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Lipids are essential for mammalian cells to maintain many physiological functions. Emerging
evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and
metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of
cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful
of  literature  covering this  topic  to  implicate  lipid  metabolism in  oncogenic  virus associated
pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the
pathogenesis of the Kaposi’s sarcoma-associated herpesvirus, a common causative factor for
cancers arising in the immunocompromised settings.
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INTRODUCTION

Kaposi’s sarcoma-associated herpesvirus (KSHV, also
known as human herpes virus-8, HHV8) is the causative
agent for a number of cancers, including Kaposi’s
sarcoma (KS), primary effusion lymphoma (PEL) and
multicentric Castleman disease (MCD), all of which
arise preferentially in immunocompromised patients
(Chang et al., 1994; Cesarman et al., 1995; Soulier et al.,
1995). Currently, there are four KS isoforms: classic KS

affecting elderly men of the Mediterranean; endemic KS,
existing in some countries of Central and Eastern Africa;
iatrogenic KS, which usually develops in organ transplant
recipients with immunosuppression; and epidemic or
AIDS-KS, which typically presents with more aggressive
features (Mesri et al., 2010). Even though the combined
antiretroviral therapy (cART) helps to reduce the total
incidence of KS in the western world, KS is still the most
common AIDS-associated malignancy and a leading
cause of cancer-related morbidity and mortality in AIDS
patients (Bonnet et al., 2004). PEL is a B-cell malignancy
harboring KSHV which arises preferentially within the
pleural or peritoneal cavities of immunocompromised
patients (Cesarman et al., 1995). PEL is a rapidly
progressing malignancy with a median survival time of
approximately 6 months, even after the combinational
chemotherapy (Chen et al., 2007). KSHV-associated
MCD is a rare lymphoproliferative disorder that frequently
arises in HIV+ patients who have a suppressed HIV
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activity and a relatively preserved CD4 count (Wang et
al., 2016). Like other herpesviruses, KSHV establishes a
lifelong infection in the host utilizing two major distinct
phases: latent infection and lytic replication. During the
latent infection–the predominant phase in the majority of
infected cells–only a limited number of viral genes are
expressed. Provocation by a variety of stimuli induces
lytic replication, resulting in new virion assembly and
release of infectious viral particles (Schulz, 2006). Pre-
vious studies suggest that the oncogenic potential of
KSHV is largely dependent upon genes expressed during
the viral latency, however, recent data demonstrate that
the viral lytic reactivation is critical for infection of naïve
cell targets, maintenance of the KSHV reservoir, and
tumor development (Aluigi et al., 1996; Lebbe et al.,
1997; Grundhoff and Ganem, 2014;).

Lipids form a diverse group of water-insoluble mo-
lecules that include triacylglycerides, phosphoglycerides,
sterols and sphingolipids. Lipids are essential for mam-
malian cells to maintain their physiological functions.
For instance, fatty acids are the major building blocks for
the synthesis of triacylglycerides during the process of
energy storage. Phosphoglycerides, together with sterols
and sphingolipids are the major structural components of
cellular membranes. In addition, lipids as second mes-
sengers and hormones also play important roles in many
signal transduction pathways. For example, lipids in the
cellular membranes have been linked to the functions of
several signal transduction pathways, including immuno-
globulin E signaling (Sheets et al., 1999), T-cell antigen
receptor signaling (Janes et al., 2000), glial-cell-derived
neurotrophic factor (GDNF) signaling (Tansey et al.,
2000), Ras signaling (Roy et al., 1999) and Hedgehog
signaling (Porter et al., 1996). Accumulating evidence
has shown that cancer cells develop specific alterations
in different aspects of lipid metabolism to facilitate their
survival and various malignant behaviors. To date, there
are only a handful of studies describing how an oncogenic
virus such as KSHV can manipulate host cellular lipid
biosynthesis and metabolism to promote viral infection,
pathogenesis, and tumorigenesis. In the current review,
we summarize recent findings in this new area of KSHV
research.

ROLE OF LIPIDS IN THE PRIMARY AND
LATENT KSHV INFECTION

In cell culture, KSHV is able to infect various types of
human cells, such as B cells, endothelial cells, epithelial
cells, and fibroblasts (Dai et al., 2012; Fontana et al.,
2014; Kang and Myoung, 2017). Several membrane pro-
teins including heparin sulfate proteoglycan (HSPG),
DC-SIGN, integrin α3β1/αvβ3, EphA2 and xCT can
act as cellular receptors for KSHV infection in a cell

type-dependent manner (Birkmann et al., 2001; Akula et
al., 2002; Kaleeba and Berger, 2006; Rappocciolo et al.,
2006; Garrigues et al., 2008; Hahn et al., 2012). After
binding with these receptors, KSHV can induce the
phosphorylation of focal adhesion kinase (FAK) which
subsequently leads to the activation of Src, phosphatidy-
linositol 3-kinase (PI3-K), protein kinase C-ζ (PKC-ζ),
Rho-GTPases, mitogen-activated protein kinase kinase
(MEK), and extracellular signal regulated kinase 1/2
(ERK1/2) (Naranatt et al., 2003; Sharma-Walia et al.,
2004; 2005). Activation of these signaling cascades can
facilitate virus entry, its movement in the cytoplasm, and
the nuclear delivery of viral DNA. Many of these KSHV
induced signaling molecules are associated with lipid
rafts micro-domains in the membrane. Previously, Raghu
et al. reported that lipid rafts of endothelial cells play
critical roles in KSHV infection and gene expression
(Raghu et al., 2007). They found that disruption of lipid
rafts by methyl β-cyclo dextrin (MβCD) or nystatin
significantly inhibited the expression of viral latent gene,
Lana (Latency-associated nuclear antigen), and the lytic
gene, Rta (Replication and transcription activator). Lana
is the only viral protein consistently expressed in all KS-
associated malignancies (Dupin et al., 1999) and its
major function is to maintain the viral episome in the
latently-infected cells (Ballestas et al., 1999; Avey et al.,
2015). Rta is a key viral protein initially controlling virus
“latent to lytic” switch (Sun et al., 1998). The inhibition
of Lana and Rta expression was mainly achieved by
suppressing the KSHV-induced PI3-K and RhoA-
GTPases activation and reducing the co-localizations of
PI3-K and RhoA-GTPases with lipid rafts (Raghu et al.,
2007). Since disruption of lipid rafts did not affect
KSHV binding and viral DNA internalization, the
authors concluded that lipid rafts are mainly required for
KSHV-induced microtubule dynamics, virus movement
in the cytoplasm, nuclear delivery of viral DNA, and
viral gene expression (Raghu et al., 2007). A later study
from the same group indicates that at a very early time-
point during infection (~1 min post-infection), an adaptor
protein, c-Cbl, can induce the selective translocation of
KSHV into the lipid rafts along with the α3β1, αVβ3,
and x-CT receptors, leading to a productive infection
(Chakraborty et al., 2011). Knock-down of c-Cbl was
found to inhibit KSHV infection by preventing micro-
pinocytosis and selective virus-receptor translocation,
with KSHV being diverted toward a clathrin-lysosomal
noninfectious pathway.

One recent study has shown that KSHV infection can
activate several components of the lipoxygenase pathway,
including 5-lipoxygenase (5LO), leukotriene (LT) A4 hy-
lase (LTA4H), and leukotriene B4 (LTB4), a chemo-
tactic lipid mediator of the 5LO pathway (Sharma-Walia
et al., 2014). Interestingly, blocking the 5LO/LTB4
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cascade can inhibit the expression of KSHV-encoded lat-
ent protein Lana, the immunomodulatory protein K5, the viral
macrophage inflammatory protein 1 (MIP-1), and MIP-2
expression. Taken together, these results clearly indicate
that cellular lipids, lipid metabolism and related signal-
ing pathways are involved in KSHV primary infection and
subsequent latency establishment. Given its critical role in
KSHV infection cycle, the lipid pathway may represent a
promising “drug target” to manage KSHV infection.

ROLE OF LIPIDS IN KSHV REACTIVATION AND
LYTIC REPLICATION

Like latency, viral reactivation and lytic replication also
play important roles in KSHV oncogenesis. A recent
study has shown that reactivation can be induced by some
short-chain fatty acids (SCFAs) such as phenylbutyrate
through inhibiting histone deacetylase (HDAC) activities
(Gorres et al., 2014). Consistently, Yu et al. have found
that several SCFAs produced by periodontal pathogens
such as Porphyromonas gingivalis and Fusobacterium
nucleatum can also induce the KSHV lytic reactivation
by suppressing HDACs as well as two histone N-lysine
methyltransferases (HLMTs): enhancer of zeste homo-
log2 (EZH2) and suppressor of variegation 3–9 homo-
log1 (SUV39H1) (Yu et al., 2014). These findings in-
dicate that periodontal pathogens may create a unique mi-
croenvironment in the oral cavity, which in turns favors
KSHV replication and KS development. Indeed, oral
cavity involvement represents the initial manifestation of
KS in 20%–60% of HIV-associated cases (Flaitz et al.,
1997; Lager et al., 2003; Reichart 2003).

We recently reported that targeting sphingolipid meta-
bolism by either sphingosine kinase inhibitors or exogen-
ous ceramides can dramatically induce viral lytic genes
expression in KSHV-infected primary endothelial cells
or PEL cells (Qin et al., 2014; Dai et al., 2014, 2015).
Such induction is at least in part mediated by the sup-
pression of pro-latency viral microRNAs (e.g., miR-
K12-1 and miR-K12-11) as well as related signaling path-
ways (e.g., NF-κB) (Dai et al., 2014).

ROLE OF LIPIDS IN THE SURVIVAL OF KSHV-
INFECTED CELLS

Recent studies have shown that cellular lipids and lipid
metabolism can regulate the survival of KSHV-infected
primary and tumor cells. Having analyzed the metabolic
profiles of primary B cells and KSHV+ PEL cells, Bhatt
et al. found that KSHV+ PEL cells exhibit greater
aerobic glycolysis and fatty acid synthesis than primary
B cells (Bhatt et al., 2012). Meanwhile, the major lipid com-
ponents of eukaryotic cell walls (e.g., phosphatidylcholine
and phosphatidylethanolamine) are also more abundant

in PEL cells. The fatty acid synthase (FASN), a multi-
enzyme complex involved in the cellular lipids synthesis
(Kuhajda et al., 2000), is overexpressed in PEL cells.
Moreover, treatment of KSHV+ PEL cells with the FASN
inhibitor, C75, can reduce cell viability in a dose-dependent
manner (Bhatt et al., 2012).

Delgado et al. have utilized a metabolomic approach
to investigate the KSHV mediated global metabolic al-
terations in latently infected cells (Delgado et al., 2012).
They found that ~60 analyzed metabolites were altered
after latent infection. Among them, many long chain
fatty acids were affected due to the alteration of fatty
acid synthesis pathways. Previous studies have shown
that fatty acid synthesis is also required for the survival
of latently infected endothelial cells and inhibition of key
enzymes (e.g., acetyl-CoA carboxylase (Wang et al.,
2009) or FASN (Kuhajda et al., 2000)) in this pathway
led to apoptosis of infected cells. In contrast, addition of
palmitic acid (the fundamental fatty acid precursor) can
protect latently infected cells from the acetyl-CoA car-
boxylase inhibitor, 5-(Tetradecyloxy)-2-Furoic Acid
(TOFA)-induced cell death. The same group later repor-
ted that the KSHV latent infection also increases peroxi-
some biogenesis. Interestingly, the proteins involved in
peroxisomal lipid metabolism of very long chain fatty
acids, such as ABCD3 (a peroxisome-specific lipid trans-
porter) and ACOX1 (Acyl-CoA Oxidase 1, a peroxi-
somal enzyme), are required for the survival of latently
infected cells (Sychev et al., 2017).

Sphingolipid biosynthesis involves hydrolytic conver-
sion of ceramide to sphingosine. Subsequently, sphin-
gosine is phosphorylated by one of two sphingosine
kinase isoforms (SphK1 or SphK2) to generate bioactive
sphingosine-1-phosphate (S1P) (Ogretmen and Hannun,
2004) (Figure 1). The relative levels of ceramide and
S1P ultimately determine the fate of tumor cells, with ac-
cumulation of ceramides favoring apoptosis, and accu-
mulation of S1P favoring proliferation (Cuvillier et al., 1996;
Ogretmen and Hannun, 2004). SphK can be activated by
a variety of tumor-promoting cytokines and growth factors.
SphK activation is responsible for a rapid accumulation
of intracellular S1P and depletion of ceramide species
(Maceyka et al., 2002). S1P can subsequently bind to one
of five G protein-coupled S1P receptors (S1PR1-5) and
then activate diverse downstream signaling pathways
(Strub et al., 2010). Because of their pleiotropic roles,
bioactive sphingolipids have evolved as promising thera-
peutic targets for cancer treatment over the past two dec-
ades (Saddoughi et al., 2013). We have recently reported
that induction of intracellular ceramide using a novel
SphK2 inhibitor (ABC294640) or exogenous ceramide/
dihydro(dh)-ceramide species (e.g., C6-Cer or dhC16-
Cer) can effectively kill KSHV+ primary endothelial
cells or PEL tumor cells, but have little effect on KSHV
non-infected cell controls (e.g., naïve endothelial cells or
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B cells) (Qin et al., 2014; Dai et al., 2014, 2015). Fur-
ther, these compounds can also repress KSHV+ PEL tu-
mor progression in vivo and it is likely that this is medi-
ated through interfering with several cell survival/prolif-
eration-associated signaling pathways (e.g., MAPK/
ERK, Akt and NF-κB) and up-regulating viral lytic genes
and cellular tumor suppressor genes expression (Qin
et al., 2014; Dai et al., 2015; Cao et al., 2017). In addi-
tion, the KSHV mediated up-regulation of SphK2 (Dai et
al., 2014) may also help sensitize KSHV+ cells to sphin-
golipid targeted therapy.

LIPIDS AND KSHV- INDUCED
ANGIOGENESIS/TRANSFORMATION

One recent study revealed that neutral lipid (NL) content
is increased in KSHV-infected human umbilical vein
endothelial cells (HUVEC) (Angius et al., 2015). In
particular, triglyceride synthesis is boosted in the lytic
phase, whereas the cholesteryl ester synthesis rises in the
latent phase. Moreover, inhibition of cholesterol esteri-
fication significantly reduces neo-tubule formation mainly
in latently infected cells, indicating that a reprogramming
of cholesteryl ester metabolism is involved in KSHV-
mediated neo-angiogenesis and that it may also contribute

to the high metastatic potential of the derived-tumors.
It is believed that KSHV-encoded G protein-coupled

receptor (vGPCR) is a key molecule in the pathogenesis
of KS and that it plays a central role in promoting vascu-
lar endothelial growth factor-driven angiogenesis and
spindle cell proliferation (Montaner et al., 2003; Grisotto
et al., 2006; Wei et al., 2016). Several studies have
shown that 1 Alpha, 25-dihydroxyvitamin D3 [1 alpha,
25(OH)(2)D(3)] and its TX527 analog inhibit the growth
of vGPCR transformed endothelial cells in vitro and in
vivo. The inhibition effects are achieved through a com-
plex of mechanisms including an interaction with vitam-
in D receptor, down-regulation of the NF-κB pathway and up-
regulation of the pro-apoptotic protein, Bim (Gonzalez-
Pardo et al., 2010; 2012; 2013; Suares et al., 2015). Taken
together, these data indicate the importance of vitamin D
as a steroid signaling molecule in vGPCR-transformed
endothelial cell proliferation.

CONCLUSION

Our group and others have recently shown that cellular
lipids and lipid metabolism play important roles in KSHV-
infected cell survival, pathogenesis, and tumorigenesis
(summarized in Figure 2). Lipid research has become an

 

Figure 1. Targeting sphingolipid metabolism in KSHV-infected host cells. CerS, ceramide synthase; S1PP, S1P phos-
phatase; SphKs, sphingosine kinases; S1PRs, S1P receptors. ABC294640: A novel selective SPHK2 inhibitor; C6-Cer,
dhC16-Cer etc: exogenous short- or long-chain ceramides.
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exciting direction in the KSHV field. To date, it is still
largely unclear how this oncogenic virus manipulates
lipid biosynthesis and metabolism during de novo in-
fection and KSHV mediated tumor development. Clinically,
there are few data resulting from clinical trials testing the
effectiveness of lipids-targeted therapeutics for KSHV-
related malignancies. To the best of our knowledge,
there’s only one ongoing early phase trial for the evalua-
tion of ABC294640 in patients with refractory/relapsed
Diffuse Large B-cell Lymphoma (DLBCL) or Kaposi
Sarcoma (KS) directed by Dr. Suki Subbiah (NCT0222
9981). How to accelerate the “bench to bedside” transition
in this field is a key question needs to be addressed soon.
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