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Abstract

Slowing cystic fibrosis (CF) lung disease progression is crucial to survival, but point-of-care 

technologies aimed at early detection—and possibly prevention—of rapid lung function decline 

are limited. This proof-of-principle study leverages a rich national patient registry and follow-up 

data on a local CF cohort to build an algorithm and prototype prognostic tool aimed at early 

detection of rapid lung function decline. The algorithm was developed using a novel longitudinal 

analysis of lung function (measured as forced expiratory volume in 1 s of % predicted, FEV1). 

Covariates included clinical and demographic characteristics selected from the registry based on 

information criterion. Preliminary assessment of algorithm performance suggested excellent 

predictive accuracy and earlier detection of rapid decline than standard of care being applied at a 

local center. Graphical displays were presented and evaluated for clinical utility. Predictions from 

the algorithms and chosen graphical displays were translated into a prototype web application 

using RShiny and underwent iterative development based on clinician feedback. This paper 

suggests that the algorithm and its translation could offer a means for earlier detection and 

treatment of rapid decline, providing clinicians with a viable point-of-care technology to intervene 

prior to irreversible lung damage.

I. INTRODUCTION

Cystic fibrosis (CF) is a lethal autosomal disease marked by a progressive loss in lung 

function, and currently affects nearly 70,000 individuals worldwide [1]. The leading cause of 

death in CF is respiratory failure [2]; therefore, early detection and treatment of prolonged 

drops in lung function are essential to survival. These bouts of lung disease progression have 

been clinically termed “rapid decline” (Fig. 1). Numerous epidemiologic studies by these 

authors [3] and others [4] [5] [6] have employed various statistical approaches to estimate 

trajectories of lung function decline. These trajectories exhibit nonlinearity over the lifespan 

with substantial variation both between subjects and within an individual subject over time. 

Despite unique approaches, each study has demonstrated that the most severe bouts of rapid 

decline tend to occur during adolescence and early adulthood. Indeed, recent work suggests 

that, although there are distinct patterns or phenotypes of rapid decline, those individuals 

with the highest lung function initially are at risk for the most severe declines early in life 
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[7]. In addition, adults with CF experience rapid decline [8], suggesting that this pervasive 

event requires clinical monitoring and treatment throughout its entire course.

While numerous therapeutic advancements and quality improvement initiatives have 

extended life expectancy, point-of-care algorithms and technologies that harness well-

developed epidemiologic findings regarding prediction—as opposed to explanation—of 

rapid decline within the individual CF patient are limited. Efforts to translate statistical 

innovations into CF point of care began with spiromteric reference equations [9] [10], which 

initially were separated by children and adults but have recently been extended through 

advanced methodology [11]. Home spirometry has been studied, in which patients are 

monitored for onset of acute respiratory events known as pulmonary exacerbations [12, 13]. 

A recent diagnostic tool development highlights the feasibility of CF point-of-care 

technologies for diagnosis [14], but does not address routine care and clinical surveillance 

that are necessary to treat rapid disease progression.

A state-of-the-art approach was proposed to translate a flexible algorithm to accurately 

detect rapid lung function decline within the individual patient into a prognostic tool for CF 

point of care. The approach undertaken in this proof-of-principle study exhibited promises 

for detection and exhibited clinical utility.

II. ALGORITHM DEVELOPMENT

A. Data Sources

Data from the US Cystic Fibrosis Foundation Patient Registry (CFFPR) were used to 

develop the longitudinal model and resulting algorithm. The timeframe included data from 

January 1, 2003, until December 31, 2015, in order to reflect the most modern era of CF care 

from the available data. This registry has been tracking outcomes on patients with CF for 

nearly 50 years; detailed descriptions of its contents have been provided [15]. For model 

development in this study, we utilized forced expiratory volume in 1 s of % predicted 

(hereafter, FEV1) as a marker of lung function, and included data on patients aged ≥ 6 years 

in order to obtain reliable pulmonary function from the FEV1 measure. Other clinical and 

demographic characteristics included static variables: sex (male or female), genotype (copies 

of F508del alleles coded as heterozygous, homozygous, or none), birth cohort (a categorical 

variable defined as birth year < 1981, 1981–1988, 1989–1994, 1995–1998, 1999–2005, ≥ 

2006), chronic infection with Pseudomonas aeruginosa (Pa, defined as ≥ 4 positive cultures 

over time), persistent methicillin-resistant Staphylococcus aureus (MRSA, defined as ≥ 4 

positive cultures over time); time-varying variables: age (in years), low socioeconomic status 

(defined as having received federal/state insurance). These variables were chosen based on 

existing CF epidemiologic literature. The local institutional review board approved the study.

B. Specifications and Fitting

A longitudinal model was developed to fit age-related FEV1 progression and account for its 

nonlinearity by expanding an established method that has been successfully used to monitor 

markers of renal disease progression [16]. The expanded model used in this paper was 

presented at the 40th European Cystic Fibrosis Society Meeting (abstract to be published in 

Szczesniak et al. Page 2

Health Innov Point Care Conf. Author manuscript; available in PMC 2018 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fall 2017 in the Journal of Cystic Fibrosis). Let Yij be a random variable representing the 

longitudinal process of FEV1 taken on the ith patient at the jth time point (i = 1, …, N;j = 1, 

…,ni); here, let time be represented by age (in years). The longitudinal model can be 

expressed as:

(1)

In Equation (1), the function f(·) is used to depict nonlinear FEV1 progression over time tij, 

which is expressed as age (in years);  represent the patient-specific vector of covariates 

defined previously and their corresponding coefficients;  are random intercepts 

allowing FEV1 trajectories to be shifted across individual that follow a normal distribution 

with mean 0 and variance ; Wi(tij) are independent realizations of a zero-mean, 

continuous-time stochastic process known as integrated Brownian motion, representing 

change in a patient’s FEV1 over time that cannot be accounted for with the other terms in 

the model;  is independent, identically distributed measurement error. The 

model was fitted using the ‘lmenssp’ package available in R.

C. Performance

Forecast validation was performed by randomly selecting roughly 20% of patients and 

masking the last two years of their data. Metrics included mean absolute error (MAE), root 

mean square error (RMSE), mean absolute % error (MAPE). These were calculated using 

the actual data during the masked period and the predicted data based on the model. Over 

the two-year window, overall and h-step ahead forecasts were computed; steps included 0.5 

years, 1 year and 2 years. Table I includes performance metrics for this model.

III. EARLY TRANSLATION TO POINT OF CARE

A. Clinical Identification of Rapid Decline

In this application of the model, there were N = 27,296 patients “at risk” of rapid decline 

with a total of  observed FEV1 data points and j = 1, …,ni ≤ 89 visits per 

patient. Age range during follow up was 6 to 83 years. The covariate history on patient i up 

to time t can be denoted as Hi(t) = {xi,(tij,yij):tij > t}.

The first derivative of Equation (1) may be used as an estimate of rate of change in FEV1. A 

threshold of −1.5% predicted/year was selected based on clinical judgment and graphical 

inspection. In order to identify periods in which a given patient is at risk of rapid decline 

based on this threshold, the following probability needs to be estimated.

(2)
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This probability in Equation (2) corresponds to the risk of rapid decline for patient i based 

on his or her information history, which includes clinical and demographic data as well as 

past FEV1. By conditioning probabilities on this information, more accurate risk predictions 

are expected.

B. Preliminary Comparison to Actual Standard of Care

Prior to the algorithm described in this paper, a local center study was conducted to develop 

and implement a systematic algorithm specific to rapid decline in pediatric patients. Those 

patients whose peak FEV1 in the prior 3 months was not within 10% predicted of their 

highest FEV1 in the prior 12 months were classified as high-risk “Red Zone” patients. 

Modifiable risk factors for this degree of FEV1 decline included untreated/newly identified 

infectious organisms, gaps in or failure to prescribe pulmonary therapies, gastroesophageal 

reflux disease, unrecognized allergic bronchopulmonary aspergillosis and infrequent clinic 

follow up.

The local Red Zone algorithm to identify rapid decline was compared to the algorithm 

described in this paper with respect to age at which rapid decline was first identified using a 

retrospective analysis of 124 patients (age range: 6–22.3 years) who had received care based 

on the Red Zone algorithm at Cincinnati Children’s Hospital Medical Center (2012–2015). 

Age at which the algorithm first estimated probability of rapid decline to be ≥ 0.80 was 

considered high risk. For those 120 patients who were classified as high risk based on both 

approaches, the proposed algorithm identified rapid decline an average of 0.65 years (95% 

CI: 0.41–0.89), or roughly 8 months, earlier than the local Red Zone algorithm (paired t-test, 

P < 0.0001).

C. Integrating Stakeholder Feedback

The algorithm and graphical displays were refined based on individual and group 

consultations with clinician through an iterative process (Fig. 2).

Initial presentation was based on a case series of patients using a graphic platform with 

FEV1 trends and predicted probabilities (Fig. 3, upper panel). In each display, the black dots 

are the observed FEV1 data from the patient. The application shown in the upper panel 

allows the user to select particular patient displays by clicking on the de-identified patient ID 

(see black diagonal arrow on the left). Information is displayed about the patient (blue box). 

This patient is female, has had 111 pulmonary function tests (denoted by the number of 

visits), and was 6.1 years old for her first test (zero on the x-axis). Her FEV1 time course is 

shown, along with 95% confidence bands. Her probability of rapid decline is also displayed 

with 95% confidence bands in the lower graph in this panel and varies according to her 

individual FEV1 time course shown above it. The probability is highest (~0.80 or 80%) 

during 10–12 years of follow-up (at age 16.1–18.1 years); this risk is reflected in her actual 

FEV1 course during that time (see vertical red arrow). Risk here was based on currently 

accrued data.

Comments on this prototype indicated the importance of forecasting, which has been added, 

and is still being used to further refine the prototype (Fig. 3, lower panel). In this display, the 

patient/subject selection has been converted to a drop-down menu and there is also a feature 
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in which the user can type the ID. Age and FEV1 at onset also have toggle switches, which 

could be used to isolate predictions to normative data relative to the patient of interest. There 

are also check boxes for categorical measures. Snapshot information is available from the 

lower portion of the dashboard. This display shows data and predictions for a female CF 

patient whose age at entry was about 23 years; she was born in an older cohort, and has no 

F508del alleles. For a brief period, her SES was low. Moving clockwise from the upper left 

graph of this panel, the gray portion depicts observed and fitted FEV1 data that were used to 

build the model, while the red shaded portion shows predictions for the held-out data used to 

assess forecast performance. The dark gray dots are the observed FEV1 data; the black line 

is the model-based fitted curve; the red line is the forecasted curve assuming that the last two 

years of data are unknown. Because the data are split into development and forecast data, the 

confidence bands appear disjoint. The graph to the right shows the rate of change in FEV1 

for this patient and has the corresponding confidence bands in gray and red. In finalized 

displays, the gray dots representing observed FEV1 will not be available in the two-year 

forecasting window but are shown here for validation purposes. Her rate of change in FEV1 

shows clinically relevant declines after 28 years of age. Algorithm results suggest that this 

patient is at increased risk of rapid decline during the forecast period, and that she frequently 

cultured positive for Pa infection and had low SES for a period of time during follow up.

D. Implementation

The algorithm has been implemented as an online prototype application based on 

preliminary stakeholder feedback. Currently, the online posting displays individual patient 

trajectories, along with model forecasting results (source: http://cfpopd.amazon-

shiny.duckdns.org/#section-cf-predicted-lung-function ). The application may take a 

moment to load. Toggles are provided for filtering continuous variables and selections can 

be made through check boxes for continuous variables. This version will be expanded to 

include predictive probability displays as in the lower panel of Fig. 3 and normative data by 

having a look-up table with algorithm-based predictions underlying the web application. 

These results will be updated daily using electronic health record integration at the local 

center level.

IV. CONCLUSION

This proof-of-principle study shows that clinical surveillance data can be harnessed to 

provide effective monitoring tools for clinicians treating patients with CF. Preliminary 

assessment of the algorithm indicates that it could improve detection of rapid decline, 

compared to the currently employed approach.

Future prospective studies are needed to understand how delivery of interventions to treat or 

prevent rapid decline could be more efficacious if given according to the algorithm proposed 

here, compared to current care. Later phases of these studies may also require additional 

standardization across centers, as studies of the CFFPR suggest that prescribing patterns 

vary [17]. In addition, further study of the selected threshold (−1.5% predicted/year) may be 

needed, although this initial assessment with clinician researcher feedback indicates its 

relevance to care. Lowering this threshold, which would correspond to earlier identification 
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and potentially an increased number of patients qualifying for additional care, could pose 

challenges to clinical systems. Increasing this threshold would yield later identifications and 

possibly less sensitive detection, compared to the approach currently used.

Mixed methods studies are also needed to optimize the prognostic value of this monitoring 

approach. A focus group study involving clinical care teams at the center level could be used 

to formally evaluate the utility of the web application. This approach could be extended to 

include patients and their caregivers. Monitoring tools could be tailored to individual use, 

empowering the patient in the point-of-care setting.
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Figure 1. 
Lung function over age for a male CF patient, initially stable then declining nonlinearly over 

age.
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Figure 2. 
Process for point-of-care prototype to detect rapid decline in CF patients.
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Figure 3. 
Rapid decline dashboard screenshots from initial (upper) and revised (lower) prototypes 

based on clinician feedback. See text for additional explanation.
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TABLE I

MODEL PERFORMANCE

Metric
Perioda

Overall 0.5 years 1 year 2 years

MAE 4.71 3.27 3.94 4.53

RMSE 6.76 5.21 5.96 6.68

MAPE 8.24% 5.82% 7.20% 8.81%

Abbreviations: mean absolute error (MAE); mean absolute percentage error (MAPE); root mean-square error (RMSE).

a
Selected based on clinical input.

Health Innov Point Care Conf. Author manuscript; available in PMC 2018 March 26.


	Abstract
	I. INTRODUCTION
	II. ALGORITHM DEVELOPMENT
	A. Data Sources
	B. Specifications and Fitting
	C. Performance

	III. EARLY TRANSLATION TO POINT OF CARE
	A. Clinical Identification of Rapid Decline
	B. Preliminary Comparison to Actual Standard of Care
	C. Integrating Stakeholder Feedback
	D. Implementation

	IV. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	TABLE I

