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Abstract

A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of 

medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal 

biomedical outcomes, including continuous measurements and binary outcomes, to achieve better 

prediction in disease progression. At the population level of the hierarchy, two independent GPs 

are used to capture the nonlinear trends in both the continuous biomedical marker and the binary 

outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal 

measurement model and the longitudinal binary model, induces the correlation between these two 

model components and strengthens information borrowing across individuals. The proposed model 

is particularly advantageous in personalized prediction. It is applied to the motivating clinical data 

on cystic fibrosis disease progression, for which lung function measurements and onset of acute 

respiratory events are monitored jointly throughout each patient’s clinical course. The results from 

both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the 

shared individual-level GPs under the joint model framework leads to important improvements in 

personalized disease progression prediction.
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1 Introduction

In clinical care and research of chronic diseases, an important task is to monitor and predict 

disease progression based on data from multiple biomedical outcomes. Cystic fibrosis (CF), 
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as a motivating example, is a lethal autosomal disease, marked by progressive loss of lung 

function over the lifespan. A variety of biomedical measures and outcomes are collected at 

each patient’s clinical visit, and these data are used to inform CF clinical studies. CF 

clinicians have great interest in prognostic models of monitoring and predicting disease 

progression. Particularly, there is an increasing emphasis on detection of severe CF disease 

at its early stage and prediction of its clinical course. Although the median age of survival 

has markedly improved, patients still continue to experience declining lung function and 

acute respiratory events during adolescence and early adulthood. Accurate prediction models 

could be used as a prognostic tool for more timely treatment of respiratory decline.

Despite the potential clinical utility of prediction models in biomedicine, it is widely known 

that patient-level extrapolation of disease progression is difficult. On one hand, the sparsity 

and irregularity of the data collection times pose great challenges in extracting sensible and 

flexible estimates with a reasonable level of confidence. On the other hand, the statistical 

models used in clinical practice are often based on unrealistic assumptions (such as a simple 

linear slope) and overlook or even violate many intrinsic properties inherent in the 

underlying progression of the disease (Szczesniak et al., 2016). Among these properties, 

nonlinearity and individual heterogeneity, which are pervasive challenges in modeling CF 

lung function decline (Szczesniak et al., 2017), are of particular importance for modeling the 

patient-level disease progression. Inspired by the developments in the field of joint 

modeling, we propose a two-level Gaussian process (GP) joint model for multiple 

longitudinal outcomes monitored by clinicians, both continuous and discrete. The goal is to 

address the nonlinear prediction needs in important biomedical outcomes on the 

personalized level.

Our key contributions focus on two aspects: one is for the data structure we study in the joint 

model and the other is for the model structure we propose in the joint model. The joint 

model conveniently accommodates the need to study multiple outcomes simultaneously. 

Particularly, for the CF data of interest, there are two important severity markers whose 

association has been evidenced in clinical practice. These two biomarkers are the forced 

expiratory volume in one second (hereafter, FEV1) and the occurrence of acute respiratory 

events, known as pulmonary exacerbations (PEs). Details on both biomarkers and previous 

studies on them are discussed in Section 2. Both FEV1 and PE are longitudinally collected 

(Figure 1). FEV1 is a continuous measurement, and PE measurements are binary data on 

recurrent events. Though many longitudinal studies employ joint models to examine a single 

binary outcome and a number of longitudinal measurements (Horrocks and van Den Heuvel, 

2009; Zhang et al., 2014; Li et al., 2015), they are not commonly used in studying 

longitudinal observations on both continuous and potentially recurring binary outcomes. 

Furthermore, we follow the shared parameter model approach to form the joint model 

(Taylor et al., 2013). The key innovation in our model structure is that we introduce the 

hierarchical GPs in the joint model, where not only the mean processes but also the shared 

parameters are modeled through GPs.

GP provides a useful paradigm for nonlinear interpolation and allows for borrowing 

strengths from data collected at all time points (Rasmussen & Williams, 2006). Compared to 

spline based methods, GP modeling does not require prior knowledge of important time 
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points (knots). Its estimation is straightforward, and the predictive distribution is simple: the 

multivariate normal distribution associated with a GP model allows direct quantification of 

the uncertainty in the conditional variance. GPs have become particularly popular with the 

availability of fast estimation procedures such as the work by Banerjee et al. (2013). It has 

observed wide applications for many years in machine learning (Rasmussen & Williams, 

2006) and spatial statistics (Cressie, 1988). However, its application has not been adequate 

in addressing the urgent demand for personalized prediction in biomedical settings.

In the proposed joint hierarchical Gaussian process model (JHGP), we adapt the GP to the 

inherently multilevel structure of the clinical data. On the population level, each of the two 

outcomes has its own nonlinear trend via GP modeling; on the individual level, each subject 

has a unique GP, which serves as the shared parameter to permit information borrowing 

across outcomes. Assuming the individual GPs are independently and identically distributed 

overcomes the challenges posed by the small sample size for a single subject and allow more 

stable estimates of the correlation parameter that characterizes the individual patterns. The 

model estimation is easy to be carried out through Hamiltonian Monte Carlo using Rstan 

(Stan Development Team, 2016). The direct goal of our proposed JHGP model is to address 

the nonlinear prediction needs in both FEV1 and PE on the personalized level. The proposed 

model framework has wide applications in many other medical monitoring situations beyond 

the CF disease progression monitoring discussed here.

The remainder of the article is organized as follows. The motivating data set, including 

details of the clinical markers and previous research results, is described in Section 2. 

Section 3 presents the proposed JHGP model, including the personalized predictive 

distribution under the proposed model, prior distributions and posterior sampling. Section 4 

shows the results from the simulation studies and assessments of the model prediction 

performance. Source code to reproduce these findings is included as Supporting 

Information. Section 5 shows results from applying the JHGP model to the CF clinical data 

set. Concluding remarks and discussion are presented in Section 6.

2 Motivating clinical data

2.1 Monitoring cystic fibrosis disease progression

Our JHGP model was motivated by medical monitoring data from the United States Cystic 

Fibrosis Foundation Patient Registry, which has provided epidemiologic surveillance on CF 

outcomes for more than 40 years. We obtained data on a sample of 38 patients with a total of 

818 entries of observations. Data were analyzed from patients who had PE and FEV1 data 

observed anytime from 6 to 18 years of age. This age range was selected for the following 

reasons. First, it was of interest to focus on data collected from childhood to adulthood, 

covering the most common interval in which there is a prolonged drop in lung function. 

Second, patients younger than 6 years of age were excluded due to potentially unreliable 

pulmonary function testing. We used the records from the calendar time January 1, 2003 to 

December 31, 2013. Encounter-level data available from 2003 onward were considered 

because PE events were consistently documented in the registry beginning in 2003. Data 

acquired after lung transplant were excluded. Quarterly ages were used as the time indices 

for the modeling.
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2.2 Lung function measurement

As maintaining lung function is essential for survival in individuals with CF, lung function is 

routinely assessed in CF research and clinical practice. Lung function is monitored as forced 

expiratory volume in 1 second of percent predicted (denoted as FEV1). FEV1 is obtained as 

follows. Once a patient performs pulmonary function testing at a clinical encounter, a 

percent predicted value for his lung function is obtained based on his age, height, gender and 

race using standard reference equations (Wang et al., 1993; Hankinson et al., 1999). These 

computed values for each patient encounter are made available from the Cystic Fibrosis 

Foundation Patient Registry. The FEV1 data in this sample range from 5% to 125% 

predicted.

As the most routine clinical measure of lung function in CF patients, FEV1 data have 

motivated various longitudinal models, including recent development on individualized 

prediction (Taylor-Robinson et al., 2012) and nonlinear fitting of age-related FEV1 

progression (Szczesniak et al., 2013; Moss et al., 2016). Studies using CF registries have 

demonstrated that rapid changes in FEV1 often occur during adolescence and adulthood 

(Vandenbranden et al., 2012) and that decline is nonlinear with age (Szczesniak et al., 2013). 

Previous statistical models being used in CF clinical practice for individualized prediction of 

such markers tend to feature simple functions (e.g., linear slope) or arbitrary rules (e.g., a 

decrease from maximum FEV1 during the prior year of at least 10% predicted) (Szczesniak 

et al., 2016).

2.3 Pulmonary exacerbation event

Besides FEV1, data on acute respiratory events, known as PEs, are also collected. Clinical 

diagnosis of a PE is often based on increased pulmonary symptoms, a loss of lung function, 

energy or weight and physical changes. It can occur multiple times in an individual CF 

patient. In our analysis, an event is defined as a PE event if it has a recorded treatment of PE 

with intravenous antibiotics in the registry.

Occurrence of PE has been associated with, among other adverse health outcomes, more 

rapid decline in FEV1 (Konstan et al., 2007; Sanders et al., 2011). A converse association 

has been found, with PE occurrence being linked to a failure to recover to pre-PE or 

“baseline” FEV1 (Sanders et al., 2010). Although PE onset is typically incorporated as a 

covariate in longitudinal modeling of FEV1, it is a separate event process often clinically 

diagnosed by changes in lung function. Current joint modeling approaches used in 

monitoring CF disease progression have not yet incorporated data on PE. Therefore, it is 

desirable to construct a more informative, efficient approach to a simultaneous prediction of 

both occurrence of PE events and changes in FEV1.

3 Model framework

3.1 Joint hierarchical Gaussian process model

Let {Yit, Rit} be the observed outcomes for subject i at time t, where Yit is the continuous 

longitudinal outcome and Rit is the binary longitudinal outcome. A shared parameter model 

is prescribed for these data:
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where N(a, b) represents a normal distribution with a mean a and a variance b, Bern(p) 

represents a Bernoulli distribution with the probability of success p, g(·) is the logistic link 

function g(λit) = {exp(λit)}/{1 + exp(λit)} with , and c is a scalar in [−1, 1]. 

Covariate effects can be easily added in both submodels, which are temporarily omitted here 

for focus on exploring the hierarchical GPs.

The uniqueness of this model is that  and  are parameters on the population level and, 

hence, are the same for all subjects; ψit is not only the individual deviation from the 

common trend but also acts as a shared parameter that induces correlation across the two 

outcomes.

Let μy and μR represent the two population mean processes  and , respectively, and 

ψi represents the individual heterogeneity, i = 1,…, n. Further denote λi = μR + c · ψi. To 

induce nonlinearity, GPs are used for both the population mean processes and the individual 

heterogeneities as

where X ~ GP(a, b) means that on any finite time point set {t1,…tk}, the joint distribution of 

Xk = {X(t1), …, X(Tk)}′ is a k-variate normal distribution N(ak, bk) with the mean vector 

ak = {a(t1), …, a(tk)}′ and covariance matrix bk with the (ℓ,j)th entry as b(tℓ, tj), ℓ, j = 1,…, k.

This is a hierarchical GP since Yi|μy ~ GP(μy, Σ +I·σ2) with I denoting the identify matrix 

and λi|μR ~ GP(μR, c2Σ) where the population mean processes μy and μR are each another 

GP. Jointly, the shared GP process induces the inter-outcome covariance: Cov(Yi, λi) = cΣ.

The population mean processes is μy and μR are common to all subjects and, thus, can be 

estimated with high precision. A reliable estimation of the individual GP ψi, though, is 

challenging due to the limited amount of individual data. To maximize information 

borrowing across individuals and across outcomes, we allow the common Σ among the GP 

ψis’ and also include ψi’s as a shared component in the joint model. Both the simulation 
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study and the real data application show that this model setup improves the flexibility and 

the precision in the personalized prediction.

3.2 Personalized predictive distribution

Let Zit denote the joint vector of {Yit, λit}′ and Zi,T = {{Yit}t∈T, {λit}t∈T}′, where T is a 

collection of time points. The key advantage of the hierarchical Gaussian process is the 

personalized predictive distribution: given the data ti ≤ T, we predict Ziti at T < ti ≤ tmax, 

where tmax is the maximally observed time in the population. Let T1 be the recorded set of 

time points in ti ≤ T for subject i, and let T2 be the time points of interest in T < ti ≤ tmax. 

Using matrix notation, 

, 

where μTj is the joint vector of  is the 

correlation matrix between mψiT2 and mψiT1 and V is a diagonal matrix σ2 · I. Note that 

the prediction mean is the sum of two parts: (i) the nonlinear estimate μT2 obtained at the 

population level and (ii) the individual extrapolation based on its past deviation from the 

common trend (Zi,T1 − μT1).

To illustrate the improvement in predictive accuracy with a two-level GP model, compared 

to a one-level GP model, extrapolation results taken from a simulated data set are presented 

in Figure 2. The three models shown are the model with only individual GPs, the model with 

the single population GP and the hierarchical GP model. The test samples include simulated 

data from n = 50 subjects, with the curve for each individual generated as the sum of a 

common random curve and an individual AR(1) process with ρ = −0.8. One subject was 

randomly selected, and the second half of the observed data points was removed. In the first 

test, an individual GP with the AR(1) (Figure 2, leftmost panel) is fitted to each subject. 

Although the fitted line shows that the model has adequate flexibility, it performs poorly in 

terms of extrapolation: the fitted line in the forecast range (t = 15 and forward) rapidly 

reverts to the constant mean due the underestimation of the autocorrelation. In the second 

test, all subjects are fitted with only the population GP with the squared exponential 

covariance; the prediction benefits from the similarity of trajectories and, hence, obtains 

some improvement (Figure 2, middle panel). In the last test, the hierarchical GP is used and 

leads to more gains, especially on the points near t = 15 (Figure 2, rightmost panel). Because 

the prediction is based on the individual level, the credible band is narrower than the 

population based GP when used alone.

3.3 Prior distributions and posterior sampling

A Bayesian method was employed to estimate the model parameters. Here, the squared 

exponential covariance ϕ exp(−ρ|t1 − t2|2) was used in Σy and ΣR to induce smoothness on 

the population level. For Σ, Brownian motion ϕ min(t1, t2) or an autoregressive AR(1) 

structure with the (i, j)th component as ϕρ|tj−ti| was used to capture the fluctuation. Different 

covariance structures can be included based on the data structure. It is worth noting that ϕ 
and ρ are allowed to vary across the three processes defined in Section 3.1, but this notation 

has been suppressed for ease of exposition. Weakly informative proper priors were used for 

Duan et al. Page 6

Stat (Int Stat Inst). Author manuscript; available in PMC 2018 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all the scale parameters, ϕ ~ C+(5), σ2 ~ C+(5) or an inverse Gamma prior IG(2, 1) with a 

mean 1 and an infinite variance, ρ ~ C+(5) in Σy and ΣR and ρ ~ Uniform(−1, 1) in Σ with 

AR(1), where C+(5) denotes a half Cauchy distribution with a scale of 5. The posterior 

sampling was carried out in Hamiltonian Monte Carlo via the software Rstan (Stan 

Development Team, 2016). The simulation file and source code are available as Supporting 

Information.

4 Simulation studies

4.1 Model estimation

To demonstrate estimation of the JHGP model, the following simulations were conducted. 

We simulated data sets with 50 subjects (i = 1, …, 50), each with observed Yi and Ri at 25 

time points (t = 1, …, 25) under three parameter settings, Sim 1 (ρ = −0.8, c = 0.9), Sim 2 (ρ 
= −0.5, c = −0.3) and Sim 3 (ρ = −0.1, c = 0.01), corresponding to three different levels of 

autocorrelation and inter-outcome association. Under each of the simulation settings, the 

data were simulated using the following framework:

The proposed JHGP model was fit to these three sets of data. The estimation of parameters 

is shown in Table 1; plots of estimated population processes (μy, μR) and a randomly 

selected individual processes (λi) for subject i are shown in Figure 3. The model correctly 

identified the values of autocorrelation ρ and the association parameter c. Moreover, the 

unobserved population processes (μy, μR) were accurately estimated. The estimates for λi, 

which are hidden behind the binary outcomes Ri, show high correlation with the true values.

4.2 Different covariance functions for individual deviation

The choice of covariance function affects the behavior of extrapolation curves. A simple 

comparison between stationary (AR(1) process) and nonstationary (Brownian motion 

process) covariance functions was conducted. As shown in Figure 4, the stationary AR(1) 

process with a negative ρ tends to oscillate around the mean. This property is useful if the 

subject-specific trajectories tend to have similar progression while still accounting for the 

“saw-tooth” shape found in FEV1 profiles in the CF data. On the other hand, Brownian 

motion as a martingale process always shows a constant difference from the mean process. 

This can reflect the notion that a loss or gain at a certain time is permanent for an individual.
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4.3 Robustness in association detection

In the joint model, the association between two responses is established by the shared 

individual GP, and its strength is measured by the association parameter c. We now assess its 

robustness under various levels of interference.

The same framework as in Section 4.1 was used to generate test samples with c = 0.5, except 

that an additional noise vector  was added into λi. We then gradually 

increase  in order to disturb the estimation of c. The noise-signal ratio is controlled by 

, where ϕψ is the scale parameter in the GP for ψi. The results are shown in Table 

2. The numerical estimates only start to degrade around noise-signal ratio of 8.0, yet the 

association remains significant until the magnitude reaches 32.0. These findings suggest that 

the model is very robust in detecting the association between two responses in the presence 

of disturbance.

4.4 Forecasting performance

We censored each subject in Sim1 data set (See Section 4.1) using random time Ci = 

min{tmax, tc} where tc ~ Uniform[0, 2tmax] and tmax is the largest recorded time. This 

mechanism results in censoring in about 50% of the subjects at random time points. Figure 5 

plots the predicted values against the true values of Y and g(λ). The predicted values are 

highly correlated to the true values, with a Pearson correlation 0.86 for Y and 0.73 for g(λ).

5 Application in cystic fibrosis medical monitoring

5.1 Analysis cohort selection

We applied the model to characterize the association between the longitudinal marker of 

lung function, FEV1, and the occurrence of acute respiratory events, PEs, for patients with 

CF disease. The primary goal was to provide longitudinal predictions for each clinical 

marker. The analysis cohort and study variables are described in Section 2. Among the 38 

patients included in the analysis cohort, 19 patients were randomly selected to assess 

prediction performance. For each patient in this sub-cohort, the more recent 50% of his or 

her observations (both FEV1 and PE) were masked. Having this sub-cohort results in a 

training and testing split of about 75% and 25%, respectively. We use a random intercept for 

each patient (indexed by i) to offset the starting difference.

5.2 Parameter estimation

The JHGP model detects a strong autocorrelation (ρ = −0.82 ± 0.05) in the shared Gaussian 

process ψi, i = 1, …, 38; the variations of FEV1 and the PE probability have a weak negative 

inter-outcome correlation (c = −0.29 ± 0.13). The fitted FEV1 and PE probability are shown, 

along with corresponding 95% credible intervals, in Figure 6. The population mean 

processes and individual AR(1) processes appear to be reasonably estimated. Among which, 

the population-level estimate of age-related FEV1 progression is consistent with what was 

found in previous CF studies using penalized splines (Szczesniak et al., 2013; Szczesniak et 

al., 2017). The mean evolution of lung function exhibits a gradual decline in earlier ages and 

subsequently becomes more progressive as patients enter adolescence and early adulthood. 
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The risk of PE appears heightened around ages 10–11, which corresponds to the time 

preceding more progressive lung function decline. The overall PE risk has smooth estimates, 

yet it does not resemble any common parametric distribution. The stochasticity of individual 

variation in the PE risk is also captured by the model.

5.3 Prediction performance

The predicted FEV1 values are plotted against the corresponding observed yet masked 

values in Figure 7, which shows all points lie around the 45° reference line. We further 

evaluate the results and compare the effects of the hierarchical model with the 

nonhierarchical model using the median absolute deviation, root mean squared error and 

Pearson correlation. The three evaluation metrics median absolute deviation, root mean 

squared error and Pearson correlation are 6.43, 8.47 and 0.93, respectively, by the JHGP 

model, compared to 8.66, 10.63 and 0.89, respectively, by the single population GP model. 

Although the results from the population GP seem adequate for predicting the future trend, 

including the individual GPs apparently further improves the estimation accuracy.

5.4 Assessment of sensitivity and specificity

Sensitivity and specificity of the PE predictions using three different model settings were 

examined using Receiver Operating Characteristic curves (Figure 8). The models included 

the JHGP of FEV1 and PE, a single logistic model that included a population-based GP to 

model PE events and a traditional linear-logistic model of PE events. In the later two single 

models, FEV1 was included as a covariate. Both the JHGP and the single logistic GP models 

had higher AUC than the traditional linear-logistic model, indicating that the nonlinear 

attributes of the GP models improved predictive accuracy. The joint model with hierarchical 

GPs had better sensitivity, compared to the single GP model.

6 Discussion

We have developed a joint model with hierarchical GPs in each submodel to accommodate 

the analysis and prediction of monitored clinical data. We consider a two-level design: the 

first (population) level describes the overall progression of the markers; the second 

stochastic (individual) level captures the finer, personalized variation in both continuous and 

binary outcomes. The hierarchical design is conceptually simple and allows information to 

be shared across individuals as well as different outcome types. This leads to an attractive 

form of the predictive distribution that joins population change and personal history.

Several extensions to this work can be made in the future. If the longitudinal data exhibit 

several distinct types of progression, then the population hierarchy can be replaced with a 

mixture of Gaussian processes as suggested in Shi et al. (2005). Additional levels could be 

incorporated in the model to accommodate a more refined hierarchical structure in the data; 

for example, different medical centers tend to have distinct practice patterns. Our JHGP 

application to the CF data suggests the presence of more heterogeneity between longitudinal 

FEV1 trajectories, compared to PE hazard curves in Figure 6. This has not been previously 

characterized in the CF epidemiological literature, but additional work could be performed 

to standardize the processes and assess heterogeneity in this context. Findings on prediction 
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performance for FEV1 suggest the possibility of bimodality (Figure 7), but further 

assessments with additional covariate information, or perhaps an extension of the JHGP 

model to accommodate latent classes, would be needed to determine if results are indicative 

of subgroups. Also, the joint hierarchical GP modeling framework is general and can be 

extended to more than two outcomes. Although a pediatric cohort was examined in the 

current work, such an extension could accommodate censoring arising from death if 

studying the broader adult CF cohort or other data in which there is a potential for 

survivorship bias.

Often clinicians are interested in survival times of recurrent events. This would require, as in 

the motivating CF example, joint modeling of the longitudinal measurements on FEV1 as 

well as the survival times of the recurrent PE events. The implementation of the proposed 

hierarchical GP model framework to this situation is currently under study. Furthermore, 

separate assessments of each component in the joint model help assess the goodness of fit 

for each component and is of clinical importance (Zhang et al., 2014; Zhang et al., 2017). It 

is of practical and theoretical interests to investigate how to achieve separate assessments in 

this JHGP model based on the work of Zhang et al. (2017) as a direct application of their 

criteria faces computational challenges due to the inclusion of the shared GPs component.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forced expiratory volume (FEV)1 versus age (in years) from seven representative patients 

with data taken from the Cystic Fibrosis Foundation Patient Registry. Each set of points 

connected by a line represents observed FEV1 over age for an individual patient. Trajectories 

in red represent individuals who had a pulmonary exacerbation, while trajectories in black 

represent individuals who were pulmonary exacerbation free during the observation period.
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Figure 2. 
Illustration of the hierarchical Gaussian process (GP) in prediction based on simulated data. 

For a single subject, beginning with leftmost panel using autocorrelation of an individual 

GP; middle panel using the estimated μ from the population GP (with this subject excluded); 

ending with rightmost panel showing forecasting based on the estimated μ and the 

autocorrelation from the joint hierarchical Gaussian process model. In each panel, the 

vertical bar at t = 15 marks the beginning of the extrapolation.
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Figure 3. 
Estimation of the unobserved nonlinear trends in simulation studies. The true (unknown) 

processes are shown in blue. The estimated values and corresponding 95% credible band are 

shown in red. The first two columns depict each of the longitudinal submodel results, while 

the last column shows the observed event occurrences against time for a randomly selected 

subject i.
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Figure 4. 
Simulated data illustrating different covariance functions in individual deviations (solid line) 

from the population mean (dashed line). Predictions with AR(1) (left) with negative ρ 
fluctuate around the common trend in the center; predictions with Brownian motion (right) 

tend to remain separate from the mean.
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Figure 5. 
Prediction performance: predicted values versus true values in Sim1 data set for modeling 

the longitudinal process for Y (left) and the event process for g(λ) (right).
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Figure 6. 
Fitted longitudinal forced expiratory volume (FEV1) (left) and pulmonary exacerbation 

event (right) data over age for representative cystic fibrosis patients using the joint 

hierarchical Gaussian process model. Each dot in the left panel represents observed FEV1 

for a patient at a given age, while each dot in the right panel indicates whether or not a given 

patient has experienced a pulmonary exacerbation. The smooth red line in each graph is the 

estimate of age-related progression at the population level. The individual blue lines are the 

fitted profiles representing personalized predictions based on the joint hierarchical Gaussian 

process.
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Figure 7. 
Prediction performance of the joint hierarchical Gaussian process longitudinal submodel for 

forced expiratory volume from the cystic fibrosis clinical data. The graph shows the 

predicted values from joint hierarchical Gaussian process against the observed values of 

forced expiratory volume with the 45° reference line.
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Figure 8. 
Receiver Operating Characteristic curves of each model of the pulmonary exacerbation (PE) 

event data from the cystic fibrosis clinical data. From left to right, the joint hierarchical 

Gaussian process model (blue curve) shows highest AUC at 0.735, followed by the single 

logistic Gaussian process model of PE (red curve: 0.683) and lastly the traditional linear-

logistic model of PE (black curve: 0.605).
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Table 1

Simulation with different values of the AR(1) parameter ρ and inter-outcome scalar c. The posterior means 

(with 95% credible intervals) show that these parameters are correctly recovered.

Sim No. (true values) ρ c

Sim 1 (ρ = −0.8, c = 0.9) −0.77(−0.81,−0.74) 0.86 (0.69, 1.00)

Sim 2 (ρ= 0.5, c = −0.3) −0.53(−0.48,−0.57) −0.28(−0.44,−0.12)

Sim 3 (ρ = −0.1, c = 0.01) −0.09(−0.14,−0.02) 0.03(−0.10, 0.18)
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Table 2

Association measures under different noise levels to assess model robustness.

Noise/Signal 

c (true value: 0.50)

0.1 0.50 (0.34, 0.65)

0.5 0.46 (0.29, 0.58)

1.0 0.51 (0.37, 0.66)

2.0 0.44 (0.30, 0.58)

4.0 0.45 (0.30, 0.60)

8.0 0.25 (0.13, 0.37)

16.0 0.23 (0.11, 0.36)

32.0 0.09 (−0.03, 0.22)
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