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Abstract

flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-

event distribution may be fitted if the user supplies a probability density or hazard function, and 

ideally also their cumulative versions. Standard survival distributions are built in, including the 

three and four-parameter generalized gamma and F distributions. Any parameter of any 

distribution can be modeled as a linear or log-linear function of covariates. The package also 

includes the spline model of Royston and Parmar (2002), in which both baseline survival and 

covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting 

function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package 

(Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are 

fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any 

function of the model parameters can be printed or plotted. flexsurv also provides functions for 

fitting and predicting from fully-parametric multi-state models, and connects with the mstate 
package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design 

principles of the package, giving several worked examples of its use.
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1 Motivation and design

The Cox model for survival data is ubiquitous in medical research, since the effects of 

predictors can be estimated without needing to supply a baseline survival distribution that 

might be inaccurate. However, fully-parametric models have many advantages, and even the 

originator of the Cox model has expressed a preference for parametric modeling (see Reid 

1994). Fully-specified models can be more convenient for representing complex data 

structures and processes (Aalen, Borgan, and Gjessing 2008), e.g., hazards that vary 

predictably, interval censoring, frailties, multiple responses, datasets or time scales, and can 

help with out-of-sample prediction. For example, the mean survival  used 

in health economic evaluations (Latimer 2013), needs the survivor function S(t) to be fully-

specified for all times t, and parametric models that combine data from multiple time periods 

can facilitate this (Benaglia, Jackson, and Sharples 2015).
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Package flexsurv (Jackson 2016) for R (R Core Team 2016) allows parametric distributions 

of arbitrary complexity to be fitted to survival data, gaining the convenience of parametric 

modeling, while avoiding the risk of model misspecification. Built-in choices include spline-

based models with any number of knots (Royston and Parmar 2002) and 3–4 parameter 

generalized gamma and F distribution families. Any user-defined model may be employed 

by supplying at minimum an R function to compute the probability density or hazard, and 

ideally also its cumulative form. Any parameters may be modeled in terms of covariates, and 

any function of the parameters may be printed or plotted in model summaries.

flexsurv is intended as a general platform for survival modeling in R. The survreg function 

in the R package survival (Therneau 2016) only supports two-parameter (location/scale) 

distributions, though users can supply their own distributions if they can be parameterized in 

this form. Some other contributed R packages can fit survival models, e.g., eha (Broström 

2015) and VGAM (Yee and Wild 1996), though these are either limited to specific 

distribution families, or not specifically designed for survival analysis. Others, e.g., 

ActuDistns (Nadarajah and Bakar 2013), contain only the definitions of distribution 

functions. flexsurv enables such functions to be used in survival models.

It is similar in spirit to the Stata packages stpm2 (Lambert and Royston 2009) for spline-

based survival modeling, and stgenreg (Crowther and Lambert 2013) for fitting survival 

models with user-defined hazard functions using numerical integration. Though in flexsurv, 

slow numerical integration can be avoided if the analytic cumulative distribution or hazard 

can be supplied, and optimization can also be speeded by supplying analytic derivatives. 

flexsurv also has features for multi-state modeling and interval censoring, and general 

output reporting. It employs functional programming to work with user-defined or existing R 

functions.

Section 2 explains the general model that flexsurv is based on. Section 3 gives examples of 

its use for fitting built-in survival distributions with a fixed number of parameters, and 

Section 4 explains how users can define new distributions. Section 5 concentrates on classes 

of models where the number of parameters can be chosen arbitrarily, such as splines. In 

Section 6 flexsurv is used for fitting and predicting from fully-parametric multi-state 

models. Finally Section 7 suggests some potential future extensions.

2 General parametric survival model

The general model that flexsurv fits has probability density for death at time t:

(1)

The cumulative distribution function F(t), survivor function S(t) = 1 − F(t), cumulative 

hazard H(t) = − log S(t) and hazard h(t) = f(t)/S(t) are also defined (suppressing the 

conditioning for clarity). μ = α0 is the parameter of primary interest, which usually governs 

the mean or location of the distribution. Other parameters α = (α1, . . . , αR) are called 

“ancillary” and determine the shape, variance or higher moments.
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Covariates

All parameters may depend on a vector of covariates z through link-transformed linear 

models  g() will typically be log() if the 

parameter is defined to be positive, or the identity function if the parameter is unrestricted.

Suppose that the location parameter, but not the ancillary parameters, depends on covariates. 

If the hazard function factorizes as h(t|α, μ(z)) = μ(z)h0(t|α), then this is a proportional 
hazards (PH) model, so that the hazard ratio between two groups (defined by two different 

values of z) is constant over time t.

Alternatively, if S(t|μ(z), α) = S0(μ(z)t|α) then it is an accelerated failure time (AFT) model, 

so that the effect of covariates is to speed or slow the passage of time. For example, doubling 

the value of a covariate with coefficient β = log(2) would give half the expected survival 

time.

Data and likelihood

Let ti : i = 1, . . . , n be a sample of times from individuals i. Let ci = 1 if ti is an observed 

death time, or ci = 0 if this is censored. Most commonly, ti may be right-censored, thus the 

true death time is known only to be greater than ti. More generally, the survival time may be 

interval-censored on 

Also let si be corresponding left-truncation (or delayed-entry) times, meaning that the ith 

survival time is only observed conditionally on the individual having survived up to si, thus 

si = 0 if there is no left-truncation. Time-dependent covariates (Section 3.1) and some multi-

state models (Section 6) can be represented through left-truncation.

With at most right-censoring, the likelihood for the parameters θ = {γ, β} in Equation 1, 

given the corresponding data vectors, is

(2)

where fi(ti) is shorthand for f(ti|μ(zi), α(zi)), Si(ti) is S(ti|μ(zi), α(zi)), and μ, α are related to 

γ, β, and zi via the link functions defined above. The log-likelihood also has a concise form 

in terms of hazards and cumulative hazards, as

With interval-censoring, the likelihood is
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(3)

These likelihoods assume that the times of censoring are fixed or otherwise distributed 

independently of the parameters θ that govern the survival times (see, e.g., Aalen et al. 
2008). The individual survival times are also independent, so that flexsurv does not 

currently support shared frailty, clustered or random effects models (see Section 7).

The parameters are estimated by maximizing the full log-likelihood with respect to θ, as 

detailed further in Section 3.6.

3 Fitting standard parametric survival models

An example dataset used throughout this paper is from 686 patients with primary node 

positive breast cancer, available in the package as bc. This was originally provided with 

package stpm (Royston 2001), and analyzed in much more detail by Sauerbrei and Royston 

(1999) and Royston and Parmar (2002).1 The first two records are shown by:

R> library("flexsurv")

R> head(bc, 2)

  censrec rectime group   recyrs

1       0    1342  Good 3.676712

2       0    1578  Good 4.323288

The main model-fitting function is called flexsurvreg. Its first argument is an R 

‘formula’ object. The left hand side of the formula gives the response as a survival object, 

using the Surv function from the survival package.

R> fs1 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+    dist = "weibull")

Here, this indicates that the response variable is recyrs. This represents the time (in years) 

of death or cancer recurrence when censrec is 1, or (right-)censoring when censrec is 0. 

The covariate group is a factor representing a prognostic score, with three levels "Good" 

(the baseline), "Medium" and "Poor". All of these variables are in the data frame bc. If the 

argument dist is a string, this denotes a built-in survival distribution. In this case we fit a 

Weibull survival model.

Printing the fitted model object gives estimates and confidence intervals for the model 

parameters and other useful information. Note that these are the same parameters as 

1A version of this dataset, including more covariates but excluding the prognostic group, is also provided as GBSG2 in the package 
TH.data (Hothorn 2015).

Jackson Page 4

J Stat Softw. Author manuscript; available in PMC 2018 March 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



represented by the R distribution function dweibull: The shape α and the scale μ of the 

survivor function S(t) = exp(−(t/μ)α), and group has a linear effect on log(μ).

R> fs1

Call:

flexsurvreg(formula = Surv(recyrs, censrec) ~ group, data = bc,

    dist = "weibull")

Estimates:

             data mean  est      L95%     U95%     se

shape             NA     1.3797   1.2548   1.5170   0.0668

scale             NA    11.4229   9.1818  14.2110   1.2728

groupMedium   0.3338    −0.6136  −0.8623  −0.3649   0.1269

groupPoor     0.3324    −1.2122  −1.4583  −0.9661   0.1256

             exp(est)  L95%     U95%

shape             NA        NA       NA

scale             NA        NA       NA

groupMedium   0.5414    0.4222   0.6943

groupPoor     0.2975    0.2326   0.3806

N = 686,  Events: 299,  Censored: 387

Total time at risk: 2113.425

Log-likelihood = −811.9419, df = 4

AIC = 1631.884

For the Weibull (and exponential, log-normal and log-logistic) distribution, flexsurvreg 

simply acts as a wrapper for survreg: The maximum likelihood estimates are obtained by 

survreg, checked by flexsurvreg for optimization convergence, and converted to 

flexsurvreg’s preferred parameterization. Therefore the same model can be fitted more 

directly as

R> survreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Call:

survreg(formula = Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Coefficients:

(Intercept) groupMedium   groupPoor

  2.4356168  −0.6135892  −1.2122137

Scale= 0.7248206

Loglik(model)= −811.9   Loglik(intercept only)= −873.2
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        Chisq= 122.53 on 2 degrees of freedom, p= 0

n= 686

The maximized log-likelihoods are the same, however the parameterization is different: The 

first coefficient (Intercept) reported by survreg is log(μ), and survreg’s "scale" is 

dweibull’s (thus flexsurvreg)’s 1 / shape. The covariate effects β, however, have the 

same “accelerated failure time” interpretation, as linear effects on log(μ). The multiplicative 

effects exp(β) are printed in the output as exp(est).

The same model can be fitted with package eha, also by maximum likelihood:

R> library("eha")

R> aftreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

The results are presented in the same parameterization as flexsurvreg, except that the 

shape and scale parameters are log-transformed, and (unless the argument param = 

"lifeExp" is supplied) the covariate effects have the opposite sign.

3.1 Additional modeling features

If we also had left-truncation times in a variable called start, the response would be 

Surv(start, recyrs, censrec). Or if all responses were interval-censored between 

lower and upper bounds tmin and tmax, then we would write Surv(tmin, tmax, type 

= "interval2").

Time-dependent covariates can be represented in “counting process” form – as a series of 

left-truncated survival times, which may also be right-censored. For each individual there 

would be multiple records, each corresponding to an interval where the covariate is assumed 

to be constant. The response would be of the form Surv(start, stop, censrec), 

where start and stop are the limits of each interval, and censrec indicates whether a 

death was observed at stop.

Relative survival models (Nelson, Lambert, Squire, and Jones 2007) can be implemented by 

supplying the variable in the data that represents the expected mortality rate in the bhazard 

argument to flexsurvreg. Case weights and data subsets can also be specified, as in 

standard R modeling functions, using weights or subset arguments.

3.2 Built-in models

flexsurvreg’s currently built-in distributions are listed in Table 1. In each case, the 

probability density f() and parameters of the fitted model are taken from an existing R 

function of the same name but beginning with the letter d. For the Weibull, exponential 

(dexp), gamma (dgamma) and log-normal (dlnorm), the density functions are provided with 

standard installations of R. These density functions, and the corresponding cumulative 

distribution functions (with first letter p instead of d) are used internally in flexsurvreg to 

compute the likelihood.
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flexsurv provides some additional survival distributions, including a Gompertz distribution 

with unrestricted shape parameter (dist = "gompertz"), log-logistic, and the three- and 

four-parameter families described below. For all built-in distributions, flexsurv also 

defines functions beginning with h giving the hazard, and H for the cumulative hazard.

Generalized gamma—This three-parameter distribution includes the Weibull, gamma 

and log-normal as special cases. The original parameterization from Stacy (1962) is 

available as dist = "gengamma.orig", however the newer parameterization (Prentice 

1974) is preferred: dist = "gengamma". This has parameters (μ,σ,q), and survivor 

function

where  is the incomplete gamma function (the cumulative 

gamma distribution with shape γ and scale 1), Φ is the standard normal cumulative 

distribution, u = γ exp(|q|z), z = (log(t) − μ)/σ, and γ = q−2. The Prentice (1974) 

parameterization extends the original one to include a further class of models with negative 

q, and survivor function I(γ, u), where z is replaced by −z. This stabilizes estimation when 

the distribution is close to log-normal, since q = 0 is no longer near the boundary of the 

parameter space. In R notation,2 the parameter values corresponding to the three special 

cases are

dgengamma(x, mu, sigma, Q = 0)     == dlnorm(x, mu, sigma)

dgengamma(x, mu, sigma, Q = 1)     == dweibull(x, shape = 1 / sigma,

                                               scale = exp(mu))

dgengamma(x, mu, sigma, Q = sigma) == dgamma(x, shape = 1 / sigma^2,

                                             rate = exp(-mu) / sigma^2)

Generalized F—This four-parameter distribution includes the generalized gamma, and 

also the log-logistic, as special cases. The variety of hazard shapes that can be represented is 

discussed by Cox (2008). It is provided here in alternative “original” (dist = 

"genf.orig") and “stable” parameterizations (dist = "genf") as presented by Prentice 

(1975). See help("GenF") and help("GenF.orig") in the package documentation for 

the exact definitions.

3.3 Covariates on ancillary parameters

The generalized gamma model is fitted to the breast cancer survival data. fs2 is an AFT 

model, where only the parameter μ depends on the prognostic covariate group. In a second 

model fs3, the first ancillary parameter sigma (α1) also depends on this covariate, giving a 

2The parameter called q here and in previous literature is called Q in dgengamma and related functions, since the first argument of 
a cumulative distribution function is conventionally named q, for quantile, in R.
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model with a time-dependent effect that is neither PH nor AFT. The second ancillary 

parameter Q is still common between prognostic groups.

R> fs2 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+    dist = "gengamma")

R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group + sigma(group),

+    data = bc, dist = "gengamma")

Ancillary covariates can alternatively be supplied using the anc argument to flexsurvreg. 

This syntax is required if any parameter names clash with the names of functions used in 

model formulae (e.g., factor() or I()).

R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+    anc = list(sigma = ~ group), dist = "gengamma")

Table 3 compares all the models fitted to the breast cancer data, showing absolute fit to the 

data as measured by the maximized −2× log likelihood −2LL, number of parameters p, and 

Akaike’s information criterion −2LL + 2p (AIC). The model fs2 has the lowest AIC, 

indicating the best estimated predictive ability.

3.4 Plotting outputs

The plot() method for ‘flexsurvreg’ objects is used as a quick check of model fit. By 

default, this draws a Kaplan-Meier estimate of the survivor function S(t), one for each 

combination of categorical covariates, or just a single “population average” curve if there are 

no categorical covariates (Figure 1). The corresponding estimates from the fitted model are 

overlaid. Fitted values from further models can be added with the lines() method.

The argument type = "hazard" can be set to plot hazards from parametric models against 

kernel density estimates obtained from muhaz (Hess 2014; Müller and Wang 1994). Figure 

2 shows more clearly that the Weibull model is inadequate for the breast cancer data: The 

hazard must be increasing or decreasing – while the generalized gamma distribution can 

represent the increase and subsequent decline in hazard seen in the data. Similarly, type = 

"cumhaz" plots cumulative hazards.

The numbers plotted are available from the summary method for ‘flexsurvreg’ objects. 

Confidence intervals are produced by simulating a large sample from the asymptotic normal 

distribution of the maximum likelihood estimates of {βr : r = 0, . . . , R} (Mandel 2013), via 

the function normboot.flexsurvreg. This very general method allows confidence 

intervals to be obtained for arbitrary functions of the parameters, as described in the next 

section.

In this example, there is only a single categorical covariate, and the plot and summary 

methods return one observed and fitted trajectory for each level of that covariate. For more 

complicated models, users should specify what covariate values they want summaries for, 

rather than relying on the default.3 This is done by supplying the newdata argument, a data 
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frame or list containing covariate values, just as in standard R functions like the predict 

method for ‘lm’ objects. Time-dependent covariates are not understood by these functions.

This plot() method is only for casual exploratory use. For publication-standard figures, it 

is preferable to set up the axes beforehand (plot(..., type = "n")), and use the 

lines() methods for ‘flexsurvreg’ objects, or construct plots by hand using the data 

available from the summary method for ‘flexsurvreg’ objects.

3.5 Custom model summaries

Any function of the parameters of a fitted model can be summarized or plotted by supplying 

the argument fn to the summary or plot methods for ‘flexsurvreg’ objects. This should 

be an R function, with optional first two arguments t representing time, and start 

representing a left-truncation point (if the result is conditional on survival up to that time). 

Any remaining arguments must be the parameters of the survival distribution. For example, 

median survival under the Weibull model fs1 can be summarized as follows

R> median.weibull <- function(shape, scale)

+    qweibull(0.5, shape = shape, scale = scale)

R> set.seed(1460)

R> summary(fs1, fn = median.weibull, t = 1, B = 10000)

group=Good

  time     est      lcl      ucl

1    1 8.75794 7.097961 10.77422

group=Medium

  time      est      lcl      ucl

1    1 4.741585 4.106213 5.475475

group=Poor

  time      est      lcl      ucl

1    1 2.605819 2.316097 2.936309

Although the median of the Weibull has an analytic form as μ log(2)1/α, the form of the code 

given here generalizes to other distributions. The argument t (or start) can be omitted 

from median.weibull, because the median is a time-constant function of the parameters, 

unlike the survival or hazard.

10000 random samples are drawn to produce a slightly more precise confidence interval 

than the default – users should adjust this until the desired level of precision is obtained. A 

useful future extension of the package would be to employ user-supplied (or built-in) 

3If there are only factor covariates, all combinations are plotted. If there are any continuous covariates, these methods by default return 
a “population average” curve, with the linear model design matrix set to its average values, including the 0/1 contrasts defining factors, 
which does not represent any specific covariate combination.
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derivatives of summary functions if possible, so that the delta method can be used to obtain 

approximate confidence intervals without simulation.

3.6 Computation

The likelihood is maximized in flexsurvreg using the optimization methods available 

through the standard R optim function. By default, this is the "BFGS" method (Nash 1990) 

using the analytic derivatives of the likelihood with respect to the model parameters, if these 

are available, to improve the speed of convergence to the maximum. These derivatives are 

built-in for the exponential, Weibull, Gompertz, log-logistic, and hazard- and odds-based 

spline models (see Section 5.1). For custom distributions (see Section 4), the user can 

optionally supply functions with names beginning "DLd" and "DLS" respectively (e.g., 

DLdweibull, DLSweibull) to calculate the derivatives of the log density and log survivor 

functions with respect to the transformed baseline parameters γ (then the derivatives with 

respect to β are obtained automatically). Arguments to optim can be passed to 

flexsurvreg – in particular, control options, such as convergence tolerance, iteration 

limit or function or parameter scaling, may need to be adjusted to achieve convergence.

4 Custom survival distributions

flexsurv is not limited to its built-in distributions. Any survival model of the form (1–3) can 

be fitted if the user can provide either the density function f() or the hazard h(). Many 

contributed R packages provide probability density and cumulative distribution functions for 

positive distributions. Though survival models may be more naturally characterized by their 

hazard function, representing the changing risk of death through time. For example, for 

survival following major surgery we may want a “U-shaped” hazard curve, representing a 

high risk soon after the operation, which then decreases, but increases naturally as survivors 

grow older.

To supply a custom distribution, the dist argument to flexsurvreg is defined to be an R 

list object, rather than a character string. The list has the following elements.

name: Name of the distribution. In the first example below, we use a log-logistic 

distribution, and the name is "llogis"4. Then there is assumed to be at least available 

either

• a function to compute the probability density, which would be called dllogis 

here, or

• a function to compute the hazard, called hllogis.

There should also be a function called pllogis for the cumulative distribution 

(if d is given), or H for the cumulative hazard (to complement h), if analytic 

forms for these are available. If not, then flexsurv can compute them internally 

by numerical integration, as in package stgenreg (Crowther and Lambert 2013). 

The default options of the built-in R routine integrate for adaptive quadrature 

4Though since version 0.5.1, this distribution is built into flexsurv as dist = "llogis".
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are used, though these may be changed using the integ.opts argument to 

flexsurvreg. Models specified this way will take an order of magnitude more 

time to fit, and the fitting procedure may be unstable. An example is given in 

Section 5.2.

These functions must be vectorized, and the density function must also accept an 

argument log, which when TRUE, returns the log density. See the examples 

below.

In some cases, R’s scoping rules may not find the functions in the working 

environment. They may then be supplied through the dfns argument to 

flexsurvreg.

pars: Character vector naming the parameters of the distribution μ, α1, . . . , αR. These 

must match the arguments of the R distribution function or functions, in the same order.

location: Character; quoted name of the location parameter μ. The location parameter 

will not necessarily be the first one, e.g., in dweibull the scale comes after the shape.

transforms: A list of functions g() which transform the parameters from their natural 

ranges to the real line, for example, c(log, identity) if the first is positive and the 

second unrestricted.5

inv.transforms: List of corresponding inverse functions.

inits: A function which provides plausible initial values of the parameters for maximum 

likelihood estimation. This is optional, but if not provided, then each call to flexsurvreg 

must have an inits argument containing a vector of initial values, which is inconvenient. 

Implausible initial values may produce a likelihood of zero, and a fatal error message 

(initial value in ‘vmmin’ is not finite) from the optimizer.

Each distribution will ideally have a heuristic for initializing parameters from summaries of 

the data. For example, since the median of the Weibull is μ log(2)1/α, a sensible estimate of μ 
might be the median log survival time divided by log(2), with α = 1, assuming that in 

practice the true value of α is not far from 1. Then we would define the function, of one 

argument t giving the survival or censoring times, returning the initial values for the Weibull 

shape and scale respectively.6

inits = function(t) c(1, median(t[t > 0]) / log(2))

More complicated initial value functions may use other data such as the covariate values and 

censoring indicators: For an example, see the function flexsurv.splineinits in the 

package source that computes initial values for spline models (Section 5.1).

5This is a list, not an atomic vector of functions, so if the distribution only has one parameter, we should write transforms = 
c(log) or transforms = list(log), not transforms = log.
6Though Weibull models in flexsurvreg are “initialized” by fitting the model with survreg, unless there is left-truncation.
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Example: Using functions from a contributed package

The following custom model uses the log-logistic distribution functions (dllogis and 

pllogis) available in the package eha. The survivor function is S(t|μ, α) = 1/(1 + (t/μ)α), so 

that the log odds log((1 − S(t))/S(t)) of having died are a linear function of log time.

R> custom.llogis <- list(name = "llogis", pars = c("shape", "scale"),

+    location = "scale", transforms = c(log, log),

+    inv.transforms = c(exp, exp), inits = function(t) c(1, median(t)))

R> fs4 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+    dist = custom.llogis)

This fits the breast cancer data better than the Weibull, since it can represent a peaked 

hazard, but less well than the generalized gamma (Table 3).

Example: Wrapping functions from a contributed package

Sometimes there may be probability density and similar functions in a contributed package, 

but in a different format. For example, eha also provides a three-parameter Gompertz-

Makeham distribution with hazard h(t|μ, α1, α2) = α2 + α1 exp(t/μ). The shape parameters 

α1, α2 are provided to dmakeham as a vector argument of length two. However, 

flexsurvreg expects distribution functions to have one argument for each parameter. 

Therefore we write our own functions that wrap around the third-party functions.

R> dmakeham3 <- function(x, shape1, shape2, scale, ...)

+    dmakeham(x, shape = c(shape1, shape2), scale = scale, ...)

R> pmakeham3 <- function(q, shape1, shape2, scale, ...)

+    pmakeham(q, shape = c(shape1, shape2), scale = scale, ...)

flexsurvreg also requires these functions to be vectorized, as the standard distribution 

functions in R are. That is, we can supply a vector of alternative values for one or more 

arguments, and expect a vector of the same length to be returned. The R base function 

Vectorize can be used to do this here.

R> dmakeham3 <- Vectorize(dmakeham3)

R> pmakeham3 <- Vectorize(pmakeham3)

and this allows us to write, for example,

R> pmakeham3(c(0, 1, 1, Inf), 1, c(1, 1, 2, 1), 1)

[1] 0.0000000 0.9340120 0.9757244 1.0000000

When fitting the model with flexsurvreg we could use dist = list(name = 

"makeham3", pars = c("shape1", "shape2", "scale"), ...), though in the 

breast cancer example, the second shape parameter is poorly identifiable.
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Example: Changing the parameterization of a distribution

We may want to fit a Weibull model like fs1, but with the proportional hazards (PH) 

parameterization S(t) = exp(−μtα), so that the covariate effects reported in the printed 

‘flexsurvreg’ object can be interpreted as hazard ratios or log hazard ratios without any 

further transformation. Here instead of the density and cumulative distribution functions, we 

provide the hazard and cumulative hazard.7

R> detach("package:eha")

R> hweibullPH <- function(x, shape, scale = 1, log = FALSE)

+    hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)

R> HweibullPH <- function(x, shape, scale = 1, log = FALSE)

+    Hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)

R> custom.weibullPH <- list(name = "weibullPH", pars = c("shape", "scale"),

+    location = "scale", transforms = c(log, log),

+    inv.transforms = c(exp, exp), inits = function(t)

+      c(1, median(t[t > 0]) / log(2)))

R> fs6 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+    dist = custom.weibullPH)

R> fs6$res["scale", "est"] ^ {-1 / fs6$res["shape", "est"]}

[1] 11.42286

R> - fs6$res["groupMedium", "est"] / fs6$res["shape", "est"]

[1] -0.6135897

R> - fs6$res["groupPoor", "est"] / fs6$res["shape", "est"]

[1] -1.212215

The fitted model is the same as fs1, therefore the maximized likelihood is the same. The 

parameter estimates of fs6 can be transformed to those of fs1 as shown. The shape α is 

common to both models, the scale μ′ in the AFT model is related to the PH scale μ as μ′ = 

μ−1/α. The effects β′ on life expectancy in the AFT model are related to the hazard ratios β 
as β′ = −β/α.

A slightly more complicated example is given in the package vignette flexsurv-

examples of constructing a proportional hazards generalized gamma model. Note that 

phreg in eha also fits the Weibull and other proportional hazards models, though again the 

parameterization is slightly different.

7The eha package needs to be detached first so that flexsurv’s built-in hweibull is used, which returns NaN if the parameter 
values are zero, rather than failing as eha’s currently does.
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5 Arbitrary-dimension models

flexsurv also supports models where the number of parameters is arbitrary. In the models 

discussed previously, the number of parameters in the model family is fixed (e.g., three for 

the generalized gamma). In this section, the model complexity can be chosen by the user, 

given the model family. We may want to represent more irregular hazard curves by more 

flexible functions, or use bigger models if a bigger sample size makes it feasible to estimate 

more parameters.

5.1 Royston and Parmar spline model

In the spline-based survival model of Royston and Parmar (2002), a transformation g(S(t, z)) 

of the survival function is modeled as a natural cubic spline function of log time: g(S(t, z)) = 

s(x, γ) where x = log(t). This model can be fitted in flexsurv using the function 

flexsurvspline, and is also available in the Stata package stpm2 (Lambert and Royston 

2009) (historically stpm; Royston 2001, 2004).

Typically we use g(S(t, z)) = log(− log(S(t, z))) = log(H(t, z)), the log cumulative hazard, 

giving a proportional hazards model.

Spline parameterization—The complexity of the model, thus the dimension of γ, is 

governed by the number of knots in the spline function s(). Natural cubic splines are 

piecewise cubic polynomials defined to be continuous, with continuous first and second 

derivatives at the knots, and also constrained to be linear beyond boundary knots kmin, kmax. 

As well as the boundary knots there may be up to m ≥ 0 internal knots k1, . . . , km. Various 

spline parameterizations exist – the one used here is from Royston and Parmar (2002).

(4)

where υj(x) is the jth basis function

and (x − a)+ = max(0, x − a). If m = 0 then there are only two parameters γ0, γ1, and this is a 

Weibull model if g() is the log cumulative hazard. Table 2 explains two further choices of 

g(), and the parameter values and distributions they simplify to for m = 0. The probability 

density and cumulative distribution functions for all these models are available as 

dsurvspline and psurvspline.

Covariates on spline parameters—Covariates can be placed on any parameter γ 
through a linear model (with identity link function). Most straightforwardly, we can let the 

intercept γ0 vary with covariates z, giving a proportional hazards or odds model (depending 

on g()).
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The spline coefficients γj : j = 1, 2 . . ., the “ancillary” parameters, may also be modeled as 

linear functions of covariates z, as

giving a model where the effects of covariates are arbitrarily flexible functions of time: a 

non-proportional hazards or odds model.

Spline models in flexsurv—The argument k to flexsurvspline defines the number 

of internal knots m. Knot locations are chosen by default from quantiles of the log 

uncensored death times, or users can supply their own locations in the knots argument. 

Initial values for numerical likelihood maximization are chosen using the method described 

by Royston and Parmar (2002) of Cox regression combined with transforming an empirical 

survival estimate.

For example, the best-fitting model for the breast cancer dataset identified in Royston and 

Parmar (2002), a proportional odds model with one internal spline knot, is

R> sp1 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1,

+    scale = "odds")

A further model where the first ancillary parameter also depends on the prognostic group, 

giving a time-varying odds ratio, is fitted as

R> sp2 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group),

+    data = bc, k = 1, scale = "odds")

These models give qualitatively similar results to the generalized gamma in this dataset 

(Figure 3), and have similar predictive ability as measured by AIC (Table 3). Though in 

general, an advantage of spline models is that extra flexibility is available where necessary.

In this example, proportional odds models (scale = "odds") are better-fitting than 

proportional hazards models (scale = "hazard") (Table 3). Note also that under a 

proportional hazards spline model with one internal knot (sp3), the log hazard ratios, and 

their standard errors, are substantively the same as under a standard Cox model (cox3). This 

illustrates that this class of flexible fully-parametric models may be a reasonable alternative 

to the (semi-parametric) Cox model. See Royston and Parmar (2002) for more discussion of 

these issues.

R> sp3 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1,

+    scale = "hazard")

R> sp3$res[c("groupMedium", "groupPoor"), c("est", "se")]
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                  est        se

groupMedium 0.8334517 0.1712042

groupPoor   1.6111788 0.1640933

R> cox3 <- coxph(Surv(recyrs, censrec) ~ group, data = bc)

R> coef(summary(cox3))[ , c("coef", "se(coef)")]

                 coef  se(coef)

groupMedium 0.8401002 0.1713926

groupPoor   1.6180720 0.1645443

An equivalent of a “stratified" Cox model may be obtained by allowing all the spline 

parameters to vary with the categorical covariate that defines the strata. In this case, this 

covariate might be group. With k = m internal knots, the formula should then include 

group, representing γ0, and m + 1 further terms representing the parameters γ1, . . . , γm+1, 

named as follows.

R> sp4 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group) +

+    gamma2(group), data = bc, k = 1, scale = "hazard")

Other covariates might be added to this formula – if placed on the intercept, these will be 

modeled through proportional hazards, as in sp1. If placed on higher-order parameters, 

these will represent time-varying hazard ratios. For example, if there were a covariate treat 

representing treatment, then

R> flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group) +

+    gamma2(group) + treat + gamma1(treat), data = bc, k = 1,

+    scale = "hazard")

would represent a model stratified by group, where the hazard ratio for treatment is time-

varying, but the model is not fully stratified by treatment.

R> res <- t(sapply(list(fs1, fs2, fs3, fs4, sp1, sp2, sp3, sp4),

+    function(x) rbind(-2 * round(x$loglik, 1), x$npars, round(x$AIC, 1))))

R> rownames(res) <- c("Weibull (fs1)", "Generalized gamma (fs2)",

+    "Generalized gamma (fs3)", "Log-logistic (fs4)",

+    "Spline (sp1)", "Spline (sp2)", "Spline (sp3)", "Spline (sp4)")

R> colnames(res) <- c("-2 log likelihood", "Parameters", "AIC")

R> res

These results are shown in Table 3.
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5.2 Implementing new general-dimension models

The spline model above is an example of the general parametric form (Equation 1), but the 

number of parameters, R + 1 in Equation 1, m + 2 in Equation 4, is arbitrary. flexsurv has 

the tools to deal with any model of this form. flexsurvspline works internally by 

building a custom distribution and then calling flexsurvreg. Similar models may in 

principle be built by users using the same method. This relies on a functional programming 

trick.

Creating distribution functions dynamically—The R distribution functions supplied 

to custom models are expected to have a fixed number of arguments, including one for each 

scalar parameter. However, the distribution functions for the spline model (e.g., 

dsurvspline) have an argument gamma representing the vector of parameters γ, whose 

length is determined by choosing the number of knots. Just as the scalar parameters of 

conventional distribution functions can be supplied as vector arguments (as explained in 

Section 4), similarly, the vector parameters of spline-like distribution functions can be 

supplied as matrix arguments, representing alternative parameter values.

To convert a spline-like distribution function into the correct form, flexsurv provides the 

utility unroll.function. This converts a function with one (or more) vector parameters 

(matrix arguments) to a function with an arbitrary number of scalar parameters (vector 

arguments). For example, the 5-year survival probability for the baseline group under the 

model sp1 is

R> gamma <- sp1$res[c("gamma0", "gamma1", "gamma2"), "est"]

R> 1 - psurvspline(5, gamma = gamma, knots = sp1$knots)

[1] 0.6896969

An alternative function to compute this can be built by unroll.function. We tell it that 

the vector parameter gamma should be provided instead as three scalar parameters named 

gamma0, gamma1, gamma2. The resulting function pfn is in the correct form for a custom 

flexsurvreg distribution.

R> pfn <- unroll.function(psurvspline, gamma = 0:2)

R> 1 - pfn(5, gamma0 = gamma[1], gamma1 = gamma[2], gamma2 = gamma[3],

+    knots = sp1$knots)

[1] 0.6896969

Users wishing to fit a new spline-like model with a known number of parameters could just 

as easily write distribution functions specific to that number of parameters, and use the 

methods in Section 4. However the unroll.function method is intended to simplify the 

process of extending the flexsurv package to implement new model families, through 

wrappers similar to flexsurvspline.
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Example: Splines on alternative scales—An alternative to the Royston-Parmar spline 

model is to model the log hazard as a function of time instead of the log cumulative hazard. 

Crowther and Lambert (2013) demonstrate this model using the Stata package stgenreg. 

An advantage explained by Royston and Lambert (2011) is that when there are multiple 

time-dependent effects, time-dependent hazard ratios can be interpreted independently of the 

values of other covariates.

This can also be implemented in flexsurvreg using unroll.function. A disadvantage 

of this model is that the cumulative hazard (hence the survivor function) has no analytic 

form, therefore to compute the likelihood, the hazard function needs to be integrated 

numerically. This is done automatically in flexsurvreg (just as in stgenreg) if the 

cumulative hazard is not supplied.

Firstly, a function must be written to compute the hazard as a function of time x, the vector 

of parameters gamma (which can be supplied as a matrix argument so the function can give a 

vector of results), and a vector of knot locations. This uses flexsurv’s function basis to 

compute the natural cubic spline basis (Equation 4), and replicates x and gamma to the 

length of the longest one.

R> hsurvspline.lh <- function(x, gamma, knots) {

+    if (!is.matrix(gamma)) gamma <- matrix(gamma, nrow = 1)

+    lg <- nrow(gamma)

+    nret <- max(length(x), lg)

+    gamma <- apply(gamma, 2, function(x) rep(x, length.out = nret))

+    x <- rep(x, length.out = nret)

+    loghaz <- rowSums(basis(knots, log(x)) * gamma)

+    exp(loghaz)

+ }

The equivalent function is then created for a three-knot example of this model (one internal 

and two boundary knots) that has arguments gamma0, gamma1 and gamma2 

corresponding to the three columns of gamma,

R> hsurvspline.lh3 <- unroll.function(hsurvspline.lh, gamma = 0:2)

To complete the model, the custom distribution list is formed, the internal knot is placed at 

the median uncensored log survival time, and the boundary knots are placed at the minimum 

and maximum. These are passed to hsurvspline.lh through the aux argument of 

flexsurvreg.

R> custom.hsurvspline.lh3 <- list(name = "survspline.lh3",

+    pars = c("gamma0", "gamma1", "gamma2"), location = "gamma0",

+    transforms = rep(c(identity), 3), inv.transforms = rep(c(identity), 3))

R> dtime <- log(bc$recyrs)[bc$censrec == 1]

R> ak <- list(knots = quantile(dtime, c(0, 0.5, 1)))
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Initial values must be provided in the call to flexsurvreg, since the custom distribution 

list did not include an inits component. For this example, “default” initial values of zero 

suffice, but the permitted values of γ2 are fairly tightly constrained (from −0.5 to 0.5 here) 

using the "L-BFGS-B" bounded optimizer from R’s optim (Nash 1990). Without the 

constraint, extreme values of γ2, visited by the optimizer, cause the numerical integration of 

the hazard function to fail.

R> sp5 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc, aux = ak,

+    inits = c(0, 0, 0, 0, 0),

+    dist = custom.hsurvspline.lh3,

+    method = "L-BFGS-B", lower = c(-Inf, -Inf, -0.5),

+    upper = c(Inf, Inf, 0.5),

+    control = list(trace = 1, REPORT = 1))

This takes around ten minutes to converge, so is not presented here, though the fit is poorer 

than the equivalent spline model for the cumulative hazard. The 95% confidence interval for 

γ2 of (0.16, 0.37) is firmly within the constraint. Crowther and Lambert (2014) present a 

combined analytic / numerical integration method for this model that may make fitting it 

more stable.

Other arbitrary-dimension models—Another potential application is to fractional 

polynomials (Royston and Altman 1994). These are of the form 

where the power pm is in the standard set {2, −1, −0.5, 0, 0.5, 1, 2, 3} (except that log(x) is 

used instead of x0), and n is a non-negative integer. They are similar to splines in that they 

can give arbitrarily close approximations to a nonlinear function, such as a hazard curve, and 

are particularly useful for expressing the effects of continuous predictors in regression 

models. See e.g., Sauerbrei, Royston, and Binder (2007), and several other publications by 

the same authors, for applications and discussion of their advantages over splines. The R 

package gamlss (Rigby and Stasinopoulos 2005) has a function to construct a fractional 

polynomial basis that might be employed in flexsurv models.

Polyhazard models (Louzada-Neto 1999) are another potential use of this technique. These 

express an overall hazard as a sum of latent cause-specific hazards, each one typically from 

the same class of distribution, e.g., a poly-Weibull model if they are all Weibull. For 

example, a U-shaped hazard curve following surgery may be the sum of early hazards from 

surgical mortality and later deaths from natural causes. However, such models may not 

always be identifiable without external information to fix or constrain the parameters of 

particular hazards (Demiris, Lunn, and Sharples 2015).

6 Multi-state models

A multi-state model represents how an individual moves between multiple states in 

continuous time. Survival analysis is a special case with two states, “alive” and “dead”. 

Competing risks are a further special case, where there are multiple causes of death, that is, 

one starting state and multiple possible destination states.
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Given that an individual is in state X(t) at time t, their next state, and the time of the change, 

are governed by a set of transition intensities

for states r, s = 1, . . . , R, which for a survival model are equivalent to the hazard h(t). The 

intensity represents the instantaneous risk of moving from state r to state s, and is zero if the 

transition is impossible. It may depend on covariates z(t), the time t itself, and possibly also 

the “history” of the process up to that time, ℱt: the states previously visited or the length of 

time spent in them.

Data. Instead of a single event time, there may now be a series of event times t1, . . . , tn for 

an individual, corresponding to changes of state. The last of these may be an observed or 

right-censored event time. Note panel data are not considered here – that is, observations of 

the state of the process at an arbitrary set of times (Kalbfleisch and Lawless 1985). In panel 

data, we do not necessarily know the time of each transition, or even whether transitions of a 

certain type have occurred at all between a pair of observations. Multi-state models for that 

type of data (and also exact event times) can be fitted with the msm package for R (Jackson 

2011), but are restricted to (piecewise) exponential event time distributions. Knowing the 

exact event times enables much more flexible models, which flexsurv can fit.

Alternative time scales. In semi-Markov (clock-reset) models, qrs(t) depends on the time t 
since entry into the current state, but otherwise, the time since the beginning of the process is 

forgotten. Any software to fit survival models can also fit this kind of multi-state model, as 

the following sections will explain.

In an inhomogeneous Markov (clock-forward) model, t represents the time since the 

beginning of the process, but the intensity qrs(t) does not depend further on ℱt. Again, 

standard survival modeling software can be used, with the additional requirement that it can 

deal with left-truncation or counting process data, which survreg, for example, does not 

currently support.

These approaches are equivalent for competing risks models, since there is at most one 

transition for each individual, so that the time since the beginning of the process equals the 

time spent in the current state. Therefore no left-truncation is necessary.

Example. For illustration, consider a simple three-state example, previously studied by 

Heng, Sharples, McNeil, Stewart, Wreghitt, and Wallwork (1998). Recipients of lung 

transplants are at risk of bronchiolitis obliterans syndrome (BOS). This was defined as a 

decrease in lung function to below 80% of a baseline value defined in the six months 

following transplant. A three-state “illness-death” model represents the risk of developing 

BOS, the risk of dying before developing BOS, and the risk of death after BOS. BOS is 

assumed to be irreversible, so there are only three allowed transitions (Figure 4), each with 

an intensity function qrs(t).
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6.1 Representing multi-state data as survival data

Andersen and Keiding (2002) and Putter, Fiocco, and Geskus (2007) explain how to 

implement multi-state models by manipulating the data into a suitable form for survival 

modeling software – an overview is given here. For each permitted r → s transition in the 

multi-state model, there is a corresponding “survival” (time-to-event) model, with hazard 

rates defined by qrs(t). For a patient who enters state r at time tj, their next event at tj+1 is 

defined by the model structure to be one of a set of competing events s1, . . . , snr . This 

implies there are nr corresponding survival models for this state r, and Σr nr models over all 

states r. In the BOS example, there are n1 = 2, n2 = 1 and n3 = 0 possible transitions from 

states 1, 2 and 3 respectively.

The data to inform the nr models from state r consists firstly of an indicator for whether the 

transition to the corresponding state s1, . . . , snr is observed or censored at tj+1. If the 

individual moves to state sk , the transitions to all other states in this set are censored at this 

time. This indicator is coupled with:

• (for a semi-Markov model) the time elapsed dtj = tj+1 − tj from state r entry to 

state s entry. The “survival” model for the r → s transition is fitted to this time.

• (for an inhomogeneous Markov model) the start and stop time (tj, tj+1), as in 

Section 3.1. The r → s model is fitted to the right-censored time tj+1 from the 

start of the process, but is conditional on not experiencing the r → s transition 

until after the state r entry time. In other words, the r → s transition model is 

left-truncated at the state r entry time.

In this form, the outcomes of two patients in the BOS data are

R> bosms3[18:22, ]

   id from to    Tstart     Tstop     years status trans

18  7    1  2 0.0000000 0.1697467 0.1697467      1     1

19  7    1  3 0.0000000 0.1697467 0.1697467      0     2

20  7    2  3 0.1697467 0.6297057 0.4599589      1     3

21  8    1  2 0.0000000 8.1615332 8.1615332      0     1

22  8    1  3 0.0000000 8.1615332 8.1615332      1     2

Each row represents an observed (status = 1) or censored (status = 0) transition time 

for one of three time-to-event models indicated by the categorical variable trans (defined 

as a factor). Times are expressed in years, with the baseline time 0 representing six months 

after transplant. Values of trans of 1, 2, 3 correspond to no BOS → BOS, no BOS → 
death and BOS → death respectively. The first row indicates that the patient (id 7) moved 

from state 1 (no BOS) to state 2 (BOS) at 0.17 years, but (second row) this is also 

interpreted as a censored time of moving from state 1 to state 3, potential death before BOS 

onset. This patient then died, given by the third row with status 1 for trans 3. Patient 8 

died before BOS onset, therefore at 8.2 years their potential BOS onset is censored (fourth 

row), but their death before BOS is observed (fifth row).
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The mstate R package (de Wreede, Fiocco, and Putter 2010; de Wreede et al. 2011) has a 

utility msprep to produce data of this form from “wide-format” datasets where rows 

represent individuals, and times of different events appear in different columns. msm has a 

similar utility msm2Surv for producing the required form given longitudinal data where 

rows represent state observations.

6.2 Multi-state model likelihood

After forming survival data as described above, a multi-state model can be fitted by 

maximizing the standard survival model likelihood (2), l(θ|x) = ∏i li(θ|xi), where x is the 

data, and i now indexes multiple observations for multiple individuals. This can also be 

written as a product over the K = Σr nr transitions k, and the mk observations j pertaining to 

the kth transition. The transition type will typically enter this model as a categorical 

covariate – see the examples in the next section.

(5)

Therefore if the parameter vector θ can be partitioned as (θ1| . . . |θK), independent 

components for each transition k, the likelihood becomes the product of K independent 

transition-specific likelihoods (Andersen and Keiding 2002). The full multi-state model can 

then be fitted by maximizing each of these independently, using K separate calls to a 

survival modeling function such as flexsurvreg. This can give vast computational savings 

over maximizing the joint likelihood for θ with a single fit. For example, Ieva, Jackson, and 

Sharples (2015) used flexsurv to fit a parametric multi-state model with 21 transitions and 

84 parameters for over 30,000 observations, which was computationally impractical via the 

joint likelihood, whereas it only took about a minute to perform 21 transition-specific fits.

On the other hand, if any parameters are constrained between transitions (e.g., if hazards are 

proportional between transitions, or the effects of covariates on different transitions are the 

same) then it is necessary to maximize the joint likelihood (5) with a single call.

6.3 Fitting parametric multi-state models

Joint likelihood—Three multi-state models are fitted to the BOS data using 

flexsurvreg, firstly using a single likelihood maximization for each model. The first two 

use the “clock-reset” time scale. crexp is a simple time-homogeneous Markov model where 

all transition intensities are constant through time, so that the clock-forward and clock-reset 

scales are identical. The time to the next event is exponentially-distributed, but with a 

different rate qrs for each transition type trans. crwei is a semi-Markov model where the 

times to BOS onset, death without BOS and the time from BOS onset to death all have 

Weibull distributions, with a different shape and scale for each transition type. cfwei is a 

clock-forward, inhomogeneous Markov version of the Weibull model: The 1 → 2 and 1 → 
3 transition models are the same, but the third has a different interpretation, now the time 

from baseline to death with BOS has a Weibull distribution.
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R> crexp <- flexsurvreg(Surv(years, status) ~ trans, data = bosms3,

+    dist = "exp")

R> crwei <- flexsurvreg(Surv(years, status) ~ trans + shape(trans),

+    data = bosms3, dist = "weibull")

R> cfwei <- flexsurvreg(Surv(Tstart, Tstop, status) ~ trans + shape(trans),

+    data = bosms3, dist = "weibull")

Semi-parametric equivalents—The equivalent Cox models are also fitted using coxph 

from the survival package. These specify a different baseline hazard for each transition type 

through a function strata in the formula, so since there are no other covariates, they are 

essentially non-parametric. Note that the strata function is not currently understood by 

flexsurvreg – the user must say explicitly what parameters, if any, vary with the 

transition type, as in crwei.

R> crcox <- coxph(Surv(years, status) ~ strata(trans), data = bosms3)

R> cfcox <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans),

+    data = bosms3)

In all cases, if there were other covariates, they could simply be included in the model 

formula. Typically, covariate effects will vary with the transition type, so that an interaction 

term with trans would be included. Some post-processing might then be needed to 

combine the main covariate effects and interaction terms into an easily-interpretable quantity 

(such as the hazard ratio for the r, s transition). Alternatively, mstate has a utility 

expand.covs to expand a single covariate in the data into a set of transition-specific 

covariates, to aid interpretation (see de Wreede et al. 2011).

Transition-specific models—In this small example, the joint likelihood can be 

maximized easily with a single function call, but for larger models and datasets, this may be 

unfeasible. A more computationally-efficient approach is to fit a list of transition-specific 

models, as follows.

R> crwei.list <- vector(3, mode = "list")

R> for (i in 1:3) {

+    crwei.list[[i]] <- flexsurvreg(Surv(years, status) ~ 1,

+      subset = (trans == i), data = bosms3, dist = "weibull")

+  }

This list of ‘flexsurvreg’ objects can be supplied as the first argument to the output and 

prediction functions described in the subsequent sections, instead of a single 

‘flexsurvreg’ object. However, this approach is not possible if there are constraints in the 

parameters across transitions, such as common covariate effects.

Any parametric distribution can be employed in a multi-state model, just as for standard 

survival models, with flexsurvreg. Spline models may also be fitted with 

flexsurvspline, and if hazards are assumed proportional, they are expected to give 

similar results to the Cox model. A restriction (currently even when fitting a list of models) 
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is that all transition-specific models must be from the same parametric family. Though to 

enable a mixture of simpler and more complex models, we could choose a very flexible 

family, such as the generalized gamma or a spline, and use the fixedpars argument to 

flexsurvreg to fix parameters for certain transitions at values for which the flexible 

family collapses to a simpler one (e.g., Section 3.2, Table 2).

6.4 Obtaining cumulative transition-specific hazards

Multi-state models are often characterized by their cumulative r → s transition-specific 

hazard functions  For semi-parametric multi-state models fitted with 

coxph, the function msfit in mstate (de Wreede et al. 2010, 2011) provides piecewise-

constant estimates and covariances for Hrs(t). For the Cox models for the BOS data,

R> library("mstate")

R> tmat <- rbind(c(NA, 1, 2), c(NA, NA, 3), c(NA, NA, NA))

R> mrcox <- msfit(crcox, trans = tmat)

R> mfcox <- msfit(cfcox, trans = tmat)

tmat describes the transition structure, as a matrix of integers whose r, s entry is i if the ith 

transition type is r, s, and has NAs on the diagonal and where the r, s transition is disallowed. 

flexsurv provides an analogous function msfit.flexsurvreg to produce cumulative 

hazards from fully-parametric multi-state models in the same format. This is a short wrapper 

around summary(..., type = "cumhaz") for ‘flexsurvreg’ objects, previously 

mentioned in Section 3.4. The difference from mstate’s method is that hazard estimates can 

be produced for any grid of times t, at any level of detail and even beyond the range of the 

data, since the model is fully parametric. The argument newdata can be used in the same 

way to specify a desired covariate category, though in this example there are no covariates in 

addition to the transition type. The name of the (factor) covariate indicating the transition 

type can also be supplied through the tvar argument, in this case it is the default, "trans".

R> tgrid <- seq(0, 14, by = 0.1)

R> mrwei <- msfit.flexsurvreg(crwei, t = tgrid, trans = tmat)

R> mrexp <- msfit.flexsurvreg(crexp, t = tgrid, trans = tmat)

R> mfwei <- msfit.flexsurvreg(cfwei, t = tgrid, trans = tmat)

These can be plotted (Figure 5) to show the fit of the parametric models compared to the 

non-parametric estimates. Both models appear to fit adequately, though give diverging 

extrapolations after around 6 years when the data become sparse. The Weibull clock-reset 

model has an improved AIC of 1091, compared to 1099 for the exponential model. For the 2 

→ 3 transition, the clock-forward and clock-reset models give slightly different hazard 

trajectories.

6.5 Prediction from parametric multi-state models

The transition probabilities of the multi-state model are the probabilities of occupying each 

state s at time t > t0, given that the individual is in state r at time t0.
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Markov models—For a time-inhomogeneous Markov model, these are related to the 

transition intensities via the Kolmogorov forward equation

with initial condition P() = I (Cox and Miller 1965). This can be solved numerically, as in 

Titman (2011). This is implemented in the function pmatrix.fs, using the deSolve 
package (Soetaert, Petzoldt, and Setzer 2010). This returns the full transition probability 

matrix P(t0, t) from time t0 = 0 to a time or set of times t specified in the call. Under the 

Weibull model, the probability of remaining alive and free of BOS is estimated at 0.3 at 5 

years and 0.09 at 10 years:

R> pmatrix.fs(cfwei, t = c(5, 10), trans = tmat)

$`5` 

[1,]  0.3042166  0.2521698  0.4436136

[2,]  0.0000000  0.2804130  0.7195870

[3,]  0.0000000  0.0000000  1.0000000

$`10`

            [,1]        [,2]       [,3]

[1,]  0.09116592  0.12048155  0.7883525

[2,]  0.00000000  0.06903971  0.9309603

[3,]  0.00000000  0.00000000  1.0000000

Confidence intervals can be obtained by simulation from the asymptotic distribution of the 

maximum likelihood estimates – see help("pmatrix.fs") for full details. A similar 

function totlos.fs is provided to estimate the expected total amount of time spent in state 

s up to time t for a process that starts in state r, defined as 

Semi-Markov models—For semi-Markov models, the Kolmogorov equation does not 

apply, since the transition intensity matrix Q(t) is no longer a deterministic function of t, but 

depends on when the transitions occur between time t0 and t. Predictions can then be made 

by simulation. The function sim.fmsm simulates trajectories from parametric semi-Markov 

models by repeatedly generating the time to the next transition until the individual reaches 

an absorbing state or a specified censoring time. This requires the presence of a function to 

generate random numbers from the underlying parametric distribution – and is fast for built-

in distributions which use vectorized functions such as rweibull.

pmatrix.simfs calculates the transition probability matrix by using sim.fmsm to simulate 

state histories for a large number of individuals, by default 100000. Simulation-based 
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confidence-intervals are also available in pmatrix.simfs, at an extra computational cost, 

and the expected total length of stay in each state is available from totlos.simfs.

R> pmatrix.simfs(crwei, trans = tmat, t = 5)

R> pmatrix.simfs(crwei, trans = tmat, t = 10)

Prediction via mstate—Alternatively, predictions can be made by supplying the 

cumulative transition-specific hazards, calculated with msfit.flexsurvreg, to functions 

in the mstate package.

For Markov models, the solution to the Kolmogorov equation (e.g., Aalen et al. 2008) is 

given by a product integral, which can be approximated as

where a fine grid of times t0, t1, . . . , tm = t is chosen to span the prediction interval, and 

Q(ti)dt is the increment in the cumulative hazard matrix between times ti and ti+1. Q may 

also depend on other covariates, as long as these are known in advance. In mstate, these can 

be calculated with the probtrans function, applied to the cumulative hazards returned by 

msfit. For Cox models, the time grid is naturally defined by the observed survival times, 

giving the Aalen-Johansen estimator (Andersen, Borgan, Gill, and Keiding 1993). Here, the 

probability of remaining alive and free of BOS is estimated at 0.27 at 5 years and 0.17 at 10 

years.

R> ptc <- probtrans(mfcox, predt = 0, direction = "forward")[[1]]

R> round(ptc[c(165, 193), ], 3)

     time  pstate1   pstate2  pstate3    se1    se2    se3

165 4.999    0.273     0.294    0.433 0.037   0.039   0.040

193 9.873    0.174     0.040    0.786 0.040   0.022   0.045

For parametric models, using a similar discrete-time approximation was suggested by Cook 

and Lawless (2014). This is achieved by passing the object returned by 

msfit.flexsurvreg to probtrans in mstate. It can be made arbitrarily accurate by 

choosing a finer resolution for the grid of times when calling msfit.flexsurvreg.

R> ptw <- probtrans(mfwei, predt = 0, direction = "forward")[[1]]

R> round(ptw[ptw$time %in% c(5, 10), ], 3)

   time   pstate1   pstate2   pstate3   se1   se2   se3

51    5     0.300     0.254     0.446 0.033 0.035 0.037

101  10     0.089     0.119     0.792 0.028 0.032 0.040
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pstate1–pstate3 are close to the first rows of the matrices returned by pmatrix.fs. The 

discrepancy from the Cox model is more marked at 10 years when the data are more sparse 

(Figure 5). A finer time grid would be required to achieve a similar level of accuracy to 

pmatrix.fs for the point estimates, at the cost of a slower run time than pmatrix.fs. 

However, an advantage of probtrans is that standard errors are available more cheaply.

For semi-Markov models, mstate provides the function mssample to produce both 

simulated trajectories and transition probability matrices from semi-Markov models, given 

the estimated piecewise-constant cumulative hazards (Fiocco, Putter, and van Houwelingen 

2008), produced by msfit or msfit.flexsurvreg, though this is generally less efficient 

than pmatrix.simfs. In this example, 1000 samples from mssample give estimates of 

transition probabilities that are accurate to within around 0.02. However with 

pmatrix.simfs, greater precision is achieved by simulating 100 times as many trajectories 

in a shorter time.

R> mssample(mrcox$Haz, trans = tmat, clock = "reset", M = 1000,

+    tvec = c(5, 10))

R> mssample(mrwei$Haz, trans = tmat, clock = "reset", M = 1000,

+    tvec = c(5, 10))

7 Potential extensions

More tools and documentation for multi-state modeling would be a useful addition to 

flexsurv. The msm package currently has a more accessible interface for fitting and 

summarizing multi-state models, but it was designed mainly for panel data rather than event 

time data, and therefore the event time distributions it fits are relatively inflexible.

Models where multiple survival times are assumed to be correlated within groups, 

sometimes called (shared) frailty models (Hougaard 1995), would also be a useful 

development. See, e.g., Crowther, Look, and Riley (2014) for a recent application based on 

parametric models. These might be implemented by exploiting tractability for specific 

distributions, such as gamma frailties, or by adjusting standard errors to account for 

clustering, as implemented in survreg. More complex random effects models would 

require numerical integration, for example, Crowther et al. (2014) provide Stata software 

based on Gauss-Hermite quadrature. Alternatively, a probabilistic modeling language such 

as Stan (Stan Team 2014) or BUGS (Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012) 

would be naturally suited to complex extensions such as random effects on multiple 

parameters or multiple hierarchical levels.

Package flexsurv is intended as a platform for parametric survival modeling. Extensions of 

the software to deal with different models may be written by users themselves, through the 

facilities described in Sections 4 and 5.2. These might then be included in the package as 

builtin distributions, or at least demonstrated in the package’s other vignette flexsurv-

examples. Each new class of models would ideally come with
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• guidance on what situations the model is useful for, e.g., what shape of hazards it 

can represent;

• some intuitive interpretation of the model parameters, their plausible values in 

typical situations, and potential identifiability problems. This would also help 

with choosing initial values for numerical maximum likelihood estimation, 

ideally through an inits function in the custom distribution list (Section 4).

The examples in this paper were run using version 0.7.1 of flexsurv, available from the 

Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/

package=flexsurv. Development versions are available on https://github.com/chjackson/

flexsurv-dev, and contributions are welcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Survival by prognostic group from the breast cancer data: Fitted from alternative parametric 

models and Kaplan-Meier estimates.
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Figure 2. 
Hazards by prognostic group from the breast cancer data: Fitted from alternative parametric 

models and kernel density estimates.
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Figure 3. 
Comparison of spline and generalized gamma fitted hazards for the breast cancer survival 

data by prognostic group.
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Figure 4. 
Three-state multi-state model for bronchiolitis obliterans syndrome (BOS).
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Figure 5. 
Cumulative hazards for three transitions in the BOS multi-state model (clock-reset), under 

non-parametric, exponential and Weibull models. For the 2 → 3 transition, an alternative 

clock-forward scale is shown for the non-parametric and Weibull models.
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Table 1

Built-in parametric survival distributions in flexsurv.

Parameters
(location in italics)

Density R function dist

Exponential rate dexp "exp"

Weibull shape, scale dweibull "weibull"

Gamma shape, rate dgamma "gamma"

Log-normal meanlog, sdlog dlnorm "lnorm"

Gompertz shape, rate dgompertz "gompertz"

Log-logistic shape, scale dllogis "llogis"

Generalized gamma (Prentice 1975) mu, sigma, Q dgengamma "gengamma"

Generalized gamma (Stacy 1962) shape, scale, k dgengamma.orig "gengamma.orig"

Generalized F (stable) mu, sigma, Q, P dgenf "genf"

Generalized F (original) mu, sigma, s1, s2 dgenf.orig "genf.orig"
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Table 2

Alternative modeling scales for flexsurvspline, and equivalent distributions for m = 0 (with parameter 

definitions as in the R d functions referred to elsewhere in the paper).

Model g(S(t, z)) In flexsurvspline With m = 0

Proportional hazards log(− log(S(t, z)))
(log cumulative hazard)

scale = "hazard" Weibull shape γ1,
scale exp(−γ0/γ1)

Proportional odds log(S(t, z)−1 − 1)
(log cumulative odds)

scale = "odds" Log-logistic shape γ1,
scale exp(−γ0/γ1)

Normal / probit Φ−1(S(t, z))
(inverse normal CDF, qnorm)

scale = "normal" Log-normal meanlog
− γ0/γ1, sdlog
1/γ1
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Table 3

Comparison of parametric survival models fitted to the breast cancer data.

-2 log likelihood Parameters AIC

Weibull (fs1) 1623.8 4 1631.9

Generalized gamma (fs2) 1575.2 5 1585.1

Generalized gamma (fs3) 1572.4 7 1586.4

Log-logistic (fs4) 1598.2 4 1606.1

Spline (sp1) 1578.0 5 1588.0

Spline (sp2) 1574.8 7 1588.8

Spline (sp3) 1585.8 5 1595.7

Spline (sp4) 1571.4 9 1589.3
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