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We introduce a family of fast ordered upwind methods for ap-
proximating solutions to a wide class of static Hamilton–Jacobi
equations with Dirichlet boundary conditions. Standard tech-
niques often rely on iteration to converge to the solution of a
discretized version of the partial differential equation. Our fast
methods avoid iteration through a careful use of information
about the characteristic directions of the underlying partial differ-
ential equation. These techniques are of complexity O(M log M),
where M is the total number of points in the domain. We consider
anisotropic test problems in optimal control, seismology, and paths
on surfaces.

Introduction
Equations and Discretizations. Consider the first-order nonlinear
partial differential equation (PDE)†

H~¹u~x!, u~x), x! 5 1 x [ V , R2 [1]

with the boundary condition u(x) 5 q(x) given on ­V. Smooth-
ness in boundary data does not guarantee that a smooth solution
exists. For the class of Hamilton–Jacobi equations, weak solu-
tions can be formally introduced; a unique viscosity solution can
be defined by using conditions on smooth test functions (1, 2).

In this paper, we develop fast methods for approximating the
solution to equations of this form. Start with a mesh X covering
the domain V. Let Ui be the numerical solution value at the mesh
point xi [ X. Denote the set of mesh points adjacent to xi as N(xi)
and the set of values adjacent to Ui as NU(xi) 5 {Ujuxj [ N(xi)}.
Let H# be a consistent discretization of H, such that one can write

H# ~Ui, NU~xi!, xi! 5 1. [2]

If M is the total number of mesh points, then one needs to solve
M coupled nonlinear equations simultaneously. One approach is
to solve this nonlinear system iteratively. For example, iterative
techniques for some equations arising in control theoretic prob-
lems are given in refs. 3, 11, and 23; an iterative technique for the
Eikonal equation based on an upwind finite difference formu-
lation is given in ref. 4.

Our goal in this work is to introduce a set of ‘‘single-pass’’
algorithms. By this term, we mean that each Ui is recalculated at
most r times, where r depends only on Eq. 1 and the mesh
structure but not on the diameter of the mesh.

Characteristics and Ordering Updates. To construct single-pass
algorithms with efficient update orderings, we utilize the fact
that the value of u(x) for the first-order PDE depends only on
the value of u along the characteristic(s) passing through the
point x. If xi1

, xi2
[ N(xi) are such that the characteristic for the

mesh point xi lies in the simplex xixi1
xi2

, then it is useful to
consider an upwind discretization of the PDE:

H# ~Ui, Ui1
, Ui2

, xi! 5 1. [3]

This reduces the coupling in the system: Ui depends only on Ui1

and Ui2
and not on all of the NU(xi). A recursive construction

allows one to build the entire dependency graph for xi.

If two or more characteristics collide at a point x, the solution
loses smoothness. The entropy condition does not allow char-
acteristics to be created at these collision points; hence, if xi is far
enough from these collision points, its dependency graph is
actually a tree.

If the characteristic directions of the PDE were known in
advance, then the dependency ordering of the grid points would
be known as well, leading to a fully decoupled system. Formally,
this construction would lead to an O(M) method.

In general, characteristic directions are not known in advance.
Nonetheless, a family of algorithms can be devised in which
information about characteristic directions is computed as the
solution is constructed. We refer to this class of methods as
‘‘ordered upwind methods;’’ the computational complexity is
O(M log M), where M is the number of mesh points, and the log
M term results from the ordering process.

Previous Work
Dijkstra’s Method. Dijkstra’s method (5) is the classic single-pass
algorithm for computing the minimal cost of reaching any node
on a network. For simplicity, consider a rectangular grid of size
h, where the cost Cij . 0 is given for passing through each grid
point xij 5 (ih, jh). Given a starting point, the minimal total cost
Uij of arriving at the node xij can be written in terms of the
minimal total cost of arriving at its neighbors:

Uij 5 min~Ui 2 1, j , Ui 1 1, j , Ui, j 2 1 , Ui, j 1 1! 1 Cij. [4]

To find the minimal total cost, Dijkstra’s method works as
follows. All mesh points are divided into three classes: Far (no
information about the correct value of U is known), Accepted
(the correct value of U has been computed), and Considered
(adjacent to Accepted).

(i) Start with all mesh points in Far (Uij 5 `).
(ii) Move boundary mesh points (xij [ dV) to Accepted

(Uij 5 q(xij)).
(iii) Move all mesh points xij adjacent to the boundary into

Considered and evaluate the tentative value of Uij by
using the values at the adjacent Accepted mesh points
according to formula 4.

(iv) Find the mesh point xr with the smallest value of U
among all the Considered.

(v) Move xr to Accepted.
(vi) Move Far mesh points adjacent to xr into Considered.

(vii) Re-evaluate the value for all Considered xij adjacent to xr.
If the new computed value is less than the previous
tentative value for xij, then update Uij.

(viii) If Considered is not empty, then go to iv.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: PDE, partial differential equation.

See commentary on page 10992.

*To whom reprint requests should be addressed. E-mail: sethian@math.berkeley.edu.

†For the sake of notational clarity, we restrict our discussion to R2; all results can be restated
for Rn and for meshes on manifolds.
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The described algorithm has the computational complexity of
O(M log(M)); the factor of log(M) reflects the necessity of
maintaining a sorted list of the Considered values Uj to determine
the next Accepted mesh point. An efficient implementation of the
algorithm can be built by using heap–sort data structures.

Dijkstra’s method can be viewed as an algorithm for comput-
ing the solution to the ‘‘discrete’’ optimal trajectory problem on
a specified network. As pointed out in ref. 6, the Uij obtained
through Dijkstra’s method on the Cartesian grid is formally a
first-order approximation to the solution u(x, y) of the differ-
ential equation

H~¹u~x!, u~x!, x! 5 max~uuxu, uuyu! 5 C~x!, [5]

provided the link costs are Cij 5 hC(x). This equation, however,
is different from the Eikonal equation, which describes the
isotropic optimal trajectory (and front propagation) problems in
the continuous case.

The Eikonal Equation. Two different Dijkstra-like single-pass
methods have been developed in recent years for the Eikonal
equation:

i¹u~x!i 5 K~x!, x [ V
u~x! 5 q~x!, x [ ­V. [6]

Eq. 6 is a simple example of static Hamilton–Jacobi PDEs with
convex Hamiltonian. Eikonal equations are found in a variety of
application domains, including robotic navigation, computa-
tional geometry, photolithography, computer vision, and seis-
mology (see ref. 6). These equations can be interpreted in the
framework of:

Y Isotropic front propagation problems.
Y Isotropic min-time optimal trajectory problems.

The connections between these two perspectives are explored in
detail in ref. 7. In the control–theoretic context, the character-
istic lines of Eq. 6 can also be interpreted as the optimal
trajectories.

A key feature of Eikonal equations is that their characteristic
lines coincide with the gradient lines of the viscosity solution
u(x); this allows the construction of single-pass algorithms. This
property guarantees that if xi1

, xi2
[ N(xi) are such that the

characteristic for the mesh point xi lies in the acute simplex
xixi1

xi2
, and if that simplex is sufficiently small, then u(xi) $

max(u(xi1
), u(xi2

)) (see Fig. 1, for example).
This observation has been used to build two different fast

Dijkstra-like methods for the Eikonal equation: Tsitsiklis’ Al-
gorithm (8) and Sethian’s Fast Marching Method (9). By using
different upwinding discretizations H# (Ui, Ui1

, Ui2
, xi) 5 1 of the

Eikonal equation, Tsitsiklis (8) and Sethian (10) have shown that
the following causality property holds, namely:

If xi xi1
xi2

is an acute simplex containing the characteristic for
xi then the computed Ui $ max(Ui1

, Ui2
), regardless of the size

of that simplex. (*)
A control–theoretic single-pass algorithm for the Eikonal equa-

tion. Tsitsiklis’ algorithm evolved from studying isotropic min-
time optimal trajectory problems. Tsitsiklis has shown that
Property (*) holds for the first-order control–theoretic upwind-
ing discretization‡

Ui 5 min
u [ @0,1#

$t~u!K~x! 1 uUi1 1 ~1 2 u!Ui2%, [7]

where t(u) 5 iuxi1
1 (1 2 u)xi2

2 xii. If u0 is the minimizer, then
the direction (u0xi1

1 (1 2 u0)xi2
2 xi) is the approximation of

the characteristic direction for xi. The dynamic programming
motivation and further details can be found in ref. 8.

A finite-difference single-pass algorithm for the Eikonal equa-
tion. The Fast Marching Method evolved from studying isotropic
front propagation problems. Sethian has shown that the Property
(*) holds for the following finite-difference upwinding discreti-
zation.§ Let P1 5 (xi 2 xi1

)yixi 2 xi1
i and P2 5 (xi 2 xi2

)yixi 2
xi2

i. If P is the matrix with rows P1 and P2, then Eq. 6 can be
rewritten as

FUi 2 Ui1

ixi 2 xi1i

Ui 2 Ui2

ixi 2 xi2i
G~PPT!213

Ui 2 Ui1

ixi 2 xi1i

Ui 2 Ui2

ixi 2 xi2i
4 5 K2~xi!. [8]

This quadratic equation is solved for Ui, and the additional
upwinding requirement is verified (see ref. 13 for details).

The causality property guarantees that the discretized equa-
tions can be solved one by one (i.e., not simultaneously) if one
solves them in the order of increasing values of U; thus, each of
the two presented fast Eikonal solvers can be considered as a
decoupling of a particular coupled discretization.

If the ascending ordering of the mesh points based on U were
a priori known, these methods would have a computational
complexity of O(M). Since the ordering has to be determined in
the process of computation, both methods resolve this problem
in the manner similar to Dijkstra’s method, and the resulting
complexity is O(M log M).

Higher-order versions of the Fast Marching Method together
with numerical convergence tests are presented in ref. 6. Exten-
sions to triangulated manifolds are derived in refs. 12, 13. Some
early applications of the methodology include photolithography
in ref. 9, a comparison of a similar approach with volume-of-f luid
techniques in ref. 14, and a fast algorithm for image segmenta-
tion in ref. 15.

Static Hamilton–Jacobi Equations
We now introduce a family of single-pass methods for a much
more general class of PDEs, namely

H~¹u~x!, x! 5 1, x [ V,
u~x! 5 q~x!, x [ ­V, [9]

‡In ref. 8, the property is proven for the discretization on a uniform Cartesian grid only; the
corresponding lemma for triangulated acute meshes is proven in ref. 22. An iterative
approach to the corresponding system of discretized equations was earlier used in refs. 3,
11, and 23.

§In ref. 10, the property is proven for the first-order discretization on a uniform Cartesian
grid; the property for triangulated acute meshes in R2 and Rn is proven in refs. 12 and 13.
An iterative approach to the corresponding system of discretized equations on a uniform
Cartesian grid was earlier used in ref. 4.

Fig. 1. The characteristics and the gradient lines are the same for the Eikonal
equation. If the characteristic lies in the simplex xixi1xi2 , then the gradient
¹u(xi) points from that simplex.
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where q and H are assumed to be Lipschitz-continuous, and the
Hamiltonian H is also assumed to be convex and homogeneous
of degree one in the first argument: H(¹u, x) 5 i¹uiF((¹uy
i¹ui), x) for some function F. We will further assume that 0 ,
F1 # F(p, x) # F2 , ` for all p and x.

This equation can also be viewed in different frameworks:

Y Anisotropic front expansion (contraction) problems, in which
the speed of the front F in the normal direction depends not
only on the position but also on the current orientation of the
front, provided that the resulting Hamiltonian is convex. For
example, consider the front propagation problem

FS ¹u
i¹ui , xDi¹ui 5 1, [10]

where the speed F((¹uyi¹ui), x) 5 ((¹uyi¹ui)zv)2 1 1, with
a given vector v. This corresponds to anisotropic front motion,
in which the fastest speed occurs when the normal to the front
is pointing in the direction 6v.

Y Anisotropic min-time optimal trajectory problems, in which
the speed of motion depends not only on position but also on
direction. The value function u for such problems is the
viscosity solution of the static Hamilton–Jacobi–Bellman
equation

maxa[S1
{~¹u(x)z( 2 a)!f(a, x)} 5 1, x [ V,

u~x! 5 q~x!, x [ ­V. [11]

• In this formulation, a is the unit vector determining the
direction of motion, f(a, x) is the speed of motion in the
direction a starting from the point x [ V, and q(x) is the time
penalty for exiting the domain at the point x [ ­V. The
maximizer a corresponds to the characteristic direction for the
point x. If f does not depend on a, Eq. 11 reduces to the
Eikonal equation (see ref. 16). For background discussion of
control theory, see refs. 3, 7, 11, 16, or 17.

In refs. 17 and 22, we explore the connections between these two
application domains.¶

Characteristics vs. Gradients. Building a single-pass ordered up-
wind method for these anisotropic problems described by Eq. 9
is considerably more challenging than for the Eikonal case,
because the characteristics no longer coincide with the gradient
lines of the viscosity solution. As a result, the characteristics and
gradient lines may in fact lie in different simplexes (see Fig. 2).

In fact, even if the characteristic for x lies in the simplex xx1x2,
it is still possible that u(x) is smaller than u(x1) or u(x2). This is
precisely why both the Fast Marching Method and Tsitsiklis’
Algorithm cannot be directly applied in the anisotropic (non-
Eikonal) case: it is no longer possible to decouple the system by
computingyaccepting the mesh points in ascending order. Thus,
we must devise a causality relationship more carefully.

Ordered Upwind Methods. In order to build single-pass methods
for this more general equation, we capitalize on the more
fundamental properties of the Hamilton–Jacobi–Bellman PDEs,

namely, that the viscosity solution u of Eq. 9 is monotone
increasing along the characteristic.

Even though the gradient lines and characteristics are not the
same, our assumptions about F being bounded and bounded
away from zero allow computation of a local bound on the
difference between the characteristic and the gradient direction.
In refs. 17 and 22, we prove the following three lemmas about the
viscosity solution u:

Y LEMMA 1. Let a be the characteristic direction for x [ V. If
¹u(x) is well defined and g is the angle between the vectors
a and (2¹u(x)), then

cos~g! $
F1

F2
. [12]

Y LEMMA 2. Consider the characteristic passing through a point
x# [ V and a level curve u(x) 5 C, where qmax , C , u(x#). The
characteristic intersects that level set at some point x̃. If x# is
distance d away from the level set, then

ix̃ 2 x#i # d
F2

F1
. [13]

Y LEMMA 3. Consider an unstructured mesh X of diameter h on V.
Consider a simple closed curve G lying inside V with the property
that, for any point x on G, there exists a mesh point y inside G such
that ix 2 yi , h . Suppose the mesh point x# i has the smallest
value u(x# i) of all of the mesh points inside the curve. If the
characteristic passing through x# i intersects that curve at some
point x̃i , then

ix̃i 2 x# ii # h
F2

F1
. [14]

Building on these results, we construct the following fast
ordered upwind method. As before, mesh points are divided into
three classes (Far, Considered, Accepted). The AcceptedFront is
defined as a set of Accepted mesh points, which are adjacent to
some not-yet-accepted mesh points. Define the set AF of the line
segments xjxk, where xj and xk are adjacent mesh points on the
AcceptedFront, such that there exists a Considered mesh point xi
adjacent to both xj and xk. For each Considered mesh point xi, we
define the part of AF ‘‘relevant to xi’’:

NF~xi! 5 H~xj, xk! [ AFU?x̃ on ~xj, xk! s.t. Ix̃ 2 xiI # h
F2

F1
J.

We will further assume that some consistent upwinding up-
date formula is available: if the characteristic for xi lies in the
simplex xixjxk, then Ui 5 G(Uj, Uk, xi, xj, xk). For the sake of
notational simplicity, we will refer to this value as Gj,k.

(i) Start with all mesh points in Far (Ui 5 `).

¶We show that all of the PDEs of the form (Eq. 9) can be produced as Hamilton–Jacobi–
Bellman PDEs (Eq. 11) for min-time optimal trajectory problems. We show that the speed
functions F and f are related by the homogeneous Legendre transform and that the
function f generated from F will satisfy the same inequality 0 , F1 # f(a, x) # F2 , ` for
all a and x. The geometric relationship between these two classes of problems is the basis
for the alternative (anisotropic) Huyghens’ construction using Wulff’s shapes. This con-
struction allows one to treat anisotropic front expansionycontraction problems by using
the methods for the Hamilton–Jacobi–Bellman PDEs, provided the Hamiltonian H is
convex. We note that aspects of these issues have been previously discussed in several
specific contexts, including geometric optics (18), geophysics (19) and crystal growth (20).

Fig. 2. The characteristics and gradient directions for the expanding ellipse.
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(ii) Move the boundary mesh points (xi [ dV) to Accepted
(Ui 5 q(xi)).

(iii) Move all mesh points xi adjacent to the boundary into
Considered and evaluate the tentative value of Ui 5
min(xj, xk)NF(xi) Gj,k.

(iv) Find the mesh point xr with the smallest value of U
among all the Considered.

(v) Move xr to Accepted and update the AcceptedFront.
(vi) Move Far mesh points adjacent to xr into Considered.

(vii) Recompute the value for all the Considered xi within the
distance h(F2yF1) from xr. If the new computed value is
less than the previous tentative value for xi, then up-
date Ui.

(viii) If Considered is not empty, then go to iv.

Y Efficiency: This results in a ‘‘single-pass’’ method, because
the maximum number of times each mesh point can
be re-evaluated is bounded by the number of mesh points
in the h(F2yF1) neighborhood of that point. Thus, this
method formally has the computational complexity of
O((F2yF1)2M log(M)). Moreover, because the Accepted-
Front is approximating the level set of the viscosity solution
u, as the mesh is refined, the complexity will behave as
O((F2yF1)M log(M)).

Y Convergence: Convergence of the method depends on the
upwinding update formula Ui 5 G(Uj, Uk, xi, xj, xk). In refs.
17 and 22, we prove the convergence to the viscosity solution
of PDE 11 by using the particular update formula

Ui 5 min
u [ @0,1#

H t~u!

f~x, a!
1 ~uUj 1 ~1 2 u!Uk!J, [15]

where t(u) 5 iuxj 1 (1 2 u)xk 2 xii and a 5 (uxj 1 (1 2
u)xk 2 xi)yt(u). This upwinding formula is the anisotropic
generalization of update formula 7 for the Eikonal equation;
it is also used as a building block for the general numerical
scheme described in refs. 11 and 3. That scheme computes Ui
on the basis of NU(xi), i.e., all xj, xk immediately adjacent to
xi are considered. Unfortunately, that scheme also leads to the
coupled system of M nonlinear equations, which cannot be
directly decoupled due to the difference between the gradient
and characteristic directions. Thus, our method can be con-
sidered as an indirect decoupling of the scheme described in
refs. 11 and 3.

Y In refs. 17 and 22, we also use the above method with other
upwinding update formulas, obtained as the anisotropic gen-
eralizations of discretization 8. The advantage of this approach
is that it can be easily generalized for the higher-order
upwinding finite difference approximations.

Numerical Results
In this section, we consider three different test problems, each
of which can be described by a non-Eikonal (anisotropic)
Hamilton–Jacobi PDE. In each case, the speed function is
assumed to be known from the characterization of a particular
application domain. For example, in the optimal trajectory test
problem, f(x, a) reflects assumptions about the speed of the
controlled vehicle, whereas in the seismic imaging test problem,
the front expansion speed F is derived using assumptions about
the elliptical nature of the ‘‘impulse-response surface’’ for the
anisotropic medium.

Geodesic Distances on Manifolds. The first test problem is to find
the geodesic distance on the manifold z 5 g(x, y). As described
in refs. 6 and 12, this can be accomplished by approximating the
manifold with a triangulated mesh and then solving the distance
equation i¹ui 5 1 on that mesh. Since the latter equation is

Eikonal, the Fast Marching Method can be used to solve it
efficiently. However, if one desires to formulate the problem in
the x-y plane instead of the intrinsic manifold coordinates, then
the corresponding equation for u is not Eikonal. Indeed, the
geodesic distance function u has to satisfy Eq. 9 with the speed
function F defined as:

F~v, x, y! 5 Î1 1 gy
2cos2~v! 1 gx

2sin2~v! 2 gxgysin~2v!

1 1 gx
2 1 gy

2 ,

[16]

where v is the angle between ¹u(x, y) and the positive direction
of the x axis. The degree of anisotropy in this equation is
substantial, because the dependence of F on v can be pro-
nounced when ¹g is relatively large.\

As noted in Static Hamilton–Jacobi Equations, u can also be
considered as a value function for the corresponding min-time
optimal trajectory problem and must, therefore, satisfy Eq. 11.
Using the homogeneous Legendre transform on F, we obtain the
speed function f(a, x, y) for the optimal trajectory problem:

f~a, x, y! 5 ~1 1 ~¹g~x, y!za!2! 2
1
2, [17]

where a is a vector of unit length, and f is the control-theoretic
speed of motion in the direction a (see ref. 17 and an unpublished
work for details).

As an example, we consider the manifold

g~x, y! 5 0.75 sin~3px! sin~3py!

and compute the geodesic distance on it from the origin (see Fig.
3). The ‘‘anisotropy coefficient’’ for this problem is

max
x,y

F2~x, y!
F1~x, y!

5
Î32 1 81p2

4Î2
< 5.1.

\The algorithm presented in ref. 12 on the manifold-approximating mesh is more efficient
for this problem; here, it serves as a convenient test problem for the general anisotropic
case: the numerical solution obtained by the Fast Marching Method on the manifold can
then be compared to the solution obtained by the ‘‘general’’ method in the x-y plane. We
note, of course, that only specific anisotropic problems can be converted into Eikonal
equations on manifolds; see ref. 13 for details.

Fig. 3. The geodesic distance from the origin on the manifold
z 5 0.75 sin(3px) sin(3py) computed on the square [20.5, 0.5] 3 [20.5, 0.5]
in the x-y plane.
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We have performed the calculations using the first-order dis-
cretization 15 on a regular mesh with 292 3 292 mesh points.

Min-Time Optimal Trajectory. Our second example is a particular
min-time optimal trajectory problem. Suppose that a vehicle’s
dynamics z(t) in the square [20.5, 0.5] 3 [20.5, 0.5] is described
by

dz
dt

~t! 5 ã~t! 1 b~z~t!!,

z~0! 5 Fx
yG,

[18]

where the advection velocity b : R23 R2 is known and ã : R1,03
S1 is the control. We further assume that ib(x, y)i , 1 for all
(x, y) [ [20.5, 0.5] 3 [20.5, 0.5]. The optimal control ã(z) will
minimize the time it takes for the vehicle to reach the origin from
the point x. The value function u(x) corresponding to that
minimal time is the viscosity solution of the Hamilton–Jacobi–
Bellman Eq. 11 with the boundary condition u(0, 0) 5 0. The
speed profile for the point x is a unit circle displaced by vector
b(x, y) (see Fig. 4, for example). The corresponding speed
function is

f~a, x, y! 5 azb 1 Î~azb!2 2 bzb 1 1, [19]

where the direction of motion is a 5 ~ã 1 b!yiã 1 bi.
If b(x, y) 5 ~b1(x, y), b2(x, y)!, then we can rewrite the Ham-

ilton–Jacobi PDE satisfied by u(x, y) as follows:

~1 2 b1
2!ux

2 1 ~1 2 b2
2!uy

2 2 2b1b2uxuy 2 2b1ux 2 2b2uy 5 1,

u~0, 0! 5 0, [20]

As an example, we consider a particular advection velocity

b(x, y) 5 ~20.9 sin(4px) sin(4py)y√x2 1 y2![xy] (see Fig. 5). The
‘‘anisotropy coefficient’’ for this problem is

F2~x, y!

F1~x, y!
5 max

x,y

1 1 ib~x, y!i
1 2 ib~x, y!i 5 19.

We have performed the calculations using the first-order
discretization 15 on a regular mesh with 96 3 96 mesh points.

First Arrivals in Inhomogeneous Anisotropic Medium. Finally, we
include an example of first arrival travel times with applications

to seismic imaging. We start with a computational domain that
suggests material layering under a sinusoidal profile. The com-
putational domain is the square [2a, a] 3 [2a, a], with layer
shapes

C~x! 5 A sinSmpx
a

1 bD, [21]

where A is the amplitude of the sinusoidal profile, m is the
number of periods, and b is the phase offset. The domain is split
into n layers by the curves yi(x) 5 C(x) 1 bi, where i 5 1, . . . ,
(n 2 1).

In each layer, the anisotropic speed at a point (x, y) is given
by an ellipse with bigger axis (of length 2F2) tangential to the
curve C(x) and the smaller axis (of length 2F1) normal to the
curve. F1 and F2 are constants in each layer. Thus, the ellipse’s
orientation and shape depend on the local position.

This leads to an anisotropic Hamilton–Jacobi equation of the
form:

i¹u~x, y!iF 5 1, u~0, 0! 5 0, [22]

where the speed profile at any point (x, y) satisfies

F~x, y, ux, uy! 5 F2S ~1 1 q2!ux
2 1 ~1 1 p2!uy

2 2 2pquxuy

~1 1 p2 1 q2!~ux
2 1 uy

2!
D 1/2

,

[23]

with

Fp
qG 5

ÎSF2

F1
D 2

2 1

Î1 1 SdC
dx

~x!D 2FdC
dx

~x!

21
G.

Here, F1 and F2 are the ellipse semiaxes for the layer corre-
sponding to the point (x, y).

The results are shown in Fig. 6. We take a 5 0.5, A 5 0.1225,
m 5 2, b 5 0, and layer offsets bi 5 (20.25, 0, 0.25). All
calculations are on a 193 3 193 mesh. The (F2, F1) pair for each
layer is given in Figs. 6 A–D.

Fig. 4. The vehicle’s speed profiles for eight different points on the circle. Fig. 5. The value function for the min-time optimal trajectory problem. The
vehicle’s speed profile at every point (x, y) is the unit circle displaced by the
vector b(x, y) 5 ( 2 0.9sin(4px)sin(4py)yÏx2 1 y2)(x, y).
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Fig. 6. First arrivals in anisotropic media.
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