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Purpose: Uveitis is associated with accumulation of exudate in the vitreous, which
reduces fundus visibility. The condition is assessed in patients by subjectively
matching fundus photographs to a six-level (NIH) or nine-level (Miami) haze scale. This
study aimed to develop an objective method of assessing vitreous haze.

Methods: An image-processing algorithm was designed that quantifies vitreous haze
via high-pass filtering, entropy analysis, and power spectrum integration. The
algorithm was refined using nine published photographs that represent incremental
levels of fundus blur and applied without further refinement to 120 random fundus
photographs from a uveitis image library. Computed scores were compared against
the grades of two trained readers of vitreous haze and against acutance, a generic
measure of image clarity, using Cohen’s j and Gwet’s AC statistics.

Results: Exact agreement between algorithm scores and reader grades was
substantial for both NIH and Miami scales (j ¼ 0.61 and 0.67, AC ¼ 0.82 and 0.92).
Within-one (j ¼ 0.78 and 0.82) and within-two (j ¼ 0.80 and 0.84) levels of
agreement were almost perfect. The correspondence was comparable to that
between readers. Whereas, exact (j ¼ 0.45 and 0.44, AC ¼ 0.73 and 0.75), within-one
(j ¼ 0.69 and 0.68), and within-two (j ¼ 0.73 and 0.72) levels of agreement for the
two scales were moderate to substantial for acutance calculations.

Conclusions: The computer algorithm produces a quantitative measure of vitreous
haze that correlates strongly with the perception of expert graders.

Translational Relevance: The work offers a rapid, unbiased, standardized means of
assessing vitreous haze for clinical and telemedical monitoring of uveitis patients.

Introduction

Uveitis is an inflammatory condition that can
affect different anatomical locations of the eye.
Infection, trauma, systemic diseases, autoimmune
disorders, and others can cause intermediate, poste-
rior, or panuveitis with characteristic accumulation of
inflammatory cells and proteins in the vitreous gel.1

Those accumulations deteriorate the vitreous clarity
to various degrees as a function of the disease
process.2 On clinical examination, the vitreous ap-
pears hazy, which leads to decreased visibility of the
vascular markings of the retina and the optic nerve.
The haze can quickly increase when the inflammation

is not controlled and decrease or completely resolve
with treatment of uveitis.3 It is accepted as a surrogate
marker for the disease activity and has been validated
as a primary outcome measure for pharmacologic
clinical trials in uveitis.2–5 Therefore, accurate grading
of the vitreous haze has significant importance.

Multiple attempts to characterize the levels of
vitreous haze have been historically published as
clinical scales with variable steps of stratification.
First, in 1959, Kimura and associates6 reported a five-
level descriptive scale based on the clarity of fundus
details such as the optic nerve head, blood vessels, and
nerve fiber layer. Later, in 1985, Nussenblatt and
associates7 from the NIH (National Institutes of
Health) described a photographic scale for clinical
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grading that identified six levels of vitreous haze. The
NIH scale is widely employed and currently accepted
for use in clinical trials by the FDA (US Food and
Drug Administration). It is an ordinal scale, meaning
that successive levels do not represent numerically
equal steps in haziness. In 2010, Davis and associates8

therefore introduced a standardized nine-level photo-
graphic grading scale that has quantitative signifi-
cance. The scale, referred to as the Miami scale, was
created using calibrated Bangerter filters to blur
fundus photographs obtained from a normal subject
by linearly graded amounts. The gradations were
chosen to correlate with the logarithm of Snellen
visual acuity measurements. Interobserver agreement
was better than that of the NIH scale in a reading
center environment and equally good in a clinical
setting, considering that the Miami scale has finer
steps.9–11 Since the Miami scale increases the number
of levels and equalizes their amounts of blur, it can
offer better discrimination of inflammatory status and
greater subject inclusion in clinical studies. Many
patients do not qualify for clinical studies because
they have a low level of haze that the NIH scale
cannot resolve.11

Despite significant improvement in digital imaging

and refinement of clinical scales, the grading of
vitreous haze remains subjective. It is currently
assessed with ophthalmoscopy by uveitis specialists
in a clinic or from digital fundus photographs by
independent trained graders in a reading center.
Capitalizing on the newer generation of computer
processors, software enhancements in image-process-
ing algorithms, and improvements in the grading
scale, we sought to design and validate an image-
processing algorithm that can provide automated
objective quantification of vitreous haze from digital
fundus photographs.

Methods

Study Design and Datasets

This was an experimental case study to assess a
clinical research methodology, which is a computer
algorithm for automated grading of vitreous haze.
The algorithm was developed and tested at the
University of South Florida (USF) Eye Institute in
adherence to the tenets of the Declaration of Helsinki.
The nine digital color fundus photographs that
comprise the Miami scale of vitreous haze were used
as a reference for algorithm development8 because of
better image quality as compared to the film-based
NIH scale. The photographs were stored as noncom-
pressed TIF (tagged image format) files and cropped
to an area of 5123 512 pixels centered on the macula.
The image cropping was necessary to remove the
black featureless mask that surrounded the fundus in
raw photographs. Figure 1 illustrates the reference
dataset, which depicts a representative fundus with
incremental levels of optical blur. The reference
images were labeled according to the clinical grade
of vitreous haze that they represent. A test dataset of
120 digital color fundus photographs was used for
algorithm validation. The photographs were random-
ly selected from a clinical trial library of uveitis
patient images that have varying degrees of vitreous
haze and minimal or absent corneal and lens
opacities. Each photograph was stored as an uncom-
pressed TIF file and cropped to a 512 3 512-pixel
image centered on the macula.

The test dataset of fundus photographs was graded
for vitreous haze using the Miami and NIH scales by
two trained readers (G1: LM, G2: LC) with 4 years of
grading experience in the NIH-funded Uveitis Read-
ing Center of the USF Eye Institute. Details of the
grading procedure have been published.9 In short, test
images were individually displayed on a calibrated

Figure 1. Reference set of fundus images used for algorithm
development. The images are cropped versions of the original
photographs published in the Davis study.8 They are numbered
from 0 to 8, corresponding to grades of increasing vitreous haze in
that study.
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computer monitor in a quiet, dark room in two
batches so as to minimize reader fatigue. Readers
matched the perceived blurriness of the fundus to one
of nine reference images of the Miami scale or one of
six reference images of the NIH scale. The reference
images were sequentially displayed on the computer
monitor next to the test image. Readers were masked
from each other’s grading, any previous grading, and
any patient information regarding the test images.
The results were recorded as grades 0 to 8 on the
Miami scale and as grades 0,þ0.5,þ1,þ2,þ3, andþ4
on the NIH scale.

Vitreous Haze–Grading Algorithm

The haziness of fundus images was quantified by
applying a series of image-processing techniques
coded in a computer program (MATLAB; Math-
Works, Natick, MA). The techniques include stan-
dard high-pass filtering, local entropy analysis, and
power spectrum integration.12 Figure 2 outlines the
vitreous haze–grading algorithm and illustrates the
output at several steps of analysis for reference images
of high (level 0) and low (level 5) clarity. The first step
of the algorithm is to convert the color image to
grayscale and invert contrast so that dark blood
vessels map to numerically large pixel values and thus
appear white (step i). Next, the inverted image is
processed with a high-pass spatial filter that subtracts
from sequential pixels a weighted average of pixel
values with a large (32 3 32) surrounding region:

F i; jð Þ ¼ I i; jð Þ �
X16

m¼�16

X16
n¼�16

I iþm; jþ nð Þ=1024; ð1Þ

where Iði; jÞ is the inverted contrast of pixel ði; jÞ. The
high-pass filter removes diffuse variations in image
contrast so that fine features such as the retinal
microvasculature appear on a more spatially uniform
background (step ii). Next, the local entropy is
calculated from the probability distribution of pixel
values within a small (3 3 3) window centered on
sequential pixels of the filtered image:

Sði; jÞ ¼
X255
n¼0

pijðnÞlog2pij nð Þ; ð2Þ

where pij is the probability distribution of Fði; jÞ with
border pixels padded by symmetrical values. The local
entropy analysis has the effect of enhancing fine
features that are most affected by haze (step iii). Next,
the two-dimensional power spectrum of the entropy
image is computed by Fourier analysis (step iv):

Pðx; yÞ ¼
X255
i¼0

X255
j¼0

S i; jð Þe�j2pðixþjyÞ=255
�����

�����
2

; ð3Þ

where x and y are spatial frequencies in the i and j
directions, respectively. Finally, a number that we call
the ‘‘clarity score’’ is calculated by averaging the
power spectrum over 3608 of orientation in 108 steps
and then summing the result over a fixed band of
spatial frequencies (step v):

clarity score ¼
XKU

k¼KL

X36
h¼1

Ph x; yð Þ=36; ð4Þ

where Phðx; yÞ is the power spectral density along
orientation h and KL and KU are the lower and upper
limits of the integration band. The band limits were
empirically determined to maximize sensitivity to
variations in image clarity (see Fig. 5 in Results).
The clarity score is inversely related to image
blurriness, so it is converted to a ‘‘haze score’’ to
facilitate comparisons with reader grades of vitreous
haze:

haze score ¼ MH

clarity score
; ð5Þ

where MH is a constant that maps scores into the
numerical range of the Miami scale.

Acutance Grading of Vitreous Haze

The performance of the haze-grading algorithm
was evaluated against a standard photographic
measure of image sharpness known as acutance.12

The acutance calculation followed that used previ-
ously to quantify the clarity of optic nerve fiber
striations in fundus photographs.13 In short, acutance
describes the gradient of pixel values within a region
of interest (ROI) of an image. It was specified by
computing the squared difference between a given
pixel and its eight neighbors and averaging over all
pixels within the ROI:

acutance ¼
X
ði;jÞ2ROI

Xiþ1
m¼i�1

Xjþ1
n¼j�1

ðI i; jð Þ � I m; nð ÞÞ2

8N

 !
;

ð6Þ
where N is the total number of pixels in the ROI. This
means acutance is zero for a spatially uniform ROI
and a large positive number for a ROI having many
edges. Since acutance is a metric of image clarity like
the clarity score, it was similarly converted to what we
call the ‘‘acutance score’’ in order to compare with
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reader grades of vitreous haze:

acutance score ¼ MA

acutance
; ð7Þ

where MA is a constant that maps scores into the

numerical range of the Miami scale.

Statistical Analysis

The clinical grading scales use integer numbers,

whereas the two image-processing algorithms gener-

ate real numbers. To evaluate algorithm performance,

haze and acutance scores were therefore rounded to

the nearest integer. A score of 1 equated to reader

grade 0 on the Miami scale, score 2 to reader grade 1,
and so forth. The NIH scale is qualitative and
nonlinear, so a score of 1 was assigned to reader
grade 0, score 2 to grade þ0.5, score 3 to grade þ1,
score 4 to grade þ2, scores 5 and 6 to grade þ3, and
score 7 or more to gradeþ4. The agreement between
readers and between readers and algorithms was then
assessed in MATLAB for the two grading scales using
Cohen’s j statistic with linear weighting. A j-value of
0 to 0.2 indicates slight, 0.2 to 0.4 fair, 0.4 to 0.6
moderate, 0.6 to 0.8 substantial, and 0.8 to 1.0 almost
perfect agreement (Table).14 j-Values were calculated
for exact, within-one, and within-two levels of
agreement, as described for clinical grading.11 It is

Figure 2. Automated method of grading vitreous haze. (A) Sequence of image-processing steps (i–v) performed by the algorithm to
compute a haze score from a fundus photograph. (B) Results of image processing after steps i–iii of the algorithm for images 0 and 5 of
the reference set in Figure 1.
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important to note that the Table is an interpretation
guideline and that j-values may underestimate the
level of agreement when the grade distribution is
nonuniform.15 To address chance association due to
skewed data, Gwet’s AC statistic was also calculat-
ed.16 It similarly ranges from 0 to 1.

Results

Figure 3A illustrates the correspondence of vitre-
ous haze grades between two expert readers using the
Miami scale for the test set of 120 fundus images
acquired from uveitis patients. Reader grades show
almost perfect agreement (exact: j¼ 0.81; within-one:
j¼ 0.98; within-two: j¼ 1.00), as might be expected
for a reading center. It may be seen that their grade
distributions are skewed toward lower values since
most patients do not present severe cases. Exact
agreement is even higher (AC¼ 0.96) when skewness
is taken into account. Reader agreement was sub-
stantial to almost perfect using the NIH scale (exact: j
¼ 0.71, AC¼ 0.86; within-one: j¼ 0.79; within-two: j
¼ 0.82). Figure 3B shows representative test images
that both readers matched to each reference image of
the Miami scale (Fig. 1). It should be noted that the
fundus images differ not only in clarity but also in
coloration, vascular distribution, and other nonde-

script features. The breadth of variation makes
accurate and reliable discrimination of subtle differ-
ences in image clarity difficult for the untrained visual
system. Considerable time, experience, and attention
are thus needed to perform the haze-grading task with
the high level of agreement demonstrated by the
expert readers.

One method of automating the grading process
could be to compute acutance, which measures the
sharpness of edges within a ROI in the image. The
acutance value will depend on the ROI size used for
computation, so a range of sizes were explored to
determine which gives the best performance. Figure
4A shows representative ROI locations used for the
analysis. The seven locations were selected to include
blood vessels of different thickness since fine features
of high contrast have greatest impact on acutance
measures. Figure 4B plots the dependence of acutance
values on ROI size for the selected ROI locations.
Acutance was minimal for very large and small ROIs
and maximal for ROIs between 9 and 17 pixels. The
peak tended toward larger values for thick blood
vessels and smaller sizes for thin vessels. The analysis
produced similar results for five random test images
that both readers judged to have high clarity (level 0).
A 17 3 17-pixel ROI was therefore considered to
optimize performance and applied to all 120 test

Figure 3. Performance of expert graders. (A) Comparison of grades of vitreous haze by two trained readers for 120 fundus images taken
of random patients with varying levels of vitreous haze. Histograms above and aside the graph plot the distribution of grades that reader
1 and 2, respectively, assigned to the set of images. (B) Representative patient images that matched grades 0 to 8 according to both
readers.
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images. Figure 4C compares acutance scores with
reader grades of vitreous haze using the Miami scale.
Exact agreement was moderate for both readers (G1
and G2: j ¼ 0.45 and 0.43, AC ¼ 0.76 and 0.74).
Acutance scores were most consistent for clear images

(level 0) and fairly dispersed for fundus images that
looked slightly or significantly blurry (levels 1–8).
Performance was better when scores within-one (j ¼
0.67 and 0.68) and within-two (j ¼ 0.71 and 0.73)
levels of agreement of reader grades were counted,

Figure 4. Performance of acutance method. (A), Illustration of ROI size and seven representative locations used for acutance
calculations. The locations are indicated by different symbols and target large and small vessels. (B), Acutance values for the seven
locations in A for square ROIs of different pixel sizes. A 17 3 17-pixel ROI gives largest values for all but the smallest vessels. (C, D)
Comparison of acutance scores for the 120 patient images with the grades of two expert readers of vitreous haze.
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reaching an amount that is considered substantial.
The agreement with reader grades using the NIH scale
was nearly identical (exact: j ¼ 0.46 and 0.44, AC ¼
0.77 and 0.69; within-one: j ¼ 0.67 and 0.71; within-
two: j ¼ and 0.71 and 0.75).

A novel computer algorithm was developed to
improve the efficiency, objectivity, and accuracy of
the haze-grading process. Like the acutance calcula-
tion, the algorithm needed optimization for the
grading task as it produces a clarity score that
depends on the spatial frequency band over which
image power spectra are integrated (see Methods).
Figure 5A plots the clarity score computed for the
nine reference images of the Miami scale when the
upper limit of the frequency band was varied. It can
be seen that lowering the high-frequency limit from
256 cycles/image (all frequencies) to 30 to 50 cycles/
image had little impact on clarity scores, which
increased systematically with image clarity, whereas
further decreases in the upper limit reduced scores for
all the reference images, with the clearest ones (levels
0–3) most affected. As a result, clarity scores became
largely independent of image clarity. Figure 5B plots
the clarity score as the lower limit of the frequency
band was varied. Scores decreased as the low-
frequency limit was raised from one cycle/image (all
frequencies) to approximately 10 cycles/image, but all
reference images were similarly impacted. Further
increases in the lower limit affected the clearest images
(levels 0–3) preferentially, and clarity scores again
became independent of image clarity. Taken together,
the results indicate that vitreous haze is determined by
information that mostly resides within the spatial
frequency range of 10 to 50 cycles/image. The lower
and upper limits of the integration band were
therefore frozen at these values, and the algorithm
was applied without further modification to the 120
test images. Figure 5C compares computed haze
scores with reader grades of vitreous haze using the
Miami scale. Exact agreement was substantial (G1
and G2: j¼ 0.68 and 0.64, AC¼ 0.93 and 0.91), and
within-one (j ¼ 0.82 and 0.81) and within-two (j ¼
0.84 and 0.83) levels of agreement were almost perfect
for both readers. The results are comparable to that
between readers (Fig. 3), with the remaining differ-
ence in j-value attributable to three main outliers
(greater than two levels of disagreement) that were the
same for both readers. Figure 6A shows the outlying
fundus images. The algorithm scored the leftmost
image as less hazy and the rightmost two as more
hazy than the readers did. Figure 6B shows three
other fundus images of similar quality based on

reader grades that the algorithm scored within-two
levels of agreement. From inspection of these and
other test images, the outliers can be explained by the
algorithm scoring the entire frame and the readers
adjusting their grade based on image artifacts or
islands of vessel clarity within the photographs. The
agreement using the NIH scale for grading was
substantial to almost perfect as well for one reader
(exact: j ¼ 0.64, AC ¼ 0.87; within-one: j ¼ 0.81;
within-two: j¼ 0.82) and moderate to substantial for
the second reader (exact: j¼ 0.58, AC¼ 0.77; within-
one: j ¼ 0.75; within-two: j ¼ 0.78).

Discussion

The image-processing algorithm introduced here
can automatically score vitreous haze at a perfor-
mance level approaching that of trained graders at a
clinical reading center based on a set of 120 digital
fundus photographs taken by assorted physicians
across the country from random patients with varying
grades of uveitis. It is superior to a generic measure of
image sharpness (acutance), which may be conceptu-
ally simple and straightforward to calculate but
correlates less well with reader perceptions. The
algorithm produces a haze score that agrees almost
perfectly to within-one level of agreement of reader
grades, provided that the fundus photograph is
homogeneous in quality. This level of performance
is significant considering that interobserver agreement
in reading centers is inherently high. Among general
clinical practitioners, exact agreement is typically fair
to moderate (j-values range from 0.28 to 0.81 for
NIH scale and 0.15 to 0.63 for Miami scale) and
within-one level of agreement is substantial (j-values
range from 0.66 to 0.96 and 0.38 to 0.87, respective-
ly).10,11

Two broad computational strategies have histori-
cally been applied to the evaluation of fundus
photographs. One is to quantify the overall image
quality along dimensions, such as luminance, con-
trast, sharpness, and color, using standard analysis
techniques such as histogram matching and gradient
mapping.17–22 This approach has achieved modest-to-
good concordance with human observers to date,
consistent with the acutance results. The other
strategy is to use techniques that target retinal blood
vessels or fundus features distinctly associated with a
disease.23–27 This approach has met with better
success, but vessel segmentation is a complex problem
and current solutions have significant limitations. The
retina vasculature must be traced either laboriously
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by hand or by computer using automated methods
that are prone to error when image quality is poor.
The algorithm introduced here operates on raw
uncompressed digital fundus images using a combi-

nation of high-pass filtering, entropy analysis, and
power spectrum integration that does not require user
specification of ROIs or identification of target
features in each image. Moreover, published methods

Figure 5. Performance of vitreous haze–grading algorithm. (A) Optimization of the upper limit of the spectral integration band of the
algorithm. Clarity scores are plotted for high-frequency cutoffs of 10 (^), 25 (^), 50 (u), 100 (m), 150 (n), and 250 (�) cycles/image. (B)
Optimization of the lower limit of the spectral integration band of the algorithm. Clarity scores are plotted for low-frequency cutoffs of 1
(�), 5 (*), 10 (.), 20 (n), 50 (m), 100 (^), and 150 (u) cycles/image. (C, D) Comparison of haze scores computed by the algorithm for the
120 patient images with the grades of two expert readers of vitreous haze. Histograms above and aside the graph plot the distribution of
grades that the readers and the algorithm, respectively, assigned to the set of images. Symbols indicate outliers (greater than two levels
of disagreement).
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have primarily assessed performance via categorical
comparisons, using categories that are few in number
(four or fewer) and qualitative in their description of
image quality (e.g., good, fair, or bad). On the other
hand, the vitreous haze–grading algorithm was
evaluated here against readers who graded fundus
images on a more extensive and quantitative scale.

Several attempts for objective analysis and quan-
titation of the vitreous haze have been reported
recently using spectral-domain OCT (optical coher-
ence tomography).28–30 The studies related the
amount of vitreous haze to changes in signal strength.
Novel parameters were identified as well, which may
have diagnostic value unique to OCT imaging.
However, manual and automated OCT-image assess-
ment schemes showed only moderate correlation with
reader grades as compared to the near 90% agreement
for the vitreous haze–grading algorithm. Moreover,
this algorithm does not require investment in an
expensive and bulky OCT machine. It could simply be
coded into an application that runs on any mobile
device with a digital camera and a suitable optical
attachment for fundus viewing, allowing for vitreous
haze assessment at the bedside, from telemedical sites,
and in remote poorly equipped locations. Given the
low cost, high portability, and strong correlation with
the gold-standard of clinical grading, our findings
warrant an expanded study with a larger database of
fundus photographs. More images are needed from
patients with severe uveitis to fully assess algorithm
performance as over 60% of the 120-image dataset
graded at 0 or 1. Such a study could also address
current technical limitations of the algorithm, which
include manual cropping of raw fundus photographs
to the prescribed image size and image artifacts like
light reflections that can negatively impact algorithm
performance. A graphical user interface would also be
needed to facilitate operation in a physician’s office or
clinical reading center. There are also image acquisi-
tion limitations that apply to vitreous haze assessment
in general. Like clinical graders, the algorithm can

give inaccurate results based on the photographer’s
skills if the retina is not kept in proper focus. This
issue can be mitigated by taking multiple repeated
images to control for accidental defocusing or by
using fundus cameras with automated focusing. Also,
images taken from uveitis patients with small pupils
can result in significant additional blur due to optical
aberration, so use of nonmydriatic cameras would
improve image quality and yield more accurate
results.

In summary, the vitreous haze–grading algorithm
offers a rapid, objective, and reproducible method of
assessing eye inflammation that could save time and
effort and remove bias that a physician may develop
based on a patient’s symptoms. It might even be able
to detect more subtle changes in fundus clarity than
humans can reliably resolve since haze scores
generated by the algorithm vary on a continuum
and current clinical grading scales are limited to nine
integer numbers. The algorithm can be used for
clinical trials for intermediate, posterior, and pan-
uveitis but also used to measure a relative change
(before and after treatment) of haze values in patients
with significant media opacities. The algorithm could
be incorporated into a fundus camera, giving physi-
cians a quick, accurate, and potentially sensitive
metric for evaluating the effectiveness of uveitis
treatments during patient examinations. Or, it could
be implemented on a computer workstation at a
reading center, providing an automated means of

Table. Landis and Koch14 Guidelines for j-Value
Interpretation

j-Value Interrating Agreement

0.0–0.2 Slight
0.2–0.4 Fair
0.4–0.6 Moderate
0.6–0.8 Substantial
0.8–1.0 Almost perfect

Figure 6. Examples of fundus images in test set. (A) Outlier
images identified in Figure 5C. Reader grades (R1:R2) were 7:7(u),
5:5 (*), and 3:4 (n), whereas haze scores were 4.5 (u), 3.3 (*), and
8.1 (n). (B) Images that the readers graded the same as the outliers
(7:7, 5:5, and 3:4, from left to right) that the algorithm also scored
similarly (7.4, 6.8, and 3.8).
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quantitatively validating the results from large mul-
ticenter clinical trials in uveitis.
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