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Abstract

Random fluctuations in the amount of cellular components like mRNA and protein mole-

cules are inevitable due to the stochastic and discrete nature of biochemical reactions. If

large enough, this so-called “cellular noise” can lead to random transitions between the

expression states of a multistable genetic circuit. That way, heterogeneity within isogenic

populations is created. Our aim is to understand which dynamical features of a simple auto-

regulatory system determine its intrinsic noise level, and how they can be modified in order

to regulate state-transitions. To that end, novel mathematical methods for the state-depen-

dent characterization and prediction of noise in multistable systems are developed. First,

we introduce the hybrid LNA, a modified version of the Linear Noise Approximation. It yields

good predictions on variances of mRNA and protein fluctuations, even for reaction systems

comprising low-copy-number components (e.g. mRNA) and highly nonlinear reaction rates.

Furthermore, the temporal structure of fluctuations and the skewness of the protein distribu-

tion are characterized via state-dependent protein burst sizes and burst frequencies. Based

on this mathematical framework, we develop graphical methods which support the intuitive

design of regulatory circuits with a desired noise pattern. The methods are then used to

predict how overall noise in the system can be adapted, and how state-specific noise modifi-

cations are possible that allow, e.g., the generation of unidirectional transitions. Our consid-

erations are validated by stochastic simulations. This way, a design of genetic circuits is

possible that takes population heterogeneity into account and is valuable in applications of

synthetic biology and biotechnology. Moreover, natural phenomena like the bimodal devel-

opment of genetic competence can be studied.

Introduction

Cellular systems are inevitably subject to stochasticity due to random changes in environmen-

tal conditions as well as due to the molecular noise that is inherent to biochemical processes.

On the one hand, the resulting fluctuations in the copy numbers of cellular components may

lead to unpredictable and non-functional systems behaviour. Yet on the other, they might
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provide an evolutionary advantage by generating population diversity. Cells thus need elabo-

rate mechanisms to precisely handle extrinsic and intrinsic noise. This holds especially true for

gene regulation and signaling, where the impact of noise is significant as the copy numbers of

involved components (genes, mRNA, regulatory proteins) are usually small.

The intrinsic noise of a typical gene expression system is mainly determined by two factors:

First, by the combination of different reaction time-scales within the system, and second, by

the system’s topology (e.g., the presence and type of feedback regulation).

The distribution of time-scales affects for example the emergence of protein bursts, which

denote the pulsatile production of protein molecules: When the translation rate is large, a great

number of protein molecules is translated from every (usually short-lived) mRNA molecule in

a burst-like manner. This kind of bursts is common in prokaryotes [1], while mRNA bursts

are prevalent in eukaryotes. The latter are generated in an analogous manner on the DNA-

mRNA level [1–5].

The further propagation of noise through a regulatory network is severely influenced by its

topology [6, 7]. In general, negative feedback loops tend to attenuate noise [8, 9], whereas posi-

tive feedback loops mostly promote fluctuations [10]. Interconnections of such structural

motifs can lead to complex outcomes and are suitable for a more precise regulation of noise

[11–14]. Again, the topological effects are complemented by the time-scales of the participat-

ing reactions. For example, fast fluctuations of a component tend to be averaged out by a com-

parably slow downstream reaction [15, 16].

Mechanisms for noise attenuation support controllable, almost deterministic systems

behaviour [9, 16, 17]. Such mechanisms are relevant not only in natural processes, but also

with regard to applications in synthetic biology and biotechnology. However, several examples

exist in nature where noise is used to create diversity within a population of isogenic cells: fluc-

tuations facilitate transient excursions or permanent transitions away from one stable state to

another. Such heterogeneity can make the entirety of cells less prone to environmental stresses

due to higher flexibility [18]. This is also believed to be the reason why in some bacteria like

Bacillus subtilis and Streptococcus mutans, the development of competence—a genetically

advantageous, but costly and risky process—occurs only in a subpopulation of cells [19, 20].

On a regulatory level, competence is initiated by random upregulation of a special autostimu-

latory peptide. The noise-driven switch from the inactive to the active expression state has

already been studied with mathematical models [18, 21–24]. It has also been shown mathemat-

ically and experimentally that reduction of noise in the inactive state (which can be achieved

by enhancing the basal transcription while reducing the translation of the peptide) impedes

competence initiation [24, 25]. Now, we like to go one step further and understand how noise

—despite being large in the inactive expression state—can be so small in the active expression

state that competence is robustly sustained. This is not trivial since the states are connected to

one another in that they originate from the same reaction network.

More generally speaking, we like to study the emergence of various noise patterns in multi-

modal regulatory circuits (i.e. circuits that support two or more distinct protein expression

states). With the term “noise pattern”, we denote the distribution of noise levels among the

expression states (e.g. large protein noise in the low expression state, small noise in the high

expression state, as in competence development). Since noise levels affect transition probabili-

ties, we can finally make qualitative predictions on population behaviour based on the circuit

properties.

In this study, we focus on minimal single-gene autoregulatory systems with transcriptional

feedback. Stochastic modeling is used, as random fluctuations and cell-state switches cannot

be described with a deterministic model, whose behavior is uniquely defined by its initial con-

ditions. As a first step, noise is mathematically characterized via the means and variances of
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mRNA and protein fluctuations. Since special emphasis is put on multimodal protein distribu-

tions (i.e. distributions with multiple peaks, each one corresponding to an expression state), it

is valuable to quantify noise “locally” for every peak. One approach consists in the so-called

Linear Noise Approximation (LNA) [26]. It uses a deterministic model based on rate laws,

whose variables serve as approximations of the local (i.e. expression-state-specific) mean val-

ues. Then, variances are calculated after linearizing all reactions at these deterministic vari-

ables. However, when components with low copy numbers are involved, the results might be

unreliable. We hence present a novel approach, called the hybrid LNA, which uses an alterna-

tive deterministic model that takes the discreteness and stochasticity of the mRNA level into

account and finally leads to better approximations. As further noise measures, the cell-state-

dependent protein burst size and frequency are introduced and interpreted. They help to char-

acterize the temporal structure and skewness of the protein distribution. For all noise mea-

sures, we obtain formula that show their dependence on the circuit properties. We use them to

identify properties of multimodal systems by which different noise patterns can be created,

and based on these patterns, we make predictions on the behaviour of the population. Our

results are verified by stochastic simulations.

Model formulation and method development

Formulation of a single-gene autoregulatory system

We consider mRNA and protein dynamics in a simple single-gene autoregulatory system. The

reactions include transcription, translation, and mRNA and protein degradation, and can be

represented as follows:

reaction 1 : ; � !
F̂ ðsÞ mRNA

reaction 2 : mRNA � !
dm ;

reaction 3 : ; � � !
ĜðmÞ Protein

reaction 4 : Protein � !
ds ;

ð1Þ

m and s denote the copy numbers of the specific mRNA and protein in a single cell, respec-

tively. Autoregulation is specified by the function F̂ : N0 ! R, which may, depending on its

monotonicity, describe a stimulatory or an inhibitory effect of the protein on its own expres-

sion. Missing feedback is modeled by constant F̂ . The strictly monotonically increasing func-

tion Ĝ : N0!R, Ĝð0Þ ¼ 0 illustrates protein formation using mRNA as a template. The

degradation rates of mRNA and protein are assumed to be linear with parameters dm and ds.
The reaction scheme is illustrated in Fig 1A.

Stochastic model formulation

For stochastic modeling, we use the chemical master equation (see the S1 File, Sections 1.1 and

1.2, for the motivation and theoretical background). We first define the dimensionless time

unit τ≔ t � dm. The reference time scale is thus determined by the rate of mRNA degradation.

The reaction propensities are scaled as follows: We set F :ð Þ≔ 1

dm
� F̂ :ð Þ and G :ð Þ≔ 1

ds
� Ĝ :ð Þ.

The parameter n≔ ds
dm

relates the time scales of protein and mRNA kinetics to each other. The
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CME of the autoregulatory system is then given by:

dpm;sðtÞ

dt
¼ FðsÞpm� 1;sðtÞ � FðsÞpm;sðtÞ þ ðmþ 1Þpmþ1;sðtÞ � mpm;sðtÞ

þ½GðmÞpm;s� 1ðtÞ � GðmÞpm;sðtÞ þ ðsþ 1Þpm;sþ1ðtÞ � spm;sðtÞ� � n:

ð2Þ

pm,s(τ) denotes the probability that at time point τ, m mRNA molecules and s protein mole-

cules are present in the cell.

Usually, for general F and G, the CME cannot be explicitly solved for pm,s. It is, in many

cases, even impossible to obtain explicit formula for the expectation and variance of the

mRNA and protein distribution (implicit expressions are given in the S1 File, Section 2.1).

Moreover, means and variances are uninformative in case of multimodal probability distribu-

tions, which are central to our study. In order to better characterize multimodality, we inter-

pret such distributions as superpositions of unimodal ones, each having their own local mean

value, variance, etc. By using the so-called linear noise approximation (LNA), closed-form esti-

mates of these local values can be obtained.

Deterministic model descriptions: Rate laws and hybrid model

The LNA, which will be further addressed in the subsequent section, requires the formulation

of a deterministic model, whose variables serve as approximations of the local mean values of a

uni- or multimodal distribution. Originally, the deterministic model is based on classical rate

laws, whose variables are given in terms of concentrations and treated as continuous variables.

Let cm and cs denote the deterministic concentrations of the regarded mRNA and protein in

the cell, respectively. The scaled system of ordinary differential equations (ODEs) reads:

dcm
dt

¼ FðcsÞ � cm

dcs
dt

¼ ðGðcmÞ � csÞ � n:
ð3Þ

Here, F : R�0 ! R�0 and G : R�0 ! R�0 are the scaled transcription and translation rates in

terms of concentrations. In order to obtain them, the originally discrete functions F and G are

first interpolated continuously, so that they are defined on the nonnegative real line (these

functions F : R�0 ! R�0 and G : R�0 ! R�0 will be used for further model analysis as well).

Fig 1. Reaction schemes of autoregulatory expression. (A): Full model including the mRNA and protein level. (B):

Reduced model where the mRNA level is omitted and protein expression occurs in translational bursts of random size

B. Solid lines indicate conversion reactions, while dashed lines describe interactions.

https://doi.org/10.1371/journal.pone.0194779.g001

Noise in multistable genetic circuits

PLOS ONE | https://doi.org/10.1371/journal.pone.0194779 March 26, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0194779.g001
https://doi.org/10.1371/journal.pone.0194779


After interpolation, G should still be strictly monotonically increasing, and if possible, the

interpolation functions should be linear. Then, one sets F csð Þ≔
Fðcs�VÞ

V 8 cs 2 R�0 and

G cmð Þ≔
Gðcm�VÞ

V 8 cm 2 R�0 [27]. V denotes the cell volume, which is assumed to be constant

throughout the study.

In general, this deterministic formulation gives a good description of the system in case

the copy numbers of all involved reaction species and the system volume are large so that

fluctuations become negligible. However, these conditions do usually not hold for mRNA

copy numbers in single cells. In order to circumvent this problem, we propose an alternative

model which we refer to as the hybrid deterministic model, since it takes into account the dis-

creteness and the stochasticity of the mRNA level although being fully deterministic. It

reads:

dcm
dt
¼ FðcsÞ � cm

dcs
dt
¼ ð�GðcmÞ � csÞ � n; �GðcmÞ ¼

1

V

X1

n¼0

GðnÞ
ðcmVÞ

n

n!
e� cmV :

ð4Þ

The mathematical foundations of this formulation are explained in the S1 File, Section 2.2.1.

The hybrid model avoids the use of the interpolation function G, which is highly arbitrary

when the originally discrete-valued function G cannot be interpolated linearly. Instead, it

uses �G , a locally averaged translation rate that results from a Poisson distributed mRNA

level, whose mean cmV dynamically changes according to the first differential equation.

Here, the Poisson distribution serves as an approximation of the real local mRNA distribu-

tion. The quality of this approach is discussed later. In order to express �G in terms of copy

numbers, set �GðmÞ≔ �GðmVÞ � V ¼
X1

n¼0
GðnÞ

mn

n!
e� m 8m 2 R�0.

Estimation of local Fano factors with the classical and hybrid linear noise

approximation

We use local estimates of the Fano factors η�(M) and η�(S) (variances of mRNA and protein

scaled by their means) in order to characterize the relative variability of fluctuations around

every stable expression state. The local mean values are approximated by the stable steady

states (m�, s�) of a corresponding deterministic model. Local variances are then obtained by

LNA, which performs a linearization of all reaction propensities around these fixed points (see

SI, Section 1.3 for the theoretical background). For the underlying deterministic model, classi-

cal rate laws are normally used, but we use the hybrid deterministic model as a basis for LNA

as well. We call the latter approach the hybrid LNA (hLNA).

The Fano factor allows for a comparison of the regarded stochastic process (here: mRNA

and protein dynamics) to Poisson processes, where η = 1 holds [28]. A process is called super-

Poissonian if η> 1, and sub-Poissonian if η< 1. For mRNA fluctuations, the Fano factor is a

rather “natural” measure: Without feedback, mRNA formation and degradation events yield a

typical birth-death process that follows a Poisson statistic. All deviations from η�(M) = 1 can

therefore be attributed to transcriptional regulation, independently of the steady-state mRNA

level (which is not that simple in terms of the coefficient of variation, an alternative variability

measure). Concerning the protein distribution, deviations from η(S) = 1 show the impact of

noise propagation from the mRNA to the protein level, when a system without feedback is

considered.
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Characterization of bursts in the protein time course

Definition and calculation of burst characteristics. In order to characterize the temporal

structure of protein fluctuations, we investigate the occurrence of protein bursts. We use two

quantities, namely the burst size α and the burst frequency ω. The burst size is generally defined

as the mean number of proteins that are translated from a single mRNA molecule [29]. When

G is nonlinear, the burst size depends on the current state of the system, and we define it as:

aðmÞ≔
X1

n¼0

Gðnþ 1Þ

nþ 1
n
mn

n!
e� m ¼

�GðmÞ n
m ð5Þ

where m is the average value around which the mRNA copy number has fluctuated immedi-

ately before the burst. In this definition, it is again assumed that the mRNA copy number is

approximately Poisson distributed, like in the formulation of the hybrid deterministic model.

The derivation of the formula is given in the S1 File, Section 2.5.1.

The burst frequency is the mean number of bursts (i.e., of transcription events) during the

lifetime of a protein. When a transcriptional feedback mechanism exists, the frequency

depends on the protein level, and we define

oðsÞ≔
FðsÞ

n
; ð6Þ

where s is the current mean protein level (see S1 File, Section 2.5.2). α(m) and ω(s) are general-

izations of the expressions formulated in [28, 29], where only systems without feedback and

with linear propensities are studied.

Next, let us determine the average burst characteristics in steady-state. Let (m�, s�) be a sta-

ble fixed point of the hybrid deterministic model in terms of copy numbers. Since �Gðm�Þ ¼ s�

and F(s�) = m� holds, the following relations for the local steady-state burst characteristics

α�≔ α(m�) and ω�≔ ω(s�) are obtained:

a� ¼
s�

m�
� n ¼ r � n; o� ¼

m�

n
¼

s�

r � n
: ð7Þ

Here, r ¼ s�
m� denotes the stationary ratio of the protein to mRNA copy number. According

to formula (7), bursts in systems with a pre-defined value of s� can be fully characterized in

terms of the quantities r and ν. In our analyses, we usually compare systems with a fixed pro-

tein level, so that we can concentrate on the determination of the burst size. The burst fre-

quency then follows directly from the relation s� = α� � ω�, which means that if s� is kept

constant, any change of α� is accompanied by an inverse change of ω�.
Graphical characterization of the burst size. The emergence of bursts can be related to

differences in the average reaction propensities on the mRNA and protein level: The propen-

sity of the j-th reaction wj(m, s) is defined as the probability per infinitesimal time unit for the

j-th reaction to occur, depending on the current system state (m, s) (see Section 1.2 in the S1

File). In steady state, the average propensities of transcription and mRNA degradation,

E½FðSÞ� and E½M�, are identical. We denote them by wm, since they are the propensities

determining the mRNA dynamics. The average propensities of translation and protein degra-

dation E½GðMÞ � n� and E½S � n� are identical as well and denoted by ws. Let m� and s� again

be the stable steady states of the hybrid deterministic model. Then, wm� F(s�) = m� and

ws �
�Gðm�Þ � n ¼ s� � n. These approximations are based on the same assumptions as the

Noise in multistable genetic circuits
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hybrid deterministic model. Since �G is invertible, we obtain

wm ¼ F
ws

n

� �
; wm ¼

�G� 1
ws

n

� �
: ð8Þ

A connection between propensities and bursts is given by the relation

a� ¼ r � n ¼ s�=m� � n ¼ ws=wm: ð9Þ

This fact illustrates that significant bursts emerge when reactions on the protein level are on

average more frequent than reactions on the mRNA level.

The steady state propensities and the burst size α� can be graphically determined by visual-

izing the two equations in (8) in a ws-wm-plot, and by reading the values at the intersection

points of the two graphs, cf. Fig B (panel B) in S1 File. The plot helps in visualizing the effect of

the shapes of F and �G and of the interplay of time-scales on the burst size.

Stochastic model reduction and determination of modes in the protein

distribution

Here, we show under which conditions and how the mRNA dynamics can be eliminated from

the model: If ν� 1, mRNA half-life is extremely short on a time-scale determined by protein

degradation. All translation events belonging to one burst thus occur in an infinitesimal time-

frame. In the course of model simplification, they can be lumped into a single gene expression

event, where multiple protein molecules are formed according to the stochastic distribution of

the burst size. This kind of model reduction has been done before, e.g. in [30, 31], though only

with fixed burst sizes. In the S1 File Section 2.6, model reduction is performed for state-depen-

dent burst characteristics. The obtained general formulation of the reduced model reads:

reaction 1 : ; � !
FðsÞ B � Protein;

reaction 2 : Protein !
n
;;

ð10Þ

where B is the stochastic magnitude of the burst that approximately follows a geometric distri-

bution with mean burst size α(F(s)):

PðB ¼ bÞ ¼
aðFðsÞÞ

1þ aðFðsÞÞ

� �b
1

1þ aðFðsÞÞ
≕GeoaðFðsÞÞðbÞ: ð11Þ

The reaction scheme is visualized in Fig 1B. The reduction to a one-species-model allows

the location of the modes (maxima) in the probability mass function of the protein, similarly

to the procedure shown in [32]. As demonstrated in the S1 File Section 2.6.3, all positive-val-

ued modes s approximately obey the condition

s ¼ dse where s 2 R; sþ aðFðsÞÞ þ 1 ¼
aðFðsÞÞFðsÞ

n
¼ �GðFðsÞÞ: ð12Þ

Here, d.e is the ceiling function. The modes can be determined graphically by plotting both

sides of the equation in (12) as functions of σ, cf. Fig B (panel C) in S1 File.

Results

In the following, we first evaluate the reliability of the novel approaches used for noise charac-

terization. Then, we present the results of our analyses showing the connection between circuit

properties and the variance and structure of fluctuations. We also investigate the relation
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between the Fano factor and the burst characteristics. Finally, we verify our considerations

with stochastic simulations.

Comparing the results and qualities of the classical and hybrid linear noise

approximation

If G is linear, i.e. G(m) = g �m, the two deterministic models (3) and (4) and the corre-

sponding two LNA approaches are equivalent since

G cmð Þ ¼ g � cm ¼ g 1

V

P1

n¼0
n ðcm VÞn

n!
e� cm V ¼ �G cmð Þ 8 cm 2 R�0:

Hence, all further discussions on quality differences are only relevant in systems with a

translational propensity that depends on mRNA in a nonlinear fashion.

Estimation of local mean values. The local mean values of the mRNA and protein proba-

bility mass functions are approximated by the stable fixed points m� and s� of the deterministic

models. They obey m� = F(s�) and

s� ¼ GðFðs�ÞÞ in case of model ð3Þ and ð13Þ

s� ¼ �GðFðs�ÞÞ ¼
X1

n¼0

GðnÞ
ðFðs�ÞÞn

n!
e� Fðs�Þ in case of the hybrid model ð4Þ: ð14Þ

It can be easily shown that the hybrid deterministic model clearly outperforms the classical

rate laws in a system without feedback: In this case, F� a is a constant function, the mRNA

copy number in steady state is indeed Poisson distributed with mean a (see SI, Section 2.2.1),

and the steady state s� of the hybrid model coincides perfectly with the stochastic mean of the

master Eq (2):

E½S� ¼ E½GðMÞ� ¼
X1

n¼0

GðnÞ
an

n!
e� a ¼ �GðaÞ ¼ s�: ð15Þ

In contrast, the steady state of the model based on rate equations is given by s� = G(a), i.e. by a

point evaluation of an (arbitrary!) interpolation of the originally discrete function G. If G is

nonlinear, G(a) usually differs from �GðaÞ (cf. Fig A in S1 File) and is thus a worse estimate of

the stochastic mean.

To be more general, the error of the hybrid deterministic model is expected to become very

small when the transcription rate F is almost constant in the range of local protein fluctuations,

since the local mRNA distribution is then well approximated by a Poisson distribution. For

systems with more sensitive feedback, the quality of the hybrid ansatz might be reduced. Nev-

ertheless, we have observed that it still outperforms the classical model due to the local averag-

ing of G, which yields a more realistic estimate of the effective (deterministic) translation rate

(see the following section, as well as Section 3.1 in the S1 File, where we have evaluated several

exemplary reaction systems).

Estimation of local Fano factors. The calculations of the local Fano factors η�(M) and

η�(S) around a stable fixed point (m�, s�) are carried out in detail in the S1 File, Section 2.3.
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The obtained formula read:

Z�ðMÞ ¼ 1þ
f

g � 1 � f
n

1þ n
þ

1

1þ n
� r

f
g

� �

ð16Þ

Z�ðSÞ ¼ 1þ
f

g � 1 � f
1

1þ n
þ

n

1þ n
�

1

r f
g

 !

if f 6¼ 0; ð17Þ

Z�ðSÞ ¼ 1þ
n

1þ n

g2

r
if f ¼ 0: ð18Þ

Here, f ≔ d FðcsÞ
d cs
jcs¼c�s and

g≔
dGðcmÞ
dcm

jcm¼c�m in case of model ð3Þ; ð19Þ

g≔
d�GðcmÞ
dcm

jcm¼c�m ¼
X1

n¼0

ðGðnþ 1Þ � GðnÞÞ
ðm�Þn

n!
e� m� in case of model ð4Þ: ð20Þ

According to these formula, the Fano factors depend on a local derivative of G if the classical

LNA is used. The derivative can vary considerably with the chosen interpolating function and

is therefore quite arbitrary. In contrast, if the novel hLNA approach is applied, g is an average

difference quotient (Eq (20)) that only uses the original discrete function values of G. Besides

the values of g, the values of r and f might differ between the two LNA approaches, since the

fixed points of the underlying deterministic models are not necessarily identical, as we have

just seen.

What about the quality of the hLNA? Fig 2 shows a simulated protein trajectory and the

corresponding protein distribution of a representative bistable circuit with nonlinear G. The

local mean values and variances extracted from those simulated data are compared with the

estimates based on the classical and hybrid LNA. Obviously, the simulated local means corre-

spond well to the stable fixed points of the hybrid deterministic model, while large deviations

occur when the classical deterministic model is used. Reliable estimates of local mean values

are crucial for the quality of the linear noise approximation, since they are the points around

which linearization is performed. As expected, the local variances obtained from hLNA are

much better estimates than those calculated with classical LNA. This observation is corrobo-

rated by the analysis of further exemplary reaction systems in Fig C in S1 File. Therefore, from

now on, the novel hLNA approach is used for all analyses and discussions of local means and

Fano factors.

From a protein-mRNA phase plot of the hybrid deterministic model, most of the decisive

circuit properties can be read (cf. Fig B (panel A) in S1 File). Therefore, such a plot can—at

least qualitatively—support the construction of circuits with certain noise patterns.

Quality of the reduced model and of the determination of modes

As already mentioned, the condition ν� 1 is crucial for model reduction, since otherwise, the

translation events could not be condensed into a single reaction. However, the quality of the

reduced model depends on further conditions:

An excellent quality is assured when G, the translation propensity, is linear: Under this con-

dition, each transcription event does indeed lead to a geometrically distributed burst with
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mean α�, independently of the current mRNA copy number. The mRNA level can thus be eas-

ily eliminated from the model.

If G is nonlinear, the mRNA level has an impact on the burst size and can thus only be elim-

inated if a reasonable assumption about its distribution can be made based on the current pro-

tein level. We have assumed that between bursts, the mRNA distribution is Poisson with a

mean F(s) that steadily adapts to the current protein copy number (pseudo-steady-state assup-

tion), but that the distribution does not change during a burst; under this condition, burst

sizes are again geometrically distributed with a dynamic mean α(F(s)). One criterion that ful-

fills this condition is a transcriptional propensity F that is constant in the region of protein

fluctuations.

If none of the criteria, linear G and constant F, is fulfilled, the average magnitude of bursts

might systematically be over- or underestimated, leading to a reduced model whose protein

distribution has too broad or too narrow peaks. However, a number of simulations showed

that mode estimation is still robust, cf. the S1 File, Section 3.3.

Interpreting the influence of circuit properties on Fano factors

From this section onward, we will interpret the obtained formula from a biological point of

view. First of all, the impact of circuit properties on the magnitude of noise will be examined

based on Eqs (16)–(18). The Fano factors depend on the four parameters f, g, r, and ν: f and g

Fig 2. Quality of the classical and hybrid linear noise approximation. (A): Graphical determination of stable fixed

points according to Eqs (13) and (14). The intersection points marked in red and green correspond to the stable fixed

points of the classical and hybrid deterministic model, respectively. (B): Simulated protein time course with a

transition from the inactive to the active expression state. The locations of the stable fixed points according to (A) are

indicated by dashed lines. (C): Protein distribution (histogram) of the simulated time course. In addition to the

estimated local means, the variance obtained by classical and hybrid LNA is visualized by colored areas

(mean ± standard deviation). (D): Quantitative comparison of estimates with values extracted from the simulation.

Functions and parameters: F sð Þ ¼ 0:022þ 1:46 s4
s4þ584, G mð Þ ¼ 281 m

mþ0:51
, ν = 0.01.

https://doi.org/10.1371/journal.pone.0194779.g002
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can be interpreted as the local sensitivity of the transcription and translation rate to fluctua-

tions in the protein and mRNA level, respectively. Besides that, the protein-to-mRNA ratio

r and the relative time-scale of protein dynamics ν play a role. Note that if G is linear, i.e.

G(m) = g �m, the relation r = g holds.

We start by considering the effect of f, which fundamentally characterizes the system by

defining the mode of autoregulation. In case of missing local feedback (f = 0), the distribution

of M in the linearized system is Poissonian (i.e. η�(M) = 1), which is in line with the expecta-

tions, since under these conditions, mRNA dynamics follow a standard birth-death-process.

Subsequent noise propagation from M to S leads to a super-Poissonian protein distribution

(η�(S)> 1). With increasing positive feedback strength (f> 0), noise is amplified until finally,

η�(M) and η�(S) diverge to infinity for f! g−1. Note that f< g−1 holds in any case, since other-

wise, the fixed point (m�, s�) would not be stable (see S1 File, Section 2.2.2). In contrast, nega-

tive autoregulation (f< 0) leads to protein noise attenuation. Repression can be strong enough

to create sub-Poissonian protein distributions (η�(S)< 1) with n

1þn
as a lower bound. The effect

of autorepression on mRNA noise is slightly more complex: for decreasing f< 0, mRNA noise

first decreases to sub-Poissonian levels but then increases again, indicating over-regulation.

This shows that efficient protein noise attenuation can be achieved through negative feedback

at the expense of enlarged mRNA fluctuations. In Fig 3A, η�(M) and η�(S) are illustrated as

functions of f. From the graphs, one can read the regions where the fluctuations are super- and

sub-Poissonian, respectively. η�(M) = η�(S) holds if either r f
g ¼ 1 or r f

g ¼ � n.

Fig 3. Results of the linear noise approximation. The plots show the dependence of η�(M) (dashed line) and η�(S)

(solid line) on f with fixed values of g, r, and ν. In panels (B) to (D), parameters g, r and ν are varied (colored lines) in

order to illustrate their effect on the noise of the system. The parameters are as follows: (A): g = 1, r = 100, ν = 1; (B): g
is halved compared to (A), i.e. g = 0.5, r = 100, ν = 1; (C): r is doubled compared to (A), i.e. g = 1, r = 200, ν = 1; (D): ν is

halved compared to (A), i.e. g = 1, r = 100, ν = 0.5.

https://doi.org/10.1371/journal.pone.0194779.g003

Noise in multistable genetic circuits

PLOS ONE | https://doi.org/10.1371/journal.pone.0194779 March 26, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0194779.g003
https://doi.org/10.1371/journal.pone.0194779


The effect of a decrease in the translational sensitivity g is as follows: In case of positive feed-

back, it reduces noise propagation through the circuit and therefore leads to smaller mRNA

and protein fluctuations. Under negative feedback, η�(M) is amplified. η�(S) is increased if the

local negative feedback is strong (f < � 2ng
r� ng2) and if

n g2

r < 1, otherwise reduced. The effects are

illustrated by the colored lines in Fig 3B.

Increasing the protein-to-mRNA ratio r reduces protein fluctuations, but augments mRNA

fluctuations (cf. Fig 3C), unless G is linear. In this case, a change in r is coupled to a change in

g. An increase in r = g then leads to an increase in η�(S) if f> −ν, and to an increase in η�(M) if

f> 0 or if f< −ν. Otherwise, the Fano factors are reduced.

Concerning the time scales of mRNA and protein dynamics, the formula show that slowed

protein dynamics (ν #) lead to protein noise attenuation if r f
g < 1, but promote protein fluctu-

ations if r f
g > 1. mRNA noise is diminished if 0 < r f

g < 1 and enhanced otherwise (cf. Fig

3D). The expression r f
g can be interpreted as the ratio of capabilities to transmit noise from

mRNA to protein and back from protein to mRNA. Under positive feedback, the system gets

less noisy if the reaction with the predominant capability of noise propagation is slow, so that

noise is partially averaged out.

All in all, it can be stated that a strong influence of mRNA fluctuations on protein dynamics

(high g, low r) and high positive feedback strength (high f) intensify protein noise. Sub-Poisso-

nian protein distributions can only be achieved through negative feedback. The effects can be

supported by an appropriate choice of ν.

Influence of bursts

Peaks in the protein time course. By looking at the burst measures α� and ω�, we can bet-

ter characterize the temporal structure of protein noise. To do so, we first like to illustrate and

interpret the measures and thereby get a more intuitive understanding of them:

When the mRNA half-life is short (ν� 1) and the burst frequency ω� is low, the single

burst events generate distinct peaks in the protein time course. Under these conditions, the

measures can be read directly from the shape of mRNA and protein fluctuations over time.

The procedure is developed and explained in the S1 File, Section 4.1; here, we only list the

most important facts: The burst size α� corresponds approximately to the average height of

protein peaks β�, i.e. to the amount by which the protein level increases due to a burst. To be

more precise, α� = β� � (1 + ν). The factor 1+ ν takes account of the amount of proteins that are

instantaneously degraded during the burst. It can usually be neglected since mRNA half-life is

much shorter than the half-life of most proteins. The burst frequency ω� can be estimated

from the average temporal distance of the peaks. However, when the mRNA level rises, the

measures cannot be extracted directly anymore since the peaks might overlap and single bursts

cannot be clearly distinguished. Positive feedback promotes overlaps as well, as will be shown

in the next section.

From Eq (7), we can tell by which circuit modifications the burst measures can be varied

without affecting the average protein level s�: α� can be raised by increasing the average pro-

tein-to-mRNA-ratio r or the time-scale parameter ν. The burst frequency is then decreased

accordingly. An increase in r implies an increase in the scaled translation propensity G and a

simultaneous decrease in the scaled transcriptional activity F, so that the mRNA level m� is

reduced while s� is kept constant. An enhancement of ν is achieved by an acceleration of the

protein dynamics (scaled translation and degradation) relative to the mRNA dynamics. Note

that although the two kinds of modifications (increase of r or ν) can have identical effects on

Noise in multistable genetic circuits

PLOS ONE | https://doi.org/10.1371/journal.pone.0194779 March 26, 2018 12 / 20

https://doi.org/10.1371/journal.pone.0194779


α�, the effect on the maximum peak height β� is less pronounced when ν is increased due to

the enhancement of protein degradation.

Links between Fano factors and burst characteristics. In this section, we interpret burst

measures and Fano factors in the context of each other. In the easiest case of an unregulated

transcription rate (f = 0) and a linear translation rate (G(m) = g �m = r �m), Eq (18) can be sim-

plified to

Z�ðSÞ ¼ 1 þ
a�

1 þ n
¼ 1 þ b

�
: ð21Þ

Usually, ν is so small that it is negligible, i.e. a direct relation between the protein burst size and

the variability of fluctuations exists (cf. [28]). If f is nonzero due to transcriptional feedback,

we obtain

Z�ðSÞ ¼ 1 þ
a� þ f � r

ð1 � f � rÞ � ð1 þ nÞ
: ð22Þ

Obviously, feedback provides large flexibility to adjust η�(S) via f while keeping α� and ω�

constant. In the following, we try to fully express η�(S) in terms of “extended” bursting

properties: By calculating the local derivatives of the state-dependent burst measures

a0
�≔ d aðmÞ

d m jm¼m� ¼
g m�� �Gðm�Þ
ðm�Þ2

n ¼
g

o�
� a�

o� n
and o0

�≔ d oðsÞ
d s js¼s� ¼

f
n

(here, Eqs (5) and (6) are dif-

ferentiated and Eq (7) is used), one obtains

f ¼ o0
�
� n and g ¼ a�=n þ a0

�
� o�: ð23Þ

The first relation in Eq (23) shows that the presence of feedback leads to a state-dependent

burst frequency (ω0� 6¼ 0), so that the bursts are inhomogenously distributed over time. Posi-

tive feedback, for example, promotes the temporal clustering of bursts, as can be seen in Fig

4A: The increase in the protein level during a burst stimulates further bursts, while bursts are

rare when the protein level is low. Overlapping bursts appear as rare “super-bursts” with large

amplitudes. From the previous analysis of the impact of f, we can tell that this enhances η�(S).

The second equation in (23) shows that the translational sensitivity g is determined by the

burst size in and around the steady state (α� and α0�). The burst size is state-dependent if G is

nonlinear. For example, if G is concave, α0� < 0, i.e. an increase in mRNA is accompanied by a

reduction of protein peaks heights. Compared to an almost identical system with same α�, but

with linear or convex G, the translational sensitivity is therefore reduced.

By replacing f and g in Eq (17) with the above expressions, one sees how the inhomogenei-

ties affect the Fano factor:

Z�ðSÞ ¼ 1 þ
ða0
�
� o� � n þ a�Þ � ða0

�
� o� � n þ a� � ð1 þ o0

�
ÞÞ

a� � ð1 þ nÞ � ð1 � o0� � ða0� � o� � n þ a�ÞÞ
: ð24Þ

This formula finally captures the connection between η�(S) and protein fluctuation patterns.

In contrast, Eq (17) is better suited for relating the Fano factor to circuit properties. Note that

ν (or, after reformulation, r) cannot be eliminated from the above expression, i.e. η�(S) still

contains information which is not covered by α(m) and ω(s). Neither can the burst characteris-

tics be estimated based on the sole knowledge of η�(S). This demonstrates that both the burst

size and the Fano factor contain relevant information on characteristics of protein

fluctuations.

Links between the skewness of the protein distribution and bursts. A comparison of

the modes (Eq (12)) with the local mean values s�, which obey s� ¼ �GðFðs�ÞÞ, shows the influ-

ence of the burst size on the skewness of the protein distribution: For very small bursts, the
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mode corresponds approximately to the mean (like in a standard Poisson distribution). When

the burst size is increased, the mode is shifted to the left (right-skewness). This makes sense as

the burst properties determine whether the protein level constantly fluctuates around the

mean value (small α�, large ω�), or whether it is mostly below average with rare peaks (large α�,
small ω�).

Fig 4B illustrates the graphical determination of fixed points and modes and compares the

estimates with simulated distributions. Obviously, the prediction is very good, although in this

system, skewness is so pronounced that despite the system being monostable, a second mode

arises at low protein levels.

Application: Modulating the robustness of fixed points in a bistable

feedback system

Our results are now used to design bimodal regulatory circuits with specific noise patterns.

The noise level of a protein expression state is associated with its robustness, as large fluctua-

tions facilitate random transitions to the other state. However, Fano factors and burst charac-

teristics are insufficient for quantitatively predicting transition probabilities (e.g., in terms of

mean first passage times). They rather serve as qualitative measures of robustness with which

analogous circuits can be compared.

System with linear translation rate. For a start, a bistable system with a linear translation

propensity G is regarded. Bistability is achieved by a sigmoid shape of the transcription

Fig 4. Protein bursts cause peaks in protein time courses and skewed protein distributions. (A): mRNA (upper

plots) and corresponding protein time courses (lower plots) of reaction systems without (left) and with (right) positive

feedback. The average burst sizes and frequencies are identical in the two systems, but the transcription events are

temporally clustered under positive feedback, leading to rare super-bursts. The functions used are F(s) = a + v � s and

G(m) = g �m with a = 0.2 and v = 0 in the system without feedback and a = 0.05 and v = 0.075 in the system with

feedback. In both cases, g = 10 and ν = 1. (B): The upper plot shows the graphical determination of the location of

modes. Two modes are predicted in the monostable system (modes: rose diamonds, fixed point: green filled circles).

The protein distribution in the lower figure shows that the prediction is exact. Here, F sð Þ ¼ 7=600þ 0:1 � s4
s4þ644,

G(m) = 2000 �m, ν = 0.01.

https://doi.org/10.1371/journal.pone.0194779.g004

Noise in multistable genetic circuits

PLOS ONE | https://doi.org/10.1371/journal.pone.0194779 March 26, 2018 14 / 20

https://doi.org/10.1371/journal.pone.0194779.g004
https://doi.org/10.1371/journal.pone.0194779


propensity F, which commonly emerges from cooperative feedback. The general formula are:

F sð Þ ¼ aþ v sn
Kn
s þsn

, where a and a+ v are the basal and maximum transcription propensities,

respectively, Ks is the microscopic dissociation constant and n is the Hill coefficient, and

G(m) = g �m.

Since g = r, the local Fano factors can only be adjusted by three parameters, ν, g, and f. The

parameters ν and g are identical at both stable expression states and therefore only suitable for

adjusting the overall noise strength in the system. The burst size α� = g � ν is constant through-

out the system as well. A decoupling of the noise levels at the two states can thus only be

achieved by a difference in f.
For generating a unidirectional activating switch that is e.g. suitable for competence regula-

tion, the feedback function F should be saturated in the competent state, while it is sensitive to

protein fluctuations in the inactive state, thereby promoting superbursts.

Systems with nonlinear translation rate. Much larger flexibility is reached when the

translation propensity is nonlinear. Here, we demonstrate this fact based on the function

G mð Þ ¼ u m
Kmþm

, a typical Michaelis-Menten function. As before, ν is only suitable for regulat-

ing overall noise. However, as G depends on two parameters, the degrees of freedom that are

available to adapt noise are increased. g and r are neither necessarily identical nor constant

throughout the system anymore. Let us now check whether the given shape of G promotes a

unidirectional switch.

First, we qualitatively compare the Fano factors at the two stable steady states

ðm�
1
; s�

1
Þ < ðm�

2
; s�

2
Þ. One can show that if G is (strictly) concave, �G is (strictly) concave as

well (S1 File, Section 4.2). As a consequence, g decreases with increasing m�. Moreover, also

the quotient
g
r is smaller in the high expression state. From Eq (17) we can tell that this sup-

ports the required noise pattern, i.e., that Z�
1
ðSÞ > Z�

2
ðSÞ. Moreover, due to the concavity of

�G, a�
1
> a�

2
. That means that in the inactive state, rare but large protein peaks can lead to a

random stimulation of some cells. In the active state, peaks have reduced amplitudes and

fluctuations are more symmetrical.

A visual illustration of these results can be found in Fig B in S1 File, where different kinds

of plots show the dependence of the noise measures on circuit properties. In the following sec-

tion, the analytical considerations are verified by stochastic simulations.

Stochastic simulations of a bistable system

In Fig 5, three different bistable systems with cooperative autostimulation are simulated. In

panel (A), the translation rate depends linearly on m. Therefore, the value of the burst size α�

is equal at both fixed points. Since protein dynamics are chosen to be much slower than

mRNA dynamics, the bursts in the inactive state are too small to randomly activate the system.

In panel (B), the value of ν is increased. As a consequence, the burst sizes α� and the Fano fac-

tors η�(S) are amplified at both fixed points. Protein bursts in the inactive state now allow for a

random activation of the system. However, the active state is likewise destabilized. The system

thus switches between the two states. Panel (C) shows that a saturated translation rate leads to

significant differences in α� and in η�(S) at the two stable steady states. Clear bursts can be

observed in the inactive state, leading to an activation of a subpopulation of cells, while protein

noise is attenuated in the active state. The active state is therefore highly robust, and the simu-

lated cells show a clearly bimodal protein distribution. For a more quantitative view on the

robustness of the states, first passage times are extracted from simulation data. They are dis-

cussed in the S1 File, Section 4.3.
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Note that in the bistable systems we have just regarded, the local feedback sensitivity f is

small in both expression states due to the sigmoid shape of F. Therefore, we expect the results

of hLNA and burst characterization to be reliable.

Discussion

In this study, we have systematically investigated mRNA and protein noise in a single-gene

autoregulatory system. The results are in accordance with previous studies about the impact of

simple feedback and of reaction time scales on noise [8–10]. Here, we have put special effort

into the analysis of a system that is multimodal, and whose multimodality is related to deter-

ministic multistability. For this kind of multimodal distributions, an analytical and biologically

reasonable approach by which they can be unequivocally split into unimodal ones does not

exist. By contrast, a multimodal distribution that is generated by a slowly switching component

(e.g. promoter state) is often a mixture of few unimodal distributions and can be modeled as

such with the help of conditional probabilities [33, 34]. Coming back to our system, the main

difficulty is that the “local” measures by which we like to quantify state-specific noise are only

hypothetical values. Because of that, the quality of estimates was evaluated by comparing them

with values extracted from stochastically simulated time courses, in which distinct expression

states could be clearly identified (cf. Fig 2 and Fig C (panel D) in S1 File).

Fig 5. Stochastic simulations of bistable autostimulatory reaction systems. In the upper part, ws-wm-plots of three

different regulatory systems with similar protein levels in the active states are shown. The plots in the lower part show

the results of 500 simulations of corresponding protein time courses, initialized in the inactive state. The protein

distributions are visualized by color plots. One exemplary time course is highlighted in white. (A): Linear translation

rate. Protein bursts are too small to activate the system. F sð Þ ¼ 0:49þ 5 s4
s4þ1104, G(m) = 40m, ν = 0.05. (B): Bursts

emerge through accelerated protein dynamics (increase in ν), leading to random activation and inactivation events.

Parameters as in (A), except for ν = 0.4. (C): System with saturated translation rate. Bursts occur in the inactive state,

but are attenuated in the active state, leading to a bimodal, robust activation of the system. F sð Þ ¼ 0:2þ 5:12 s4
s4þ914,

G mð Þ ¼ 290 m
mþ2

, ν = 0.2.

https://doi.org/10.1371/journal.pone.0194779.g005
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For the quantification of noise, we suggest an analysis of both the local Fano factors and the

local burst characteristics for each stable protein expression state. By combining the results,

the intensity and shape of fluctuations can be rated. The calculation of local Fano factors was

originally based on the linear noise approximation, which yields exact results when all reaction

propensities are linear. In the nonlinear case, closed-form approximations could be obtained,

but their quality was often poor. Alternative methods had been developed by other groups, for

example effective mesoscopic rate equations (EMREs) [35] and the inverse omega square

method [36] that incorporate terms of higher order than LNA. For monostable systems, these

methods were shown to greatly improve the quality of the estimates. However, they are not

applicable to multistable systems. We have therefore developed a novel approach that is

inspired by LNA, but in which the original deterministic description is replaced by a novel

hybrid-deterministic model. This model takes fluctuations of the discrete mRNA copy number

into account and was shown to better describe the average behavior of the reaction system.

We like to point out that—in contrast to model simplifications where some stochastic variables

are replaced by deterministic ones [30, 31]—we only use the deterministic description for line-

arizing the fully stochastic model (hybrid LNA). The noise estimates obtained through this

approach proved to be much better than the ones obtained through classical LNA. Even

though only single-gene systems have been regarded in this work, the approach can be applied

to systems involving multiple genes (and, hence, multiple mRNA species) by describing every

nonlinear translation reaction by a hybrid deterministic rate. Furthermore, systems with more

than two stable expression states can be analyzed as long as the hybrid deterministic model

reflects this multimodality. Even systems with fluctuating low-copy-number species other than

mRNA could be regarded, but it might be advantageous to replace the Poisson probability

mass function by another closed-form distribution.

For the characterization of translational bursts, we have introduced the state-dependent

burst size and burst frequency as a generalization of the definitions in [28, 29]. Our expressions

are consistent with the formulation of the hybrid-deterministic model, so that connections

between the protein Fano factor and the structure of protein bursts could be identified. We

have also shown analytically that large bursts may lead to a right-skewness of the distribution.

In an extreme case, the connection between multimodality and multistability may be disrupted

(as is shown in Fig 4 and discussed extensively in [32]). If this happens, the hLNA method is

not capable of characterizing all peaks anymore. However, our method to predict the location

of modes still works reliably. By comparing the number and location of modes and stable

steady states (according to the hybrid-deterministic model), one can therefore decide a-priori

whether the application of the hLNA is appropriate.

Besides the computational analysis, we have proposed methods for studying the noise mea-

sures graphically (cf. Fig C in S1 File): A deterministic protein-mRNA-phase-plot can help to

predict the variance of fluctuations qualitatively. Furthermore, a ws-wm-plot (plot of propensi-

ties) can be used for evaluating the burst size. The location of fixed points and modes can also

be determined and compared graphically, giving information on the skewness of the protein

distribution. All these plots support an intuitive evaluation of regulatory systems with respect

to their noise patterns and are useful tools for the design of synthetic circuits. We can now pre-

dict how modulating the strengths of the promoter, feedback, or ribosomal binding site, or an

engineering of the mRNA or protein stability changes the noise pattern. However, we need to

mention that despite our methods yielding measures of local noise, they can only make quali-

tative predictions on transition probabilities or population distributions.

As an example, we have found that if the translation propensity is linearly dependent on the

mRNA level, the noise levels of the expression states in a single-gene bistable system are cou-

pled. In contrast, nonlinear translation, which might occur due to global effects like cellular

Noise in multistable genetic circuits

PLOS ONE | https://doi.org/10.1371/journal.pone.0194779 March 26, 2018 17 / 20

https://doi.org/10.1371/journal.pone.0194779


resource limitation, leads to an increased flexibility in the interplay of the mRNA and protein

dynamics so that various noise patterns can be created. This provides a possible explanation

on how certain stochastic decision-making processes can proceed reliably. In S. mutans, for

example, upregulation of the protein ComS leads to the entry of a cell into genetic competence.

Experiments have shown that production of ComS occurs in a bimodal fashion [20], and this

was attributed to deterministic bistability caused by a positive feedback loop [37]. However,

simple stochastic simulations of systems with linear translation rates like those in Fig 5A and

in Fig 5B showed either a lack in responsiveness or uncontrolled switching between ON and

OFF states—a fact that remains obscure in deterministic modeling. Upregulation of comS
expression stimulates the synthesis of numerous downstream gene products. To be functional

and economic, the high expression state should persist for a certain time, before it is shut off in

a controlled manner. On the other hand, the intense production of all the other proteins might

lead to a limitation in ribosomal capacity. This would result in saturation of the translational

propensity function G at high comS mRNA levels. As our analyses have shown, concavity of G
can indeed circumvent the problem of stochastic deactivation. In an analogous manner, it can

be shown that convexity of G would destabilize the active state while making the inactive state

more robust.

All in all, we have established a mathematical framework for exploring the capability of a

minimal autoregulatory circuit to modulate noise. It leaves room for various extensions: For

example, promoter state switching and transcriptional bursts can be included. To do so, the

above mentioned model in [34] could be used as it is based on LNA as well and therefore com-

patible to our approach. Furthermore, the dynamics of cooperative feedback could be studied

in more detail, instead of describing it by a simple transcriptional function [38, 39].
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