, is made to reject samples not lying on a common wire with A and B. New pixel pairs are drawn until a sufficiently large consensus set is found, as determined from a preset threshold. When this occurs, it is concluded that a wire has been identified. The pixels for that wire are then removed from the search pool S and the process continues until all wires have been assigned samples. Throughout this work, pixel pitch was in the range 0.3–0.4 mm (2×2 binning of the flat-panel detector described below) and a consensus set threshold of 100 pixels was found to work well for these cases.3D-2D Matching: Once all pixels lying along a common wire projection have been grouped together, each such group is matched to a particular wire in 3D. To this end, the pixel groups are first used to fit a line segment to each wire projection in each view. This results in the parameterization of each wire projection by a 4-dimensional vector QAB = [ uA, vA, uB, vB]T where A = (uA, vA) and B = (uB, vB) are the endpoints of a particular line segment. Note that if the phantom is designed so that the wires form mutually non-coplanar lines in 3D, then their line segment projections can intersect at no more than one point, and therefore their representations QAB will be very well separated in 4D. The separation between two line segments QAB and QCD is quantified as,Using this distance measure, wire projections in adjacent views are compared for proximity and tracked from view to view. This leads to a consistent labelling of each wire’s projection across views.Once view-to-view labelling is established, the wire identification problem reduces to matching each wire projection in a single reference view (e.g., the first view acquired) to its 3D model. By positioning the wire phantom so that, in every scan, it faces the detector in approximately the same pose in the reference view, the wire projections will form predictable patterns of slope, elevation, and intersection in that view. A basic pattern recognition routine customized to the phantom (but not to the source trajectory) can therefore be used to complete the 3D-2D matching. As an example, the image of wire A′ in Figure 3(b) is always identifiable - assuming very modest repeatability in phantom positioning - as the unique wire image in the lower half of the projection view which is downward sloping. Similarly, the intersection points of each wire with the image boundary in Figure 3(b) will always have the same clock-wise ordering. These two features are sufficient to uniquely identify all of the wires. An alternative way to accomplish 3D-2D matching, if an approximate nominal geometry estimate is available, is by direct 3D reconstruction of the wires.Geometry Estimation: The final stage of the calibration pipeline is to estimate, for each view, the geometry parameters α, θ and C from the set of line coordinate samples {xij} collected previously. Here, xij is a 3×1 homogeneous vector denoting the j-th pixel coordinate sampled from the i-th wire projection in the given view. It is assumed that the wire phantom geometry is known (either from precise design / manufacture or from measurement) with negligible error. In this context, this means that equations for the 3D line Li(t) = Xi + tDi passing through each wire, i, are accurately known a priori in some coordinate system. Section 2.3.2 describes how the related wire pose data Xi, Di can be pre-estimated.As a first step in the process, the input data Xi, Di, xij, are pre-normalized. The normalization procedure is an adaptation of standard data conditioning methods from conventional point marker-based calibration. We defer the details to the Appendix. Parameter estimates are then obtained by minimizing the least squares cost function,(8)The nonlinear least squares residuals are zero, due to (6), when the samples xij lie precisely on the modelled lines . The minimization of f may be accomplished using the Levenberg-Marquardt algorithm, implemented in this work using MATLAB’s lsqnonlin command. Note that, unlike BB-based calibration, the above estimation procedure does not use 3D-2D point correspondences. The cost function (8) evaluates a geometry estimate based exclusively on algebraic error, i.e., on how well the wire image pixels xij satisfy 2D line equations arising from that estimate.Because it is unclear whether f has local minima, the initializing parameter estimates for the iterative minimization cannot be selected arbitrarily. We propose a two-step analytic algorithm for deriving reasonably accurate initial estimates from line fits l̂i to the samples xij. The steps are as follows:1.Using (3), a system of linear homogeneous equations in the elements of P is obtained, with two equations 
 contributed by each wire. The total system of equations is solved algebraically to give an initial estimate P̂ of the projection matrix. Similar to equation (1), the estimate has a decomposition P̂ = KR̂θ [I −C], except that, because the algebraic solution is unconstrained, K will be a general upper-triangular matrix, rather than one with the specific form (2). The decomposition of P̂ is made using the QR-algorithm, resulting in an estimate R̂θ of the detector orientation.2.Using (4) and (5), and the estimate R̂θ obtained in the previous step, we construct the equations,
(9)
(10)where we have made the change of variables q = KαR̂θC. Here again, each wire contributes 2 equations. These equations form a linear system in α and q which are solved to obtain estimates of α and C = (KαR̂θ)−1q.Because this initialization technique involves almost purely algebraic operations, it has the advantages of both speed and flexibility. No specific assumptions about the wire configuration or scan geometry are used, other than that the various equations involved possess well-defined solutions. This will depend on the chosen 3D configuration of wires, as discussed in the next section.With the geometry estimation procedure above, a solution is obtained with respect to the pre-normalized Xi, Di, xij data. As a final step, the corresponding estimated projection matrix P̂ can be mapped back to the original coordinate system as described in the Appendix.
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	2.3 Multi-Wire Calibration Phantom Design
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	2.4 Experimental Methods
	Experiment #1A: Simulation Tests of Geometry Estimation Accuracy: In a first set of simulation tests, we examined the extent to which the 8-wire configuration provided accurate estimates of various gantry poses. Synthetic line projection samples xij of our prototype wire phantom implementation (with pose data Xi, Di from the lower part of Table 1, not the nominal design) were generated for a hypothetical isocentric C-arm geometry with a 40 cm × 40 cm detector area and .308 mm pixel pitch. In the ground truth geometry, the SDD was 120 cm and the Source-Isocenter Distance (SID) was 78.5 cm. Data were generated (see Figure 5(a)), for a range of gantry angulations uniformly sampled in spherical coordinates. The sampling was at 2° increments with respect to both in-plane azimuthal gantry positions, 0° ≤ φ ≤ 360°, and out-of-plane gantry elevations, −40° ≤ ψ ≤ 40°. The range of gantry elevations considered here is consistent with anti-collision constraints in typical scan scenarios. Out-of-plane elevations greater than 40° would normally risk gantry collision with the patient or table.The samples xij were generated from noise-free, analytic projections of the wires under the known ground truth geometry. To these, 50 realizations of Gaussian errors were then added so as to displace them perpendicularly from the true i-th wire location. The number of samples along the length of each wire projection was selected as max (H, W), where H and W are the height and width of the wire projection in pixels. The variance of the Gaussian noise was chosen to produce root mean squared (RMS) perpendicular deviations from the true line of 0.093 mm (or 0.30 pixels). This choice was in agreement with RMS line fit residuals observed in actual wire phantom scans (at 70 kV, 100 mAs) taken on the mobile C-arm (Figure 5(d)). Geometry estimates were then derived from each of the 50 realizations. The tests here focused exclusively on the geometry estimation step and not the full processing chain of Figure 4(a). It is for this reason that the samples xij were generated directly and not from simulated x-ray images.The accuracies of the geometry estimates were first assessed in terms of magnification-corrected reprojection error (RPE), a forward projection accuracy metric:Here, d(P̂X, PX) is the Euclidean distance between the ideal forward projection PX of a 3D test point X and its estimated projection P̂X. This is normalized by SDD/depth(X), the usual cone beam magnification at X. This was evaluated, for all 50 realizations and gantry positions, for a set of 16 test points distributed over a 13 × 13 × 11 cm3 region of the FOV.In further simulations of the same gantry geometry, synthetic xij were generated for the three scan orbits (circular short scan, sinusoid-on-sphere, and task-driven) shown in Figure 1(a) and (d). The circular and sinusoidal orbits consisted of a 200°/498 view arc in-plane. The sinusoid-on-sphere trajectory was then derived by adding a sinusoidally-varying series of out-of-plane gantry tilts to the circular trajectory with a 5° amplitude. This amplitude was sufficient to produce a 14 cm peak-to-peak longitudinal variation in the x-ray source position. The task-driven orbit consisted of 336 views.Repeated calibrations of these orbits were then performed, again for 50 realizations of xij with 0.30 pixel simulated errors. The orbit calibrations were then assessed quantitatively in terms of two forms of backprojection error metric – the ray deviation, d, and triangulation error, Δ. The same set of 16 test points were forward projected using ground truth geometric knowledge of the orbits. The 50 geometry estimates were then used to triangulate the locations of the 16 points from their projected coordinates, as illustrated in Figure 5(b). The triangulated position of the m-th test point  was obtained as the linear least squares solution to,where d(·, rkm) is the Euclidean distance to rkm, the back-projected ray from the m-th test point projection in the k-th view. The triangulation error was then computed as
 where Xm is the ground truth location of the m-th marker. The ray deviations were computed as 
. In other words, they measure the spread of the rays around the triangulated point, and hence the degree of distortion likely to propagate into CT image reconstruction from backprojection error.Lastly, for the same 3 orbits above and the various noise realizations mentioned, we computed errors in the source position, the pose of the detector panel, and the magnification SDD/depth(X) at the 16 test points.Experiment #1B: Simulated Integration into a CBCT Imaging Chain: In a second simulation study, the full calibration pipeline of Figure 4(a) was applied to the imaging of a digital head phantom. The phantom (Figure 5(c)) contained 2 stacks of high contrast disks of alternating intensity (830 HU and −170 HU). Synthetic projection views with pixel pitch 0.616 mm were generated for the digital head in both the circular and sinusoidal orbits of Figure 1(a) using a trilinear interpolating forward projector. Projections of the 8-wire calibration phantom with pixel pitch 0.308 mm phantom were simulated in the sinusoidal orbit using analytic line integrals. No projection noise was added, since the phenomena of interest in this particular experiment were exclusively geometric.The multi-wire calibration procedure was used to compute the sinusoidal geometry, and the head was then reconstructed from the sinusoidal orbit projections with the Penalized Weighted Least Squares (PWLS) model-based algorithm. Axial resolution was quantified by fitting Gaussian error functions
 to the edge spread function (ESF) of the flat disk boundaries, with the σ parameter serving as a measure of ESF width. The same procedure was applied to the simulated circular orbit, except that the ground truth geometry was used in the PWLS reconstruction. Both reconstructions used a voxel size of 0.6 mm. Regularizing penalty weights were chosen to approximately match ESF width to σ=0.1 mm at the disk edge nearest the central axial plane (see Figure 7(c)) for the circular and sinusoidal reconstructions. PWLS cost function minimizations were implemented with 20 iterations of the OS-MOM2 algorithm (Kim et al 2015) with 10 ordered subsets. To facilitate comparison, both iterative reconstructions were initialized with the same volume, reconstructed from the circular orbit using the Feldkamp-Davis-Kress (FDK) algorithm (Feldkamp et al 1984). In realistic sinusoidal scans, an initial reconstruction would be obtained from an analytic reconstruction algorithm appropriate to the sinusoidal orbit shape, e.g., (Xia et al 2009).Experiment #2: Comparison with BB-based Calibration in a Real Circular Scan Orbit: The proposed wire-based calibration method was compared to conventional BB-based calibration in real circular scans performed using the prototype C-arm shown in Figure 5(d). The system has an SDD of approximately 110 cm, an SID of 65 cm, and a 30 cm × 30 cm detector area. Geometric calibrations of this system were performed with both the 8-wire phantom and the 2-ring BB phantom (Cho et al 2005). Like the simulated version in Figure 2(a), the BB-phantom was of diameter 10 cm with 8 BBs in each ring and a ring separation of 9 cm. For the BB-based calibrations, parameter estimates were obtained using a standard iterative least squares approach using the Levenberg-Marquardt algorithm (Hartley and Zisserman 2003).Three data sets were acquired. The first was a scan of a triangulation target phantom, consisting of 4 spherical lead markers mounted on a flat foam surface. The triangulation markers were spread over a 12 cm lateral by 12 cm longitudinal area of the 16 cm × 16 cm × 14 cm field of view (FOV). Centroid locations were calculated for each marker in each acquired view and used to triangulate the 4 markers. Triangulation ray deviations were thus computed for both calibration methods. The difference between the triangulated marker locations, as determined from the wire-based and BB-based calibrations, was also calculated.Next, a phantom containing several slanted wires (0.1 mm diameter steel - not the 8-wire calibration phantom) was scanned for the purpose of calculating point spread function (PSF). FDK reconstructions using both calibrations were made of the phantom with 90% Hamming filter cut-off frequency and voxel size 0.3 mm. Gaussian PSF fits were then derived from samples taken from 45 sub-volumes, each approximately 1 cm3 and centered around different sections of slanted wire. Finally, a head phantom with natural temporal bone detail was imaged (93 kV, 120 mAs, 350°/560 views). FDK reconstructions using both calibrations were performed, again with 90% Hamming filter cut-off frequency and voxel size 0.3 mm.Experiment #3: Application to a Three-Arc Orbit on a Mobile C-arm: The wire-based calibration method was tested on a real, non-circular trajectory implemented on the mobile C-arm CT prototype. The C-arm was equipped with an external motion controller capable of driving the arm in pre-programmed sequences of propeller and orbital rotations. The nominal orbit, illustrated in Figure 1(b) was a 3-arc sequence consisting of a 200° propeller rotation (equivalent to 180° + fan angle), followed by a 6° orbital/longitudinal rotation, and finally a 160° propeller rotation with the gantry remaining at a 6° orbital tilt. The increased axial coverage of this orbit gives similar benefits relative to a circular scan as seen for the sinusoidal orbit in Experiment #1B. A convenience of this choice of scan geometry is that an FDK initializer for iterative reconstruction can be readily derived from the 200° arc.The head phantom shown in Figure 5(e) was scanned in this orbit at 90 kV, 170 mAs. A circular scan at 90 kV, 120 mAs was also acquired. Similar to Experiment #1B, the phantom contained two stacks of high contrast polyethylene and Teflon disks. The head phantom was centered longitudinally on the plane of the circular scan and on the plane of the initial 200° section of the 3-arc scan. Quadratically Penalized Poisson Likelihood (PPL) reconstructions were made from both scans with cost function minimizations implemented with 20 iterations of the OS-SQS algorithm (Erdoğan and Fessler 1999) with 10 ordered subsets. The circular scan was reconstructed using a BB-based calibration to imitate a conventional CT imaging chain, while the 3-arc scan used wire-based calibration. Both iterative reconstructions were initialized with an FDK image derived from an initial 180° + fan arc. ESF fits to the disk edges were also made as in Experiment #1B and were used to verify approximate resolution matching in the two reconstructions at the disk edge nearest to the central axial plane of the head phantom.
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